7. KURTANJEK: Leveraging Causal Al Models for Enhanced Process Control in Food Production..., Kem. Ind. 74 (11-12) (2025) 497-505

Leveraging Causal Al Models for Enhanced
Process Control in Food Production:
A Case Study on Beer Fermentation Quality

7. Kurtanjek

497

https://doi.org/10.15255/KUI.2025.018
KUI-37/2025

QOriginal scientific paper

Received April 1, 2025

Accepted May 26, 2025

This work is licensed under a

Creative Commons Attribution 4.0

International License

University of Zagreb Faculty of Food Technology and Biotechnology, Pierrotijeva 6, 10 000 Zagreb,

Croatia

Abstract

Reproducible Kernel Hilbert Space (RKHS)-based methodologies are applied for Digital Twins (DT) modelling and causal anal-
ysis of the beer fermentation process. The model accounts for the key process variables (temperature, biomass, sugar, ethanol,
and carbon dioxide) along with online beer quality monitoring through the concentration of diketones (VDK). The modelling
dataset is based on integration of 10 fermentation profiles with the perturbed initial conditions. The focus is on de-confounding
process data multicollinearity for development of a DT model with intervention potential aimed for optimising beer quality. The
results are graphically presented as a Directed Acyclic Graph (DAG). Based on the DAG structure, a Bayesian Neural Network
(BNN) is applied for the graphical presentation of probability density functions of non-linear dependencies of beer quality on
the key causal process variables. In addition to the intervention potential of causal DT models, the potential use of counterfac-
tual analysis in causal digital twin model is emphasised for improving process control and possible innovations of new products.
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1 Introduction

Digital Twins (DT) — virtual replication of physical, chemi-
cal, and microbial systems — are increasingly being applied
in food technology to enhance various aspects of produc-
tion, processing, quality control, and supply-chain man-
agement. Based on the integration of multidimensional,
multi-disciplinary big data and Artificial Intelligence (Al),
DTs are revolutionising the food industry." The develop-
ment of Al-based Digital Twins in industrial food produc-
tion environments must address several challenging issues,
some of which are:

* Focusing on applications for interventions in on-line
process control and decision-making in production pol-
icies.

* Account for stochastic perturbations in the composition
and quality of raw feedstocks, as well as instability in
supply chains and product markets.

* Accounting for essential time dependencies of process
variables.

* Deconfounding multicollinearity among variables with
statistically unknown multivariate probability distribu-
tions.

¢ Controlling batch processes with distinct process phases.

* Accounting for the irreversibility of chemical and bio-
chemical states.

* Revealing complex causal inferences related to human
perception of food product quality.

“Prof. Zelimir Kurtanjek, PhD, retired
Email: zelimir.kurtanjek@gmail.com

Digital Twins, the concept from Industry 4.0, are used to
model, simulate, and optimise industrial processes. In the
food industry, DTs serve as adaptive, predictive, and con-
trol systems that integrate the fields of food engineering
and computer science.®” They propose a hybrid mod-
elling approach that combines traditional food process
modelling and simulation with data-driven methods based
on machine learning (ML). Research focuses on merging
these two fields into an artificial intelligence system for de-
cision-making and process control in stochastic environ-
ments. For example, DTs have been proposed for the vir-
tualisation of food supply chains to enhance food safety.
Digital Twins have also been developed based on the inte-
gration of optical spectroscopy data to infer agro-product
quality’® and beer quality."” Additionally, a causal Bayesian
network has been proposed to account for the complexity
and stochastic fluctuations of wine physical and chemical
composition on human perception of quality.” The aim
of this work was to propose a methodology for modelling
in Hilbert space using reproducing Kernel Hilbert Space
(RKHS) techniques, and the integration of structured causal
networks for prediction, probability of intervention effects,
and counterfactual evaluation of potential innovations.

2 Methodology

In this work, reproducing kernel Hilbert space (RKHS) is
applied for modelling and causal inference. This concept
is widely used in machine learning, statistics, and function-
al analysis. RKHS is a Hilbert space of functions in which
evaluation at each point can be represented as an inner
scalar product. Its key feature is the existence of a repro-
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ducing kernel, which allows for the evaluation of functions
in the space using inner products.”* It greatly simplifies
statistical analysis and modelling of non-linear systems by
mapping original process features data X from a finite di-
mensional space R of experimental data into an infinite
dimensional Hilbert space H. A kernel function k(x, x,) de-
fines the mapping rule for the self binary product to space
of real numbers k: X X X — R, and the corresponding fea-
ture mapping ¢ of process variables X to Hilbert space ¢:
X — "H. Unlike traditional machine learning algorithms,
such as neural networks and decision trees that apply ex-
plicit transformation of input data X into feature vectors,
kernel methods directly compute similarity using a k us-
er-specified kernel function. For modelling of continuous
experimental data, Gaussian weighting (Eq. 1) is common-
ly is applied as the kernel function, (Eq. 1), providing met-
rics of data similarity:

X, =X,
k(Xsz):eXP[— 5 J (M
o
Although this kernel function implicitly operates in a
high-dimensional, potentially infinite-dimensional feature
space, the so-called “kernel trick” of RKHS (Eq. 2), allows
to avoid explicitly computing the feature representations.
This implicit operation allows kernel methods to efficiently
analyse complex data relationships and facilitate effective
pattern recognition and analysis in infinite-dimensional
Hilbert space H, computation is implemented in finite
space R."

k(x,,%,), :<®(x1),®(x2)>H 2)

Mapping of input data X(ns, np), where ns is the number of
samples and np the number of observed variables, yields
Gramm matrix K (ns, ns) with the elements

Ki, :k(xi,xj) (3)

Application of Gaussian weights k(x;, x,) enables non-para-
metric auto-regression in Hilbert space, which is effectively
applied to data smoothing, removal of measurement errors
and improbable outliers. It is applied by use of the weight-
ed interpolation:

Sk(xx)y,
o) = E——

ik(x,x,.)
i=1

For modelling of non-linear regression, a functional rela-
tion f(x) based on RKHS representer property is applied:

(%), = {Fk (), (5)
given as linear regression:

j=ns

=By + D Bk, x) = B, + k" 6)
j=1
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In the development of Digital Twins as causal Al models,
the key focus is on inferring bivariate dependencies and
synthesising a directed acyclic graph (DAC) as a network of
causal relations. The concept of causal graph, in the form
of a Bayesian causal network, is universal, but generally
suited to cross-sectional, time-invariant pattern analysis
and linear regression, assuming normal distributions of sto-
chastic perturbations.’ However, processes in the food in-
dustry are typically time-dependent, inherently non-linear,
and with unknown probability distributions of stochastic
disturbances, which need to be accounted for when ena-
bling intervention capability in Digital Twins. RKHS model-
ling is basically non-linear and non-parametric in a statisti-
cal sense. Due to RKHS linear structures, common statistics
is applied to the kernel inner-product data. The measure
of bivariate relation between X and Y is calculated as the
covariance between standardised (zero mean and unity
variance) K, and K, data, resulting in the Hilbert-Schmidt
independence criterion (HSIC). HSIC is a measure of de-
pendence between two process variables X and Y, based
on their embeddings in an RKHS."® The HSIC coefficient is
zero if and only if X and Y are independent.

i=nsk=ns

ZZK:, 7)

i=1 j=1

HSIC X, Y

The direction of bivariate causality for non-collinear X and
Y, conditioned by covariates Z, can be inferred based on
Kolmogorov’s conjecture of the asymmetrical complexity
of conditional probabilities between P(Y|X) and P(X|Y)."”
Here, complexity is assessed through a comparison of par-
tial Pearson correlations (pcor) between non-parametric
predictions of X~X, (X|Y;Z) and Y~Y, (Y|X;Z) using
corresponding Gaussian RKHS models:

X =Y = peor(Y,Y, (Y[X;2)) > pcor (X, X, (X|Y;Z)) (8)

The optimal DAG structure is inferred based on maximum
likelihood max(L) calculated from non-parametric proba-
bility density distributions f3;, which are evaluated at each
DAG, node using RKHS Gram matrix data. Inference of
optimal DAG structure is an ill-conditioned and compu-
tationally intensive problem. A critical success factor is the
integration of fundamental engineering knowledge with
data-driven pattern discovery. In causal Al Digital Twins
development, prior knowledge includes structural equa-
tion models (SEM) of mass and energy balances, stoichio-
metric constraints of biochemical reactions, and empirical
dependences of mass and energy transfer coefficients and
chemical/biochemical rate coefficients. Optimisation of
Bayes information criteria (BIC) accounts for DAG com-
plexity determined by the number of model parameters n,
given by the number of network edges, and the number ns
of observed samples.

i=ns

L(DAGk) = defH (Xi | DAGk) 9)
BIC (k) = n, (k)log(ns) - 2log(L(DAG,)) (10)
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In evaluating the likelihood, in addition to the essential
role of integrated a priori field knowledge, a critical fac-
tor is the unknown knowledge of conditional probability
distribution (pdfs), which are specific to each individual
network node X; and conditioned on each hypothetical
k-th DAG. Application of embedded data into RKHS space
enables inference of node-specific non-parametric condi-
tional probability:

pdf, DAG — min(BIC(K)) (11)
k

Optimisation of the BIC is itself a numerically demand-
ing problem. Common approaches include heuristic local
search methods, such as hill climbing or globally optimal
methods like the constrained genetic algorithm GA. In-
ferred DAG of causal Bayesian network (BN) is the essen-
tial part of the Digital Twins models in food production
systems (both industrial and agronomic). It enables analysis
across all three “rungs of the knowledge ladder”: 1) predic-
tion, 2) intervention, and 3) counterfactual analysis.” On
the first rung (prediction), the BN provides functionality
as standard agnostic (“black box”) machine learning (ML)
models, such as neural networks (NN) and decision trees
(DT). Their main application is as a part of on-line process
control systems. The second “rung” (intervention) allows
process control design and/or policy answers to the ques-
tion of what are the effects do(X=x) of deliberate change or
intervention of X on Y when effects of confounding covar-
iates are removed. The third “rung” (counterfactual analy-
sis) provides answers to hypothetical control and process
design innovations. Its main objective is to innovate new
products, process design and control.

This work adopts directed d-separation methodology, re-
ferred to as the do(X=x) calculus, proposed by Pearl.’® It
applies adjustment by structural redesign of BN in the pres-
ence of covariates Z and confounding W by modified, “cut
off” probability distribution:

P(Y|do(X=x),ZW)=P(Y|X=x2) (12)
From the perspective of RKHS-based modelling, unknown
probability distributions are inferred from data histograms
using non-parametric regression. This work presents graph-
ical depictions of do-calculus probability distributions gen-
erated from data by modelling with probabilistic Bayesian
neural networks (BNN).

3 Digital twin of beer fermentation

The bio-transformative power of fermentation is funda-
mentally important in most food production systems.
Controlling fermentation parameters influences nutritional
quality, flavour and texture, consumer perception of food
quality, product preservation, digestive health, and, most
importantly, immune system support. From a mathemati-
cal and computational perspective, fermentation processes
are stochastic, time-dependent (non-stationary), and non-
linear systems, making them difficult to model and control.
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Digital Twins offer transformative potential in how fermen-
tation processes are managed within the food technology
sector, delivering numerous benefits in terms of efficiency,
sustainability, and innovation. Digital Twins are informa-
tion-rich systems that generate big data, enabling real-time
process monitoring, precision control, optimisation, mini-
misation of carbon footprint, predictive maintenance, im-
proved product consistency, innovation of new products,
and sustainability by inclusion of fermentation by-products
into circular economy. One practical application of a Dig-
ital Twin is in energy management during beer produc-
tion." It is estimated that around 70 % of a brewery’s en-
ergy demand is spent for heating and cooling fermentation
vessels. With the use of an energy Digital Twin for on-line
monitoring and control loops, such as heat pumps con-
nected to renewable-energy-powered heat exchangers,
significant energy savings can be achieved.

In scientific literature, most studies on fermentation focus
on mathematical modelling based on the first principles
of mass and heat balances and biochemistry kinetics.*2°
These models are reported as systems of ordinary differen-
tial equations (ODE) for biomass growth, metabolite con-
centrations, pH, and temperature. The kinetic parameters
are estimated from on-line monitoring laboratory-level beer
production systems, and beer quality is monitored from
measurement of vicinal diketone concentration (VDK). In
this work, a literature-based fermentation model was used
to simulate 10 fermentation runs with perturbed initial
conditions in the ranges: T(0) e [19-28 °C], X(0) € [0.22—
0.28 gl™", S(0) € [75-85 gl~']. Typical simulations of fer-
mentation profiles and VDK are shown in Fig. 1. VDKs are
formed as by-products during the synthesis of amino acids,
valine and isoleucine by yeast, and are produced during
the fermentation process, and can impart flavours such as
butter, butterscotch, or honey to the beer. The mathemat-
ical model integrates fermentation over a 100-h period
with hourly sampling. The model (Eq. 13) is a set of six
autonomous ODE equations with the state variables: tem-
perature T, yeast concentration X, sugar concentration S,
dissolved carbon dioxide concentration CO,, ethanol con-
centration E, concentration of vicinal diketones VDK and
random perturbations (process and measurements noise)
n € N(0,0). The state vector Y is given by:

Y =(T,5,X,E,CO,,VDK)
13
dyrm) v©)=v ceforon) "

Continuous responses Y(t) are sampled at time intervals
At = 1 h with normally distributed noise n e N(0,0) add-
ed. The data for prediction of beer quality by VDK are
generated by Eq. (14), and are collected in a data frame
DF = (Y(k), VDK(k-+1).

VDK (k +1) = VDK (k) + At-f(Y (k)) k=11000 (14)
The DF is Markovian, enabling modelling as a Bayesian
network by a directed acyclic graph DAG, and provides
the basis for causal analysis.
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Fig. T - Fermentation profiles: time (h), temperature T (°C), bi-

omass X (g17"), sugar S (g1™"), ethanol E (g17"), carbon
dioxide CO, (1), vicinal diketones VDK (ppm)

Slika 1 — Profili fermentacije: vrijeme (h), temperatura T (°C), bio-
masa X (g17"), Secer S (g1, etanol E (g17"), ugljikov
dioksid CO, (1), vicinalni diketoni VDK (ppm)

Usually, observed process data are perturbed by ran-
dom noise, and eventually sporadic outliers. Embedding
process data into RKHS enables linear regression to effi-
ciently remove both the random noise component and
the improbable outliers via kernel averaging (Eq. 4) and
non-parametric regression (Eq. 6). The ridge algorithm
developed by Hayfield and Racine np code was applied
for this purpose.? In Fig. 2(A), the simulated experimental

time/h
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VDK concentrations data are shown, along with the cor-
responding RKHS-smoothed autocorrelation curve. The
non-parametrically smoothed quality data are then inte-
grated with the process data. The predictive power of the
source data in relation to product quality was tested using
machine learning (ML) with random forest (RF) xgboost al-
gorithm.?*-2¢ The accuracy of the RF model is presented in
Fig. 2(B). The data represent ten fermentation runs, com-
prising 1,000 samples in total, with 800 samples used for
model training and 200 retained untrained for testing. The
RF model showed very high accuracy, with a standard error
of 2 % for the training set and 3 % for the test set. This very
high level of accuracy of the RF model is attributed to the
strong correlation based on ensembled non-linear decision
trees. Hence, the RF model interpolation accuracy makes
it highly applicable in on-line control loop of beer produc-
tion, but it does not reveal causal relations between pro-
cess variables and the product quality required for process
optimisation and innovations.?”-%°

4 Results and discussion

The initial steps in causal analysis of time-series data from
multidimensional non-linear dynamic processes involve
testing binary dependencies. The Pearson correlation
assumes linear and stationary data, but to account for
non-linearity, the process data must be embedded into
RKHS high-dimensional space where linear relationships
can be more easily inferred and HSIC (Hilbert-Schmidt in-
dependence criterion) applied, Eq. (7). Table 1 presents
the evaluated HSIC coefficients between the process data
(X = (T, S, X, E, CO,) input variables) and product quality
(Y = VDK concentration is output variable). Effect of bio-
mass on VDK has the highest HSIC coefficient, although it
is not significantly different from the coefficients for sugar
S, ethanol E, and carbon dioxide CO,. These binary HSIC
values do not account for confounding of the covariates

predicted VDK

1.0 -05 0.0
measured VDK

05 1.0 1.5

Fig. 2 — Model of VDK vicinal diketones concentration during fermentation, A) experimen-
tal data (circles) and RKHS representation (red curve), B) predictions of VDK stand-
ardised concentrations (black circles are trained data, red circles are untrained

data) by a random forest (RF) model

Slika 2 — Model koncentracije VDK vicinalnih diketona tijekom fermentacije, A) eksperi-
mentalni podatci (krugovi) i RKHS prikaz (crvena krivulja), B) predvidanja VDK
standardiziranih koncentracija (crni krugovi su trenirani podatci, crveni krugovi su
netrenirani podatci) pomoc¢u modela slucajne sume (RF).
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Table 1 - Binary directional causal effects of the process parameters on VDK vicinal diketones. Evaluated are Hilbert-Schmidt inde-
pendence criteria (HSIC), partial correlations pcor(X,,,Y,, ), and confidence intervals (C.I.) between cause X and effect Y
in Hilbert space, pcor(Y,Y,,) partial correlations between the effect Y and its prediction Y, conditioned on X and the cor-
responding interval C.I., pcor (X, X,, | Y) partial correlations between the cause X and its prediction X,, X conditioned on Y
and C.I. the corresponding confidence interval, and inference of the corresponding causal direction indicated by an arrow
(—), according to inference rule given in Eq. (8).

Tablica 1 — Binarni usmjereni kauzalni ucinci procesnih parametara na VDK vicinalne diketone. Ocijenjeni su Hilbert-Schmidtovi kri-
teriji neovisnosti (HSIC), parcijalne korelacije pcor(X,,,Y,,) i intervali pouzdanosti (C.1.) izmedu uzroka X i posljedice Y u
Hilbertovom prostoru, parcijalne korelacije izmedu ucinka Y i njegove predikcije Y, uvjetovane s X i odgovaraju¢im C.I.,
pcor (X, X,, | Y) parcijalne korelacije izmedu uzroka X i njegove predikcije X, X uvjetovane s Y i C.I. te zakljucak o odgova-
raju¢em kauzalnom smjeru oznac¢enom strelicom (—), prema pravilu zakljucivanja danom u jedn. (8).

Effect Y = VDK
Case | HSIC |y | oy enalCr | on | imenal o direction
T 0.050 0.978 0.779 0.754-0.803 0.681 0.646-0.713 T — VDK
X 0.152 0.995 0.997 0.995-0.998 0.987 0.984-0.989 X — VDK
S 0.144 0.849 0.889 0.876-0.901 0.872 0.856-0.886 S — VDK
E 0.145 0.849 0.890 0.876-0.902 0.872 0.857-0.886 E— VDK
co, 0.146 0.818 0.890 0.877-0.902 0.910 0.899-0.920 CO, « VDK

and are most likely biased. Strong interdependence of the
process variables and the quality parameter are evident
from partial correlations pcor(X,,,Y,, ) in RKHS space, giv-
en in Table 1.

The coefficients are in the range [0.818-0.995]. The high-
est RKHS partial correlations are between temperature T
and biomass X with VDK quality. Evaluated inference of
causal direction between the process variables and qual-
ity are based on Kolgomorov’s conjecture of complexity
metrics due to asymmetric Pearson correlations between
conditioned models of cause and effect, pcor(Y,Y,, | X)
and pcor (X, X,, | Y), evaluated in RKHS space, as given by
Eq. (8). The Pearson correlations and the corresponding
confidence intervals are given in Table 1. The inferred di-
rections confirm causal dependence of quality on the pro-
cess variables, except for erroneously estimated influence
of quality on carbon dioxide.

Table 1. Statistical evaluation of causal direction of the
process variables on quality Y=VDK by partial correlation
(pcor), Hilbert Schmidt independence criteria (HSIC), con-
fidence interval (C.1.), causal direction is indicated by an
arrow (—).

In this example, when process variables are highly corre-
lated, analysis of binary correlations is confounded and
causality inferences are unsuitable for process control and/
or policy decisions. To de-confound complexity of pro-
cess variables interactions, binary causal relations are en-
sembled and balanced yielding a causal Bayes network.
Sampled process dynamics, Eq. (13), is discretised and
transformed into a data frame, Eq. (14), which complies
with the necessary Markovian property. To infer DAG
structure, the heuristic algorithm for optimisation of Bayes
information criterion BIC was applied.? The likelihood of
the observed data for a potential candidate DAG structure
is calculated assuming a Gaussian conditional probability

VDK(k+1)

Fig. 3 — Causal Bayes directed acyclic graph (DAG), k is time se-
ries sampling index, and the average causal effects are
numerically denoted alongside the network edges

Slika 3 — Kauzalni Bayesom usmjereni aciklicki graf (DAG), k je
indeks uzorkovanja vremenskih serija, a prosjecni ka-
uzalni uc¢inci numericki su oznaceni uz rubove mreze

distribution. The assumed structures are constrained by a
priori knowledge of the inferred causal directions (Table 1),
except for VDK and CO,, and the direct dependence of
VDK(k-+1) on VDK(k) due to ODE discretisation (Eq. (14)).
After 195 iterations (tested structures), the inferred most
probable DAG based on likelihood is depicted in Fig. 3. It
consists of 7 nodes and 16 directed arcs, with an average
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Fig. 4 —Bayesian neural network simulations of causal intervention dependencies of VDK(do(X-
=x)) concentration on the process parameters: S sugar concentration, X biomass con-

centration, T temperature

Slika 4 — Primjena Bayesove neuronske mreze u simulaciji kauzalne intervencijske ovisnosti kon-
centracije VDK(do(X=Xx)) o parametrima procesa: koncentracija Secera S, koncentracija

biomase X, temperatura T

Markov blanket size of 4.57 and an average branching fac-
tor of 2.29. Temperature time transient T(k) is the only ma-
nipulative (control input) exogenous variable, which has
direct causal effect on all the network nodes, i.e., on each
process variable and product quality. The individual direct
causal effects (strength and sign of the edges) are estimated
by linear ordinary least square (OLS) regression with the
standardised data set. Indirect causal path effects are given
by product of edge coefficients along the corresponding
path. The calculated coefficients can be considered only
as a linearised approximation of true non-linear causal
dependencies. To assess probabilistic non-linear depend-
encies, Bayesian neural network (BNN) models were em-
ployed.?> BNN model were developed for each DAG caus-
al path with d-separated variables. Due to deconfounded
effects, partial dependence plots (PDP) were used to show
causal dependencies in the range of each causal factor, as
shown in Fig. 4. For example, the causal effect of biomass
on product quality changes from positive at lower concen-
trations to negative at higher biomass concentrations. The
“fanned” or “dispersed” graphs represent the probability
density functions P(Y|do(X),Z) of the quality Y on the cause
X due to variations in covariates Z.

From the perspective of process optimisation, the sensi-
tivities of the final fermentation states to the initial states
were evaluated. Fermentation profiles were simulated by
numerically integrating the model’s ODE with a 5 % in-
crease in the initial state variables and manipulative pro-
cess parameters, specifically the heat transfer coefficient
ki, and reference temperature T The results, expressed
as relative effects on the final states, are presented in Ta-
ble 2. The most pronounced effect of 5 % perturbations
on quality VDK % were observed with changes in the ini-
tial temperature and reference temperature. These effects
were non-proportional (non-linear): a 5 % increase in each
led to a decrease in quality of —13.2 % and —16.4 %, re-
spectively. In contrast, an increase in the heat transfer co-
efficient produced a positive effect on quality. The non-lin-
ear sensitivity results and interference (confounding) of the
process parameters justify the need for non-linear data
analysis and structural causal modelling (SCM) for process
control and optimisation.

Table 1 - Relative sensitivities of the final process states (quality
VDK, biomass X, sugar S, ethanol E) caused by 5 %
perturbations of the process initial states and process
parameters (reference temperature T, and heat trans-
fer coefficient k)

Tablica 1 — Relativne osjetljivosti konacnih stanja procesa (kvali-

teta VDK, biomasa X, Secer S, etanol E) uzrokovane
5 %-tnim perturbacijama pocetnih stanja procesa i
procesnih parametara (referentna temperatura T, i
koeficijent prijenosa topline k)

5 % perturbations Perturbed process states

Initial state VDK/% | X/% S/% | E/%
T(0) —13.2 —12.8 —-6.7 1.5
X(0) -1.2 -1.3 -0.5 0.1
S(0) 5.1 5.6 —-3.4 6.9

parameters
T ~164 | —120 -91 | 20
ky, 3.6 1.4 22.6 =5.0

Prediction errors of VDK concentrations were compared
between a random forest (RF) model based on an “agnos-
tic” approach (using all variables in the prediction set) and
the SCM model depicted in Fig. 3. A negligible reduction
in error was observed for the SCM-based RF model. For
simulated data with 10 % added relative error, the average
prediction accuracy of the agnostic RF model was 96 %,
while for the SCM-based RF model the error was 94 %. The
slightly higher apparent accuracy of the agnostic model is
attributed to overfitting bias due to confounding variables,
specifically ethanol and CO, data.

5 Conclusions

This study presents a modelling and causal analysis of the
beer fermentation process, highlighting the crucial role of
embedding data in a Reproducing Kernel Hilbert Space
(RKHS).
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The process data used were generated through multiple
simulations of ordinary differential equation (ODE) met-
abolic based models, with initial condition variations and
parameter values derived from laboratory-scale experi-
mental studies reported in the literature. Simulated Gauss-
ian process noise was added to the data to reflect realistic
disturbances.

Using the simulation model, sensitivities of the process
states were evaluated in response to 5 % perturbations
of the initial conditions and key process parameters, in-
cluding the reference temperature and the heat transfer
coefficient. The resulting sensitivity analysis revealed pro-
nounced non-linear relationships between the input per-
turbations and their effects on the final fermentation state.
Among the factors analysed were: temperature, specifical-
ly the initial temperature, reference temperature, and heat
transfer coefficient, which exert the most significant causal
influence on product quality.

These findings were corroborated and further explained
by derived Bayesian Causal Network (BCN). The derived
Structural Causal Model (SCM) of the beer fermentation
process identifies temperature, sugar concentration, and
yeast biomass concentration as direct causal factors. These
variables are critical for prediction and control, directly im-
pacting beer quality.

The application of this SCM forms a core component of
a Digital Twin, enabling real-time monitoring and control
of process variables to maintain consistent product quality.
Furthermore, the developed causal Digital Twin model for
beer fermentation can support innovations in product de-
velopment, such as the creation of new or market-specific
flavours while ensuring high product quality.

A comparison of the random forest prediction errors be-
tween the agnostic model and the SCM shows only a neg-
ligible decrease in accuracy, likely due to bias from overfit-
ting to non-causal variables. However, the primary value of
the SCM lies not in improved prediction, but in its ability to
uncover the P(do(X=x)) probability, which enables causal
process control modelling and informed decision-making.

More broadly, this approach facilitates the modelling of
Bayesian Directed Acyclic Graphs (DAGs), which are fun-
damental for developing causal Al-based Digital Twins with
intervention capabilities in food production and process
control systems.

The main reasons are:

* Embedding data into RKHS Hilbert space enables ap-
plication of linear algorithms for statistical analysis and
machine learning (ML) algorithms for pattern discovery
through the “kernel trick.”

* The application of the Hilbert-Schmidt Independence
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Criterion (HSIC) reveals correlations between non-linear
functional dependencies.

* Utilising Kolmogorov’s notion of complexity metrics, the
evaluation of the asymmetric properties of conditional
distributions P(X,Y) and P(Y,X) allows for the inference of
directional orientation between the cause X and effect
Y.

* Bayesian Directed Acyclic Graphs (DAGs) facilitate the
unconfounded identification and estimation of causal
relationships between multiple variables. This is crucial
in process control, where understanding unconfounded
cause-and-effect relationships is essential for optimising
and improving processes.

* Bayesian DAGs provide a probabilistic framework for
modelling complex systems. This allows for the incor-
poration of uncertainty and variability in the process,
leading to more robust and reliable control strategies.

* Bayesian methods enable the continuous updating of
the Digital Twin model as new data becomes available.
This is particularly useful in process control, where con-
ditions can change over time, and the model needs to
adapt accordingly.

* Bayesian DAGs support Digital Twin model deci-
sion-making under uncertainty by providing a structured
way to combine prior knowledge with new evidence.
This helps in making informed decisions about process
adjustments and interventions.

* Importantly, due to DAGs graph structure, causal Digi-
tal Twins offer a clear and intuitive way to visualise the
dependencies and relationships between variables. This
aids in understanding the process and communicating
the control strategy to stakeholders.

The future of Digital Twins in food technology is promis-
ing, with emerging trends including enhanced predictive
capabilities through advanced instrumental analytics and
artificial general intelligence (AGI), new and sustainable
food chains under adverse climate changes, for sustaina-
ble, safe, improved traceability and transparency in supply
chains, and the development of personalised food prod-
ucts based on individual health status. Importantly, there is
also an emphasis on reducing food waste and optimising
resource use.

From a food company management perspective, the intro-
duction of Digital Twins requires significant investments,
company restructuring, and new generation of food engi-
neers educated in Al technologies. However, as technology
advances, Digital Twins are expected to become an integral
part of the food technology landscape, driving innovation
and addressing global food challenges. The potential appli-
cations in the food industry are immense and will greatly
outweigh the challenges, ultimately increasing quality of
life of global human population and environmental pro-
tection.
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SAZETAK

Primjena kauzalne umjetne inteligencije za napredno
upravljanje procesa: primjer kakvoce fermentacije piva
Zelimir Kurtanjek

Opisane su metodologije temeljene na Hilbertovom prostoru reproduktivne jezgre (RKHS) na
primjeru za modeliranje digitalnih blizanaca (DB) i uzro¢nu analizu procesa fermentacije piva.
Model uzima u obzir klju¢ne procesne varijable (temperaturu, biomasu, Secer, etanol i ugljikov
dioksid) zajedno s online pracenjem kvalitete piva odredivanjem koncentracije diketona (VDK).
Skup podataka za modeliranje temelji se na integraciji na skupu podataka deset profila fermenta-
cije s poremecenim pocetnim uvjetima. Fokus je na uklanjanju multikolinearnosti procesnih po-
dataka za razvoj DB modela s intervencijskim potencijalom usmjerenim na optimizaciju kvalitete
piva. Rezultati su graficki prikazani kao usmjereni acikli¢ki graf (DAC). Na temelju DAG strukture,
Bayesova neuronska mreza (BNN) primijenjena je za graficki prikaz funkcija gustoce vjerojatnosti
nelinearnih ovisnosti kvalitete piva o klju¢nim uzro¢nim varijablama procesa. Uz interventni po-
tencijal kauzalnih DB modela, naglasena je potencijalna upotreba kauzalnog digitalnog modela
blizanaca za protu-c¢injeni¢nu analizu sa svrhom pobolj$anja upravljanja procesa i moguce inova-
cije novih proizvoda.

Klju€ne rijeci

BCN Bayesova kauzalna mreza, BIC Bayesova informacijska znacajka,

RKHS reproducirajuci jezgricni Hilbertov prostor, DAG usmjereni aciklicki graf, digitalni blizanci,
kvaliteta pive
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