https://doi.org/10.15255/CABEQ.2013.1886

Published: CABEQ 28 (3) (2014) 267–272
Paper type: Original Scientific Paper

Download PDF

Highly-ordered Metal-modified Mesoporous Carbon Nitride: As a Novel Hydrogen Adsorbent

S. E. Moradi

Abstract
In this study, ordered mesoporous carbon nitride with high surface area and pore volume has been synthesized through a simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and modified by Ni doping. The mesoporous carbon materials have been characterized by BET surface area and XRD analysis (low and wide angle). Adsorption data of H2 on the mesoporous carbons were collected with PCT method for a pressure range up to 100 bar at 303 K. The effect of nickel doping and carbon-nitrogen (C-N) structure on hydrogen adsorption capacities was investigated. The amount of hydrogen adsorbed on nickel-doped mesoporous carbon nitride (Ni-MCN, 1.49 wt. %) and nickel-doped mesoporous carbon (Ni-MC, 1.24 wt. %) in contrast with mesoporous carbon nitride (MCN, 1 wt. %) and pristine mesoporous carbon (MC, 0.83 wt. %) has been enhanced.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

Keywords
mesoporous carbon nitride, nickel, surface modification, hydrogen storage