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1 Introduction
Nowadays, the increase in computing power allows ana-
lysts to create complex mathematical models of increasing 
sophistication. Based on sole intuition, it is virtually impos-
sible to directly understand the relationship between the 
endogenous and exogenous variables that constitute these 
models. Thus, mathematical modelling provides a system-
atic framework to describe, explain, and quantify func-
tion in biological systems known to be multi-dimensional 
search problems where assumptions represent uncertain 
information that cannot be collected from real-life obser-
vations.1

Given that complexity, different techniques of sensitivi-
ty analysis (SA) have been developed to determine how 
models’ output uncertainty (e.g., a statistic of the simulated 
time series such as the average simulated stream flow, or 
an objective function like the root mean squared error) can 
be apportioned, qualitatively or quantitatively, to different 
sources of uncertainty in the model input (e.g., subjective 
assumptions on parameters, initial states, input data, time 
or spatial resolution grid, etc.).2,3

In addition, SA is applied to explore the importance of 
input parameters, and is considered an essential element 
of the model development process (experimental plan set-
ting). SA assists with explaining the effect of various model 

constructions, guide parameter estimation, and prepara-
tion for model calibration.3,4

In the present study, a univariate along with a multivariate 
sensitivity analysis was carried out on a phenomenological 
lag phase model that involved several state variables and 
parameters related to growth activity substrate availability 
and secondary metabolites production (pyoverdine).

Finally, the choice of Pseudomonas fluorescens Pf-5 was 
motivated by the fact that Pseudomonas strains are known 
to be efficient biocontrol agents of plant pathogens, be-
cause of their catabolic versatility that releases a great di-
versity of exoproducts with antimicrobials, metal chelating, 
lytic, and phytohormonal activity.5-8

2 Material and methods
2.1 Measurement of growth and siderophore assay 

P. fluorescens Pf-5 is remarkable as a bio-control agent, for 
its rhizosphere competence and large spectrum of second-
ary metabolites that it produces.9,10

Cultures were grown with continuous shaking at 200 rpm 
for 40 h at 25 °C in an Erlenmeyer flask containing 250 ml 
of King’s-B medium; the pH was adjusted to 7. Growth 
and pyoverdine production were measured by taking 2 ml 
media each hour for 2 days.
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Both the growth and siderophore production were deter-
mined by the method of Meyer and Abdallah.11 Bacterial 
biomass was turbidimetrically calculated at 600 nm. The 
produced siderophore was determined by measuring 
the supernatant’s absorbance at 400 nm (optical density 
(OD)). Siderophore concentration (g l−1) was calculated by 
the following expression: 

(OD) 400 nm ∙ MW/ε

where ε = 16.500 M−1 cm−1 is an extinction constant and 
MW = 1500 Da represents the molecular weight of pyo-
verdine.12,13

2.2 Numerical experiments

2.2.1 Presentation of the numerical model

The studied model is a lag phase type model which was 
derived from the well-known Baranyi’s model; the latter 
being constituted by 05 non-linear ordinary differential 
equations (ODE) that form a non-autonomous system.14,15 

This model expects that a small portion α of the entire bac-
terial population (N) adds to the development cycle, while 
the leftover cells adjust their new physiological state. The 
pyoverdine content is given by its optical density (P), iron 
bioavailability is represented by (S), and chelated iron is 
denoted by (Q).

The model that was applied to growth and secondary me-
tabolite measurements of Pseudomonas fluorescens Pf-5 
strain is given below:

(1)

(2)

(3)

(4)

With, 

(5)

For the assessment of pyoverdine production, used were 
the standard inhibition kinetics equations. Thus, we ob-
tained:

(6)

(7)
(8)

(9)

where, Yn (μg μl−1) represents a growth yield constant; µ 

(h−1) is the specific growth rate as a function of substrate 
concentration; k (μM) is the nutrients concentration where 
the specific growth rate μS has half its maximum value; 
S∞ (μM) is the iron concentration triggering pyoverdine 
synthesis; σ (h−1/μM) represents the rate of iron chelation; 
v (unitless) is the population recovery rate; δ (μM) and β 
(h−1/OD) are both coefficients of linear functions which are 
functions of the amount of freely available iron in the me-
dia, and finally, α(t) represents the physiological adaptation 
state of the studied population. All coefficients: μ, k, σ, β, 
δ, Yn, S∞, v are positive values.15  

2.2.2 Regional Sensitivity Analysis (RSA)

RSA, is a global sensitivity analysis method, widely used 
because of its ease of implementation in factor mapping 
procedures.16,17 In this study, we firstly performed a univar-
iate rank sensitivity analysis consisting in determining the 
sensitivity indexes defined by partial derivatives given by 
Eq. (10).

(10)

Sensitivities were then ordered by their respective absolute 
values in ascending direction. Here, y* is the output value 
of the model obtained for the vector (optimal, reference 
vector), which is initially fed as input. 

The values of this reference vector were obtained by cali-
bration of the present Lag-Log phase model (Eqs. 1–9) to 
laboratory-based experimental data (biomass and pyover-
dine content).18 In a second study, the same vector had 
been used to test model response to small variation follow-
ing two cross fold deviations (in both directions) from the 
optimal default vector , along with an extensive parameter 
randomisation analysis that, conversely to the present work 
focused on state variables sensitivity, was centred on pa-
rameters sensitivities.19

In a second step, a multivariate sensitivity analysis was car-
ried out by determining the sensitivity indexes defined by 
partial derivatives. Here we calculated the standardised 
sensitivity index that gave relative sensitivities by the mean 
of the terms (11) that consider time-varying sensitivities.

  
, y ≠ 0 or  , y ≠ 0 (11)

where, y is the output value of the model obtained for the 
input vector θ*. 

At each time moment t, sensitivities were evaluated at spe-
cific parameters value, and were only valid in the environs 
of the default parameter set. For a non-linear model, sen-
sitivities were computed at parameter values close to op-
timal param values. It is usually considered that the higher 
the value of the sensitivity index, the more the input pa-
rameter influences the model’s output.

Lastly, an extensive parameter randomisation analysis was 
performed by using a uniform Latin hypercube sampling 
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procedure (LHS) that sampled 10.000 vectors in the strat-
ified 8-dimensional hypercube space instead of studying 
the response of a unique input vector θ* (baseline vector). 
Time-varying sensitivities were calculated at each time mo-
ment t. For the sake of conciseness, plots are drawn for the 
top three most frequent parameters at (8, 24, and 40 h).18,20

All computations were performed in MATLAB 2012a 
(MathWorks, Natick, MA) and each simulation covered a 
40-hour time interval simulation.

3 Results and discussion
3.1 Multivariate sensitivity analysis 

3.1.1 Rank sensitivity analysis

In complex models, one-variate sensitivity analysis is insuf-
ficient for a comprehensive study of any model. Hence, si-
multaneous changes in more than one parameter’s values 
would result in an unexpected output change because of 
uncertainty and non-linear relationships among different 
model components.21,22 Therefore, one-variate sensitivi-
ty analysis should be followed by a multivariate sensitiv-
ity analysis that uses dimensionless sensitivities of model 
output to parameters and collapses them into summary 
values. In this case, the highest sensitivity value was associ-
ated with the most critical parameter. Therefore, the mag-
nitudes of the sensitivity summary values could be used to 
compare or classify input parameters, and help users to 
select the most influential parameters that can be subse-
quently optimised.23,24

In this section, a plot of each Si is given in Fig. 1 for the 
variable biomass (A) and pyoverdine content (B).

From Fig. 1 (A), inputs can be roughly classified into three 
groups: Yn, Mu, v, and k that constitute the 1st group (in 
order of decreasing effect magnitude) with both the high-
est to medium overall and interaction (non-linear) effect. 
Secondly, Sigma, Delta, and Beta’s parameters hold the 
following position with a relatively low effect group; and 
finally, Sinf, which represents the least important parameter 
in the model.

For the pyoverdine content variable (P), sensitivity index-
es can be classified into four groups that are distributed 
among three classes of effects: Yn and Beta represent the 1st 
group, immediately followed by Sinf, v, and Mu (in order of 
decreasing effect magnitude); both groups hold the high-
est overall and interaction effect class. In the intermediate 
and lowest class, we respectively find the parameter Delta 
alone, followed by k and Sigma that exert the least impor-
tant effects.

Summary values of sensitivity index Si for the state varia-
bles biomass and pyoverdine clearly show that Yn exerted 
the highest effect, where Sinf and the two parameters (k & 
Sigma) exerted the least important effects on biomass and 
pyoverdine content variables. 

According to Fig. 1, we can investigate the effect of any 
input parameter. For example, the parameter Yn has the 
highest value of sensitivities (3.9 & 3.8), which means that, 
given a slight increase in Yn (+/−10 %), the biomass and 
pyoverdine output will change by ≅ 4 times on average. 
Therefore, if the dynamic model is to be fine-tuned, the 
most minor influential parameters should be kept at their 
default value or fixed to any constant within their feasible 
range, as it makes no sense to fine-tune parameters that 
have no or negligible effects.

Alternatively, we can add, substitute or delete insensitive 
parameters by others that have a more significant impact 
on the description of the phenomenon of interest. How-
ever, it must be kept in mind that this approach could alter 
the overall structural integrity as it increases the need for 
more experimental data that are rarely readily available. 

The increase in the model’s number parameters leads to a 
mechanical rise in model complexity. On the other hand, 
the model’s oversimplification (high aggregation level) in-
duces a system openness that renders biological model 
testing virtually impossible critically and objectively. Thus, 
a trade-off between the two earlier cases should be found 
by simulation experiments. In both situations, the system 
should be maintained in a tractable and manageable nu-
merical form that guarantees reliable and effective predic-
tions.4,25
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Fig. 1 – Model’s rank sensitivities for biomass (A) and pyoverdine content (B) 
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3.2 Time-varying sensitivity analysis

Since we are dealing with a dynamic model, sensitivities 
of the modelled variables biomass and pyoverdine content 
to the parameters’ values may change over time. Thus, it 
makes sense to visualise the sensitivity functions as they 
fluctuate. 

The following plot provides information about the param-
eters models dynamic importance during simulation (see 
Fig. 2).

The parameters Yn, Mu, and v have a consistently positive 
effect on the number of bacterial cells, as their correspond-
ing sensitivity functions are always positive. However, high-
er values of k consistently decrease the biomass of the bac-
terial population.

Several sensitivity functions exhibit strong similarities for 
the output variable biomass (N). For instance, Mu and v 
share the same curve tendency, which indicates that these 
parameters have a compa-
rable effect on this output 
variable. If too similar, like 
in the case of the parame-
ters Beta, Delta, Sigma, and 
Sinf, where the sensitivity 
functions are highly corre-
lated, the joint estimation 
of these parameter combi-
nations may not be possi-
ble on these sets of exper-
imental data alone. Thus, 
the increase in the value of 
any of these parameters will 
generate approximately the 
same output response if the 
value of the other param-
eters is decreased by the 
corresponding appropriate 
amount.26

For the output variable py-
overdine content (P), the 
similarities between Delta 
and Sigma; v and Mu; Beta 
and Yn are relatively strong. 
However, some parameters 

had equivalent cumulative effect while having opposite 
dynamic behaviour implying negative relationships (i.e., v 
and Mu regarding k; Beta regarding Sinf) (Fig. 2).

3.3 Extensive parameter randomisation 
sensitivity analysis

Classification of input parameter effects is given in Fig. 3. 
Presented are the three most important parameters based 
on the occurrence percentages of the total 10,000 random 
parameter sets for which different model’s parameters 
demonstrated the largest (solid bars), 2nd largest (striped 
bars), and 3rd-largest (stippled bars) relative change, in re-
sponse to the modulation of model parameters.

Model predictions are shown for three representative time 
point simulations that respectively correspond to the Lag, 
Log, and stationary growth phase (8, 24, and 40 h).
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Fig. 3 – Distribution of the three top-ranked input parameters based on the count of events. 
Shown are the percentages of the total 10,000 randomised parameter sets for which 
different parameters in the model demonstrated the 1st (solid bars), 2nd most significant 
(striped bars), and 3rd-largest (stippled bars) relative change at three representatives time 
point simulation.
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The present modelling analysis confirmed that for a wide 
range of scenarios, the two-state variables (biomass and py-
overdine content) may demonstrate consistently significant 
relative changes in their local concentrations induced by 
independent variations of the parameters: substrate-to-bi-
omass yield factor (Yn) or bacterial specific growth rate (Mu).

Overall, parameter importance varied from point to point. 
For example, at time 8 h, 88.8 %, 88.79 %, and 64.56 % of 
the 10,000 events ranked the parameters: Mu at 1st place, 
k at 2nd, and Sigma as the 3rd most influential parameter, 
while at the time 40 h of virtual growth, the ranking was 
entirely and exclusively in favour of parameter Yn. 

This constatation is relatively accurate for the variable 
pyoverdine content. We observed a shift in parameters 
ranking sensitivities over time, ending up with Mu as the 
top-ranking parameter, followed by Sigma, then k with an 
occurrence frequency of respectively 82.31 %, 82.17 %, 
and 79.4 % of the 10,000 random vectors. For the remain-
ing occurrence frequencies, these were widely distributed 
among the rest of the input parameters, and depended 
greatly on the combination of input values. 

Globally, these results confirm that, for a complex model 
in which the input parameters interact with each other, the 
sensitivity for input parameters may vary significantly from 
point to point in the parameter space.27

4 Conclusion
Current efforts to isolate, characterise, and select the most 
efficient bacterial antagonists to control phytopathogens 
worldwide are continuously reported in the literature. 
However, there has been limited success in the develop-
ment of commercial products containing viable cells of 
Pseudomonas. For instance, only two highly competent 
strains are approved in Europe for plant protection be-
cause of expensive field sampling and fastidious laboratory 
analysis procedures. 

In the present study, we have quantitatively validated a lag-
phase growth model that describes the bacterial dynamic 
and pyoverdine production against population size count 
and pyoverdine content measurements of a Pseudomonas 
fluorescens pf-5 strain grown in an iron-deficient media. In 
addition, regional sensitivity analysis allowed us to success-
fully pinpoint which parameters needed to be measured 
more precisely and/or optimised to obtain better predic-
tions and better yields. Namely, the parameters Yn and Mu 
(2.04−2 and 1.35−2 g l−1 of pyoverdine for Pseudomonas 
fluorescens Pf-5 strain). Finally, the extensive parameter 
randomisation that covered a large range of the parame-
ters space enabled confirmation of rank sensitivity analysis 
results, which allowed us to gain more insight into the rela-
tive importance of input parameters over time.

Globally, the studied system of the differential equa-
tion-based model can be used as an indirect experimental 
tool for PGPR strains selections (strains with high Yn and 
Mu values) and real-time monitoring of iron depletion over 
time, although the small number of repetitions and limited 

growth conditions emphasise the need of additional exper-
iments on other Pseudomonas strain. 

Finally, no absolute sensitivity analysis method is suitable 
for all types of biological problems. Thus, one should be 
cautious about the precision of sensitivity analysis results, 
especially when the model parameters are not identifiable 
(parameters that cannot be directly measured experimen-
tally) or if one focuses on a single parameter variation and 
does not take into account possible linear or non-linear 
interactions amongst parameters. Therefore, further inves-
tigation should focus on using an efficient global optimi-
sation approach to confirm the present findings and bring 
evidence that we did not converge to the localised solu-
tions of the output space parameter that enhances the risk 
of having inappropriate or nonsensical responses. 
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SAŽETAK
Analiza regionalne osjetljivosti modela nastanka kelata 

primijenjenog u proizvodnji siderofora
Rafik Berdja,a* Mohamed Megateli,b Omar Abderrahmane,c  

Faiza Ammad d i Messaoud Benchabane d

Regionalna analiza osjetljivosti dio je metoda globalne analize osjetljivosti. U ovom je istraživanju 
provedena multivarijantna analiza osjetljivosti na kvalitativno-fenomenološkom modelu. Rezul-
tati istraživanja omogućili su određivanje najutjecajnijih parametara. Dan je poredak čimbenika 
prema njihovu relativnom utjecaju na parametre i omogućeno praćenje osjetljivosti parametara 
tijekom vremena. Konačna potvrda važnosti ulaznih parametara modela dobivena je nasumičnim 
odabirom u širokom rasponu njihovih vrijednosti.

Ključne riječi 
Dinamičko modeliranje, regionalna analiza osjetljivosti, vremenski promjenjive osjetljivosti,  
rang osjetljivosti, siderofor, pioverdin, mediji s nedostatkom željeza
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