https://doi.org/10.15255/CABEQ.2014.13

Published: CABEQ 27 (4) (2013) 385-395
Paper type: Original Scientific Paper

Download PDF

Modelling Enzymatic Reduction of 2-keto-D-glucose by Suspended Aldose Reductase

G. Maria and M. D. Ene

Abstract
Batch experiments have been systematically carried out at 25 °C, pH = 7, over 24-76 h reaction time in order to evaluate the activity of a commercial (recombinant human) aldose reductase (ALR) used to catalyze the reduction of 2-keto-D-glucose (kDG) to fructose using NADPH as cofactor, by employing various enzyme/reactants initial ratios. A kinetic model was proposed by extending the ‘core’ reaction mechanism proposed in literature for the reduction of several saccharides and keto-derivates (glucose, galactose, xylose, glyceraldehydes) by the human or animal ALR (wild or modified), or by similar aldo-keto reductases (e.g. sorbitol dehydrogenase, xylose reductase) in the presence of NAD(P)H. The reaction pathway assumes a very quick reversible formation of a stable ALR•NADPH complex, from which a small fraction is binding the substrate thus determining a succession of Bi-Bi reversible reactions leading to the final product (fructose). Model parameters have been estimated based on the recorded data sets of four observable key-species, being in concordance with the reported values in literature for similar processes. The results confirm the conformational change of E•NADP+ complex allowing the release of NADP+ as being the rate-limiting step of the overall process. The results also underline the necessity to stabilize the fast deactivating enzyme by immobilization, as well as the requirement of a continuous in-situ regeneration of the cofactor.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

Keywords
Keto-glucose reduction to fructose, aldose reductase, reaction mechanism, kinetic model