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1 Introduction
Digital Twins (DT) – virtual replication of physical, chemi-
cal, and microbial systems – are increasingly being applied 
in food technology to enhance various aspects of produc-
tion, processing, quality control, and supply-chain man-
agement. Based on the integration of multidimensional, 
multi-disciplinary big data and Artificial Intelligence (AI), 
DTs are revolutionising the food industry.1–5 The develop-
ment of AI-based Digital Twins in industrial food produc-
tion environments must address several challenging issues, 
some of which are: 

•  �Focusing on applications for interventions in on-line 
process control and decision-making in production pol-
icies.

•  �Account for stochastic perturbations in the composition 
and quality of raw feedstocks, as well as instability in 
supply chains and product markets.

•  �Accounting for essential time dependencies of process 
variables.

•  �Deconfounding multicollinearity among variables with 
statistically unknown multivariate probability distribu-
tions.

•  �Controlling batch processes with distinct process phases.
•  �Accounting for the irreversibility of chemical and bio-

chemical states.
•  �Revealing complex causal inferences related to human 

perception of food product quality.

Digital Twins, the concept from Industry 4.0, are used to 
model, simulate, and optimise industrial processes. In the 
food industry, DTs serve as adaptive, predictive, and con-
trol systems that integrate the fields of food engineering 
and computer science.6–7 They propose a hybrid mod-
elling approach that combines traditional food process 
modelling and simulation with data-driven methods based 
on machine learning (ML). Research focuses on merging 
these two fields into an artificial intelligence system for de-
cision-making and process control in stochastic environ-
ments. For example, DTs have been proposed for the vir-
tualisation of food supply chains to enhance food safety.8–9 
Digital Twins have also been developed based on the inte-
gration of optical spectroscopy data to infer agro-product 
quality10 and beer quality.11 Additionally, a causal Bayesian 
network has been proposed to account for the complexity 
and stochastic fluctuations of wine physical and chemical 
composition on human perception of quality.12 The aim 
of this work was to propose a methodology for modelling 
in Hilbert space using reproducing Kernel Hilbert Space 
(RKHS) techniques, and the integration of structured causal 
networks for prediction, probability of intervention effects, 
and counterfactual evaluation of potential innovations.

2 Methodology
In this work, reproducing kernel Hilbert space (RKHS) is 
applied for modelling and causal inference. This concept 
is widely used in machine learning, statistics, and function-
al analysis. RKHS is a Hilbert space of functions in which 
evaluation at each point can be represented as an inner 
scalar product. Its key feature is the existence of a repro-
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ducing kernel, which allows for the evaluation of functions 
in the space using inner products.13–14 It greatly simplifies 
statistical analysis and modelling of non-linear systems by 
mapping original process features data X from a finite di-
mensional space R of experimental data into an infinite 
dimensional Hilbert space . A kernel function k(x1,x2) de-
fines the mapping rule for the self binary product to space 
of real numbers k: X × X → R, and the corresponding fea-
ture mapping ϕ of process variables X to Hilbert space ϕ: 
X  → . Unlike traditional machine learning algorithms, 
such as neural networks and decision trees that apply ex-
plicit transformation of input data X into feature vectors, 
kernel methods directly compute similarity using a k us-
er-specified kernel function. For modelling of continuous 
experimental data, Gaussian weighting (Eq. 1) is common-
ly is applied as the kernel function, (Eq. 1), providing met-
rics of data similarity: 

(1)

Although this kernel function implicitly operates in a 
high-dimensional, potentially infinite-dimensional feature 
space, the so-called “kernel trick” of RKHS  (Eq. 2), allows 
to avoid explicitly computing the feature representations. 
This implicit operation allows kernel methods to efficiently 
analyse complex data relationships and facilitate effective 
pattern recognition and analysis in infinite-dimensional 
Hilbert space , computation is implemented in finite 
space R.14

( ) ( ) ( )1 2 1 2, ,
R

k x x x x= ∅ ∅
 (2)

Mapping of input data X(ns, np), where ns is the number of 
samples and np the number of observed variables, yields 
Gramm matrix K (ns, ns) with the elements

( ), ,i j i jK k x x= (3)

Application of Gaussian weights k(xi, xj) enables non-para-
metric auto-regression in Hilbert space, which is effectively 
applied to data smoothing, removal of measurement errors 
and improbable outliers. It is applied by use of the weight-
ed interpolation:
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For modelling of non-linear regression, a functional rela-
tion f(x) based on RKHS representer property is applied:

( ) ( ), ,
R

f x f k x= ⋅
 (5)

given as linear regression:

(6)

In the development of Digital Twins as causal AI models, 
the key focus is on inferring bivariate dependencies and 
synthesising a directed acyclic graph (DAG) as a network of 
causal relations. The concept of causal graph, in the form 
of a Bayesian causal network, is universal, but generally 
suited to cross-sectional, time-invariant pattern analysis 
and linear regression, assuming normal distributions of sto-
chastic perturbations.15 However, processes in the food in-
dustry are typically time-dependent, inherently non-linear, 
and with unknown probability distributions of stochastic 
disturbances, which need to be accounted for when ena-
bling intervention capability in Digital Twins. RKHS model-
ling is basically non-linear and non-parametric in a statisti-
cal sense. Due to RKHS linear structures, common statistics 
is applied to the kernel inner-product data. The measure 
of bivariate relation between X and Y is calculated as the 
covariance between standardised (zero mean and unity 
variance) Kx and Ky data, resulting in the Hilbert-Schmidt 
independence criterion (HSIC). HSIC is a measure of de-
pendence between two process variables X and Y, based 
on their embeddings in an RKHS.16 The HSIC coefficient is 
zero if and only if X and Y are independent. 
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The direction of bivariate causality for non-collinear X and 
Y, conditioned by covariates Z, can be inferred based on 
Kolmogorov’s conjecture of the asymmetrical complexity 
of conditional probabilities between P(Y|X) and P(X|Y).17 
Here, complexity is assessed through a comparison of par-
tial Pearson correlations (pcor) between non-parametric 
predictions of X~ ( )| ;X X Y Z  and Y~ ( )| ;Y Y X Z  using 
corresponding Gaussian RKHS models:

( )( ) ( )( )X   Y    , | ; , | ;pcor Y Y Y X Z pcor X X X Y Z→ ⇒ >  (8)

The optimal DAG structure is inferred based on maximum 
likelihood max(L) calculated from non-parametric proba-
bility density distributions f, which are evaluated at each 
DAGk node using RKHS Gram matrix data. Inference of 
optimal DAG structure is an ill-conditioned and compu-
tationally intensive problem. A critical success factor is the 
integration of fundamental engineering knowledge with 
data-driven pattern discovery. In causal AI Digital Twins 
development, prior knowledge includes structural equa-
tion models (SEM) of mass and energy balances, stoichio-
metric constraints of biochemical reactions, and empirical 
dependences of mass and energy transfer coefficients and 
chemical/biochemical rate coefficients. Optimisation of 
Bayes information criteria (BIC) accounts for DAG com-
plexity determined by the number of model parameters nP 
given by the number of network edges, and the number ns 
of observed samples.
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In evaluating the likelihood, in addition to the essential 
role of integrated a priori field knowledge, a critical fac-
tor is the unknown knowledge of conditional probability 
distribution (pdfs), which are specific to each individual 
network node Xi and conditioned on each hypothetical 
k-th DAG. Application of embedded data into RKHS space 
enables inference of node-specific non-parametric condi-
tional probability: 

pdf DAG = 


( )( )min
k

BIC k
 (11)

Optimisation of the BIC is itself a numerically demand-
ing problem. Common approaches include heuristic local 
search methods, such as hill climbing or globally optimal 
methods like the constrained genetic algorithm GA. In-
ferred DAG of causal Bayesian network (BN) is the essen-
tial part of the Digital Twins models in food production 
systems (both industrial and agronomic). It enables analysis 
across all three “rungs of the knowledge ladder”: 1) predic-
tion, 2) intervention, and 3) counterfactual analysis.15 On 
the first rung (prediction), the BN provides functionality 
as standard agnostic (“black box”) machine learning (ML) 
models, such as neural networks (NN) and decision trees 
(DT). Their main application is as a part of on-line process 
control systems. The second “rung” (intervention) allows 
process control design and/or policy answers to the ques-
tion of what are the effects do(X=x) of deliberate change or 
intervention of X on Y when effects of confounding covar-
iates are removed. The third “rung” (counterfactual analy-
sis) provides answers to hypothetical control and process 
design innovations. Its main objective is to innovate new 
products, process design and control. 

This work adopts directed d-separation methodology, re-
ferred to as the do(X=x) calculus, proposed by Pearl.18 It 
applies adjustment by structural redesign of BN in the pres-
ence of covariates Z and confounding W by modified, “cut 
off” probability distribution:

( )( ) ( )| , , | ,  P Y do X x Z W P Y X x Z= = = (12)

From the perspective of RKHS-based modelling, unknown 
probability distributions are inferred from data histograms 
using non-parametric regression. This work presents graph-
ical depictions of do-calculus probability distributions gen-
erated from data by modelling with probabilistic Bayesian 
neural networks (BNN).

3 Digital twin of beer fermentation
The bio-transformative power of fermentation is funda-
mentally important in most food production systems. 
Controlling fermentation parameters influences nutritional 
quality, flavour and texture, consumer perception of food 
quality, product preservation, digestive health, and, most 
importantly, immune system support. From a mathemati-
cal and computational perspective, fermentation processes 
are stochastic, time-dependent (non-stationary), and non-
linear systems, making them difficult to model and control. 

Digital Twins offer transformative potential in how fermen-
tation processes are managed within the food technology 
sector, delivering numerous benefits in terms of efficiency, 
sustainability, and innovation. Digital Twins are informa-
tion-rich systems that generate big data, enabling real-time 
process monitoring, precision control, optimisation, mini-
misation of carbon footprint, predictive maintenance, im-
proved product consistency, innovation of new products, 
and sustainability by inclusion of fermentation by-products 
into circular economy. One practical application of a Dig-
ital Twin is in energy management during beer produc-
tion.19 It is estimated that around 70 % of a brewery’s en-
ergy demand is spent for heating and cooling fermentation 
vessels. With the use of an energy Digital Twin for on-line 
monitoring and control loops, such as heat pumps con-
nected to renewable-energy-powered heat exchangers, 
significant energy savings can be achieved. 

In scientific literature, most studies on fermentation focus 
on mathematical modelling based on the first principles 
of mass and heat balances and biochemistry kinetics.4,20 
These models are reported as systems of ordinary differen-
tial equations (ODE) for biomass growth, metabolite con-
centrations, pH, and temperature. The kinetic parameters 
are estimated from on-line monitoring laboratory-level beer 
production systems, and beer quality is monitored from 
measurement of vicinal diketone concentration (VDK). In 
this work, a literature-based fermentation model was used 
to simulate 10 fermentation runs with perturbed initial 
conditions in the ranges: T(0) ϵ  [19–28 °C], X(0) ϵ  [0.22–
0.28 g l−1], S(0) ϵ [75–85 g l−1]. Typical simulations of fer-
mentation profiles and VDK are shown in Fig. 1. VDKs are 
formed as by-products during the synthesis of amino acids, 
valine and isoleucine by yeast, and are produced during 
the fermentation process, and can impart flavours such as 
butter, butterscotch, or honey to the beer. The mathemat-
ical model integrates fermentation over a 100-h period 
with hourly sampling. The model (Eq.  13) is a set of six 
autonomous ODE equations with the state variables: tem-
perature T, yeast concentration X, sugar concentration S, 
dissolved carbon dioxide concentration CO2, ethanol con-
centration E, concentration of vicinal diketones VDK, and 
random perturbations (process and measurements noise) 
n ϵ N(0,σ). The state vector Y is given by:

( )2  ,  ,  , , ,Y T S X E CO VDK=

( ) ( ) [ ]0
d        0      0,100
d

Y f Y Y Y t
t

= = ∈
(13)

Continuous responses Y(t) are sampled at time intervals 
Δt = 1 h with normally distributed noise n ϵ N(0,σ) add-
ed. The data for prediction of beer quality by VDK are 
generated by Eq.  (14), and are collected in a data frame 
DF = (Y(k), VDK(k+1).

(14)

The DF is Markovian, enabling modelling as a Bayesian 
network by a directed acyclic graph DAG, and provides 
the basis for causal analysis.



  Ž. KURTANJEK: Leveraging Causal AI Models for Enhanced Process Control in Food Production..., Kem. Ind. 74 (11-12) (2025) 497−505500

20

40

60

80

0.5
1.0
1.1
2.0
2.5
18

19

20

21

22

0 20 40 60 80 100
time ⁄ h

S
X

T

0.0

0.5

1.0

1.5
0

50

100

150
0
5

10
15
20
25

0 20 40 60 80 100
time ⁄ h

VD
K

CO
2

E

Fig. 1 – Fermentation profiles: time (h), temperature T (°C), bi-
omass X (g I−1), sugar S (g l−1), ethanol E (g l−1), carbon 
dioxide CO2 (I), vicinal diketones VDK (ppm)

Slika 1 – Profili fermentacije: vrijeme (h), temperatura T (°C), bio-
masa X (g  I−1), šećer S (g  l−1), etanol E (g  l−1), ugljikov 
dioksid CO2 (I), vicinalni diketoni VDK (ppm)

Usually, observed process data are perturbed by ran-
dom noise, and eventually sporadic outliers. Embedding 
process data into RKHS enables linear regression to effi-
ciently remove both the random noise component and 
the improbable outliers via kernel averaging (Eq.  4) and 
non-parametric regression (Eq.  6). The ridge algorithm 
developed by Hayfield and Racine np code was applied 
for this purpose.22 In Fig. 2(A), the simulated experimental 

VDK concentrations data are shown, along with the cor-
responding RKHS-smoothed autocorrelation curve. The 
non-parametrically smoothed quality data are then inte-
grated with the process data. The predictive power of the 
source data in relation to product quality was tested using 
machine learning (ML) with random forest (RF) xgboost al-
gorithm.23–26 The accuracy of the RF model is presented in 
Fig. 2(B). The data represent ten fermentation runs, com-
prising 1,000 samples in total, with 800 samples used for 
model training and 200 retained untrained for testing. The 
RF model showed very high accuracy, with a standard error 
of 2 % for the training set and 3 % for the test set. This very 
high level of accuracy of the RF model is attributed to the 
strong correlation based on ensembled non-linear decision 
trees. Hence, the RF model interpolation accuracy makes 
it highly applicable in on-line control loop of beer produc-
tion, but it does not reveal causal relations between pro-
cess variables and the product quality required for process 
optimisation and innovations.27–29 

4 Results and discussion
The initial steps in causal analysis of time-series data from 
multidimensional non-linear dynamic processes involve 
testing binary dependencies. The Pearson correlation 
assumes linear and stationary data, but to account for 
non-linearity, the process data must be embedded into 
RKHS high-dimensional space where linear relationships 
can be more easily inferred and HSIC (Hilbert-Schmidt in-
dependence criterion) applied, Eq.  (7). Table  1 presents 
the evaluated HSIC coefficients between the process data 
(X = (T, S, X, E, CO2) input variables) and product quality 
(Y = VDK concentration is output variable). Effect of bio-
mass on VDK has the highest HSIC coefficient, although it 
is not significantly different from the coefficients for sugar 
S, ethanol E, and carbon dioxide CO2. These binary HSIC 
values do not account for confounding of the covariates 
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Fig. 2 – Model of VDK vicinal diketones concentration during fermentation, A) experimen-
tal data (circles) and RKHS representation (red curve), B) predictions of VDK stand-
ardised concentrations (black circles are trained data, red circles are untrained 
data) by a random forest (RF) model

Slika 2 – Model koncentracije VDK vicinalnih diketona tijekom fermentacije, A) eksperi-
mentalni podatci (krugovi) i RKHS prikaz (crvena krivulja), B) predviđanja VDK 
standardiziranih koncentracija (crni krugovi su trenirani podatci, crveni krugovi su 
netrenirani podatci) pomoću modela slučajne šume (RF).
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and are most likely biased. Strong interdependence of the 
process variables and the quality parameter are evident 
from partial correlations ( ),pcor X Y   in RKHS space, giv-
en in Table 1. 

The coefficients are in the range [0.818–0.995]. The high-
est RKHS partial correlations are between temperature T 
and biomass X with VDK quality. Evaluated inference of 
causal direction between the process variables and qual-
ity are based on Kolgomorov’s conjecture of complexity 
metrics due to asymmetric Pearson correlations between 
conditioned models of cause and effect, ( ), |pcor Y Y X  
and ( ), |pcor X X Y , evaluated in RKHS space, as given by 
Eq.  (8). The Pearson correlations and the corresponding 
confidence intervals are given in Table 1. The inferred di-
rections confirm causal dependence of quality on the pro-
cess variables, except for erroneously estimated influence 
of quality on carbon dioxide. 

Table  1. Statistical evaluation of causal direction of the 
process variables on quality Y=VDK by partial correlation 
(pcor), Hilbert Schmidt independence criteria (HSIC), con-
fidence interval (C.I.), causal direction is indicated by an 
arrow (→). 

In this example, when process variables are highly corre-
lated, analysis of binary correlations is confounded and 
causality inferences are unsuitable for process control and/
or policy decisions. To de-confound complexity of pro-
cess variables interactions, binary causal relations are en-
sembled and balanced yielding a causal Bayes network. 
Sampled process dynamics, Eq.  (13), is discretised and 
transformed into a data frame, Eq.  (14), which complies 
with the necessary Markovian property. To infer DAG 
structure, the heuristic algorithm for optimisation of Bayes 
information criterion BIC was applied.22 The likelihood of 
the observed data for a potential candidate DAG structure 
is calculated assuming a Gaussian conditional probability 

distribution. The assumed structures are constrained by a 
priori knowledge of the inferred causal directions (Table 1), 
except for VDK and CO2, and the direct dependence of 
VDK(k+1) on VDK(k) due to ODE discretisation (Eq. (14)). 
After 195 iterations (tested structures), the inferred most 
probable DAG based on likelihood is depicted in Fig. 3. It 
consists of 7 nodes and 16 directed arcs, with an average 

Table 1 – Binary directional causal effects of the process parameters on VDK vicinal diketones. Evaluated are Hilbert-Schmidt inde-
pendence criteria (HSIC), partial correlations ( )  ,pcor X Y  , and confidence intervals (C.I.) between cause X and effect Y 
in Hilbert space, ( ),pcor Y Y  partial correlations between the effect Y and its prediction Y conditioned on X and the cor-
responding interval C.I., ( ), |pcor X X Y  partial correlations between the cause X and its prediction X X conditioned on Y 
and C.I. the corresponding confidence interval, and inference of the corresponding causal direction indicated by an arrow 
(→), according to inference rule given in Eq. (8).

Tablica 1 – Binarni usmjereni kauzalni učinci procesnih parametara na VDK vicinalne diketone. Ocijenjeni su Hilbert-Schmidtovi kri-
teriji neovisnosti (HSIC), parcijalne korelacije ( )  ,pcor X Y   i intervali pouzdanosti (C.I.) između uzroka X i posljedice Y u 
Hilbertovom prostoru, parcijalne korelacije između učinka Y i njegove predikcije Y uvjetovane s X i odgovarajućim C.I., 

( ), |pcor X X Y  parcijalne korelacije između uzroka X i njegove predikcije X X uvjetovane s Y i C.I. te zaključak o odgova-
rajućem kauzalnom smjeru označenom strelicom (→), prema pravilu zaključivanja danom u jedn. (8).

Effect Y = VDK

Cause HSIC pcor
(X Y)

pcor
(Y,Y|X)

Confidence
interval C.I.

pcor
(X,X|Y)

Confidence
interval C.I.

Causal
direction

T 0.050 0.978 0.779 0.754–0.803 0.681 0.646–0.713 T → VDK
X 0.152 0.995 0.997 0.995–0.998 0.987 0.984–0.989 X → VDK
S 0.144 0.849 0.889 0.876–0.901 0.872 0.856–0.886 S → VDK
E 0.145 0.849 0.890 0.876–0.902 0.872 0.857–0.886 E → VDK

CO2 0.146 0.818 0.890 0.877–0.902 0.910 0.899–0.920 CO2 ← VDK

T(k)

X(k)
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Fig. 3 – Causal Bayes directed acyclic graph (DAG), k is time se-
ries sampling index, and the average causal effects are 
numerically denoted alongside the network edges

Slika 3 – Kauzalni Bayesom usmjereni aciklički graf (DAG), k je 
indeks uzorkovanja vremenskih serija, a prosječni ka-
uzalni učinci numerički su označeni uz rubove mreže
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Markov blanket size of 4.57 and an average branching fac-
tor of 2.29. Temperature time transient T(k) is the only ma-
nipulative (control input) exogenous variable, which has 
direct causal effect on all the network nodes, i.e., on each 
process variable and product quality. The individual direct 
causal effects (strength and sign of the edges) are estimated 
by linear ordinary least square (OLS) regression with the 
standardised data set. Indirect causal path effects are given 
by product of edge coefficients along the corresponding 
path. The calculated coefficients can be considered only 
as a linearised approximation of true non-linear causal 
dependencies. To assess probabilistic non-linear depend-
encies, Bayesian neural network (BNN) models were em-
ployed.25 BNN model were developed for each DAG caus-
al path with d-separated variables. Due to deconfounded 
effects, partial dependence plots (PDP) were used to show 
causal dependencies in the range of each causal factor, as 
shown in Fig. 4. For example, the causal effect of biomass 
on product quality changes from positive at lower concen-
trations to negative at higher biomass concentrations. The 
“fanned” or “dispersed” graphs represent the probability 
density functions P(Y|do(X),Z) of the quality Y on the cause 
X due to variations in covariates Z. 

From the perspective of process optimisation, the sensi-
tivities of the final fermentation states to the initial states 
were evaluated.  Fermentation profiles were simulated by 
numerically integrating the model’s ODE with a 5 % in-
crease in the initial state variables and manipulative pro-
cess parameters, specifically the heat transfer coefficient 
kH and reference temperature Tref. The results, expressed 
as relative effects on the final states, are presented in Ta-
ble 2. The most pronounced effect of 5 % perturbations 
on quality VDK % were observed with changes in the ini-
tial temperature and reference temperature. These effects 
were non-proportional (non-linear): a 5 % increase in each 
led to a decrease in quality of −13.2 % and −16.4 %, re-
spectively. In contrast, an increase in the heat transfer co-
efficient produced a positive effect on quality. The non-lin-
ear sensitivity results and interference (confounding) of the 
process parameters justify the need for non-linear data 
analysis and structural causal modelling (SCM) for process 
control and optimisation.  

Table 1 – Relative sensitivities of the final process states (quality 
VDK, biomass X, sugar S, ethanol E) caused by 5  % 
perturbations of the process initial states and process 
parameters (reference temperature Tref and heat trans-
fer coefficient kH)

Tablica 1 – Relativne osjetljivosti konačnih stanja procesa (kvali-
teta VDK, biomasa X, šećer S, etanol E) uzrokovane 
5  %-tnim perturbacijama početnih stanja procesa i 
procesnih parametara (referentna temperatura Tref i 
koeficijent prijenosa topline kH)

5 % perturbations Perturbed process states

Initial state VDK ⁄ % X ⁄ % S ⁄ % E ⁄ %

T(0) −13.2 −12.8 −6.7 1.5
X(0) −1.2 −1.3 −0.5 0.1
S(0) 5.1 5.6 −3.4 6.9

parameters 
Tref −16.4 −12.0 −9.1 2.0
kH 3.6 1.4 22.6 −5.0

Prediction errors of VDK concentrations were compared 
between a random forest (RF) model based on an “agnos-
tic” approach (using all variables in the prediction set) and 
the SCM model depicted in Fig. 3. A negligible reduction 
in error was observed for the SCM-based RF model. For 
simulated data with 10 % added relative error, the average 
prediction accuracy of the agnostic RF model was 96 %, 
while for the SCM-based RF model the error was 94 %. The 
slightly higher apparent accuracy of the agnostic model is 
attributed to overfitting bias due to confounding variables, 
specifically ethanol and CO2 data. 

5 Conclusions
This study presents a modelling and causal analysis of the 
beer fermentation process, highlighting the crucial role of 
embedding data in a Reproducing Kernel Hilbert Space 
(RKHS). 
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Fig. 4 – Bayesian neural network simulations of causal intervention dependencies of VDK(do(X-
=x)) concentration on the process parameters: S sugar concentration, X biomass con-
centration, T temperature

Slika 4 – Primjena Bayesove neuronske mreže u simulaciji kauzalne intervencijske ovisnosti kon-
centracije VDK(do(X=x)) o parametrima procesa: koncentracija šećera S, koncentracija 
biomase X, temperatura T
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The process data used were generated through multiple 
simulations of ordinary differential equation (ODE) met-
abolic based models, with initial condition variations and 
parameter values derived from laboratory-scale experi-
mental studies reported in the literature. Simulated Gauss-
ian process noise was added to the data to reflect realistic 
disturbances.

Using the simulation model, sensitivities of the process 
states were evaluated in response to 5  % perturbations 
of the initial conditions and key process parameters, in-
cluding the reference temperature and the heat transfer 
coefficient. The resulting sensitivity analysis revealed pro-
nounced non-linear relationships between the input per-
turbations and their effects on the final fermentation state. 
Among the factors analysed were: temperature, specifical-
ly the initial temperature, reference temperature, and heat 
transfer coefficient, which exert the most significant causal 
influence on product quality. 

These findings were corroborated and further explained 
by derived Bayesian Causal Network (BCN). The derived 
Structural Causal Model (SCM) of the beer fermentation 
process identifies temperature, sugar concentration, and 
yeast biomass concentration as direct causal factors. These 
variables are critical for prediction and control, directly im-
pacting beer quality.

The application of this SCM forms a core component of 
a Digital Twin, enabling real-time monitoring and control 
of process variables to maintain consistent product quality. 
Furthermore, the developed causal Digital Twin model for 
beer fermentation can support innovations in product de-
velopment, such as the creation of new or market-specific 
flavours while ensuring high product quality. 

A comparison of the random forest prediction errors be-
tween the agnostic model and the SCM shows only a neg-
ligible decrease in accuracy, likely due to bias from overfit-
ting to non-causal variables. However, the primary value of 
the SCM lies not in improved prediction, but in its ability to 
uncover the P(do(X=x)) probability, which enables causal 
process control modelling and informed decision-making.

More broadly, this approach facilitates the modelling of 
Bayesian Directed Acyclic Graphs (DAGs), which are fun-
damental for developing causal AI-based Digital Twins with 
intervention capabilities in food production and process 
control systems.

The main reasons are:

•  �Embedding data into RKHS Hilbert space enables ap-
plication of linear algorithms for statistical analysis and 
machine learning (ML) algorithms for pattern discovery 
through the “kernel trick.”

•  �The application of the Hilbert-Schmidt Independence 

Criterion (HSIC) reveals correlations between non-linear 
functional dependencies.

•  �Utilising Kolmogorov’s notion of complexity metrics, the 
evaluation of the asymmetric properties of conditional 
distributions P(X,Y) and P(Y,X) allows for the inference of 
directional orientation between the cause X and effect 
Y. 

•  �Bayesian Directed Acyclic Graphs (DAGs) facilitate the 
unconfounded identification and estimation of causal 
relationships between multiple variables. This is crucial 
in process control, where understanding unconfounded 
cause-and-effect relationships is essential for optimising 
and improving processes.

•  �Bayesian DAGs provide a probabilistic framework for 
modelling complex systems. This allows for the incor-
poration of uncertainty and variability in the process, 
leading to more robust and reliable control strategies.

•  �Bayesian methods enable the continuous updating of 
the Digital Twin model as new data becomes available. 
This is particularly useful in process control, where con-
ditions can change over time, and the model needs to 
adapt accordingly.

•  �Bayesian DAGs support Digital Twin model deci-
sion-making under uncertainty by providing a structured 
way to combine prior knowledge with new evidence. 
This helps in making informed decisions about process 
adjustments and interventions.

•  �Importantly, due to DAGs graph structure, causal Digi-
tal Twins offer a clear and intuitive way to visualise the 
dependencies and relationships between variables. This 
aids in understanding the process and communicating 
the control strategy to stakeholders.

The future of Digital Twins in food technology is promis-
ing, with emerging trends including enhanced predictive 
capabilities through advanced instrumental analytics and 
artificial general intelligence (AGI), new and sustainable 
food chains under adverse climate changes, for sustaina-
ble, safe, improved traceability and transparency in supply 
chains, and the development of personalised food prod-
ucts based on individual health status. Importantly, there is 
also an emphasis on reducing food waste and optimising 
resource use.

From a food company management perspective, the intro-
duction of Digital Twins requires significant investments, 
company restructuring, and new generation of food engi-
neers educated in AI technologies. However, as technology 
advances, Digital Twins are expected to become an integral 
part of the food technology landscape, driving innovation 
and addressing global food challenges. The potential appli-
cations in the food industry are immense and will greatly 
outweigh the challenges, ultimately increasing quality of 
life of global human population and environmental pro-
tection.
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SAŽETAK
Primjena kauzalne umjetne inteligencije za napredno 

upravljanje procesa: primjer kakvoće fermentacije piva
Želimir Kurtanjek

Opisane su metodologije temeljene na Hilbertovom prostoru reproduktivne jezgre (RKHS) na 
primjeru za modeliranje digitalnih blizanaca (DB) i uzročnu analizu procesa fermentacije piva. 
Model uzima u obzir ključne procesne varijable (temperaturu, biomasu, šećer, etanol i ugljikov 
dioksid) zajedno s online praćenjem kvalitete piva određivanjem koncentracije diketona (VDK). 
Skup podataka za modeliranje temelji se na integraciji na skupu podataka deset profila fermenta-
cije s poremećenim početnim uvjetima. Fokus je na uklanjanju multikolinearnosti procesnih po-
dataka za razvoj DB modela s intervencijskim potencijalom usmjerenim na optimizaciju kvalitete 
piva. Rezultati su grafički prikazani kao usmjereni aciklički graf (DAG). Na temelju DAG strukture, 
Bayesova neuronska mreža (BNN) primijenjena je za grafički prikaz funkcija gustoće vjerojatnosti 
nelinearnih ovisnosti kvalitete piva o ključnim uzročnim varijablama procesa. Uz interventni po-
tencijal kauzalnih DB modela, naglašena je potencijalna upotreba kauzalnog digitalnog modela 
blizanaca za protu-činjeničnu analizu sa svrhom poboljšanja upravljanja procesa i moguće inova-
cije novih proizvoda.

Ključne riječi 
BCN Bayesova kauzalna mreža, BIC Bayesova informacijska značajka, 
RKHS reproducirajući jezgrični Hilbertov prostor, DAG usmjereni aciklički graf, digitalni blizanci, 
kvaliteta pive
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