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The European Union Commission delivered a list of 553 chemicals that were inspected for the
scientific evidence of their endocrine disruption activity. The source of information, i.e. the stu-
dies collected in the report refer to experiments made during the decades, evaluating several
species and a great variety of effects, which reflects in non-homogeneity of the data. The classifi-
cation of potential endocrine disrupters (EDs), according to the literature evidence of their fun-
ctioning, was proposed by the Commission. The endocrine disruption categories given in the
EU Commission report are the following: (i) certainly active as endocrine disrupters, (ii) poten-
tially active, (iii) less probable active – lacking evidence, and (iv) certainty non-active. The rese-
arch of the methodology to find an automated predictive model, yielding the ED categories, is
presented. Clustering and classification techniques were employed to solve the problem. From
the list of 553 chemicals a dataset of 106 molecules with the defined chemical structure and ED
class were extracted. Molecular structures were represented by 3D atomic coordinates calcula-
ted with the AM1 or PM3 semi-empirical method for all 106 chemicals. From 3D coordinates
an extensive set of molecular descriptors was calculated. The classification model based on co-
unterpropagation neural network (CP NN) was prepared and evaluated. The method of deter-
mining the thresholds necessary to convert the predictions from the CP NN into class-determi-
nations, is described in details.
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Introduction

A large amount of chemicals is released every day in the
environment having a large impact on human health and
wildlife. Looking at environmental and occupational he-
alth issues, a four-stage process is investigated, covering so-
urce, exposure, tissue dose, and response, each of which
requires the input and expertise of scientists and other
professionals from many different disciplines. It is challen-
ging to attack this interdisciplinary problem from different
directions, having many disciplines routinely interact.
Advances with cell and tissue cultures, computer mode-
ling, and genetic research help to reduce the need for ani-
mals to test substances that can harm humanity, but the
advances probably will not totally eliminate that need. In
testing, computers allow toxicologists to develop mathe-
matical models and algorithms that can predict the biologi-
cal effects of new substances based on their chemical
structure. If a new chemical has a structure similar to a
known poison in certain key aspects, then the new sub-
stance also may be a poison. Such screening can thus pre-
empt some animal use. Alternative methods are defined as
methods, which replace the use of laboratory animals alto-
gether, reduce the number of animals required, or refine
existing procedures or techniques so as to minimize the le-
vel of stress endured by the animal.1

Toxicity is a broad definition of biochemical property. The-
re are different mechanisms of action and different conse-

quences of toxic effects of a given chemical.2 Recent stu-
dies have shown that many toxic effects are based on the
malfunctioning and disruption of the endocrine system.3–6

Endocrine disrupters (EDs) are chemicals having capabili-
ties to interfere with the endocrine systems. It is known for
certain chemicals that they bind to the estrogen or andro-
gen receptors. Most in vitro and in vivo data available on
EDs in the literature are derived from assays that measure
estrogenic or, less frequently, androgenic activity.

Computational or in silico methods,7–12 alternative to in vi-
vo and in vitro tests, are becoming essential because of the
large amount of new chemicals emerging every day, and
because of restrictions in ethically questionable animal
tests. The European Union Commission reported about
the candidate list of 553 substances that are potential en-
docrine disrupters.13 The literature survey, about the sub-
stances suspected to act as endocrine disrupters, is given.
Numerous information about data available in literature
on several effects related to the endocrine disruption po-
tency are extracted and grouped. A sub-set 106 compo-
unds was chosen for further investigation, for the rest of
compounds it was not possible to calculate structural de-
scriptors needed for handling chemical structures, or the
data on endocrine disruption activity was not reliable. The
substances had been categorized into 3 stages of literature
evidence for their endocrine disruption potency. Chemi-
cals in the first category were confirmed to be endocrine
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disrupters in an intact organism by at least one study found
in the literature. The second category characterizes sub-
stances that are potentially active according to in-vitro stu-
dies, while the in-vivo data do not sufficiently prove the ED
activity. For the third category, there was either no data
available or data found for non scientific basis for inclusion
into the list. Additional 244 substances were studied; ho-
wever, the data from literature about their ED activity was
less extensive or convincing.

There is a lack of homogeneity in data collected in the re-
port,13 because the individual studies refer to experiments
made during decades, evaluating several species and a
great variety of effects. It is difficult to select a specific fea-
ture, a numerical output, which would be a subject to be
manipulated with the chemometrics techniques. Instead of
modelling of certain biological endpoint, we decided to
focus our research into the determination of a class of en-
docrine disruption activity (according to literature eviden-
ce) for individual compounds. The parameters that have to
be input to the model are molecular structure descriptors,
while the numerical output of the model contains the in-
formation to which class of endocrine disruption activity
the compound belongs. The transformation of the numeri-
cal output of the model to the class-determination is based
on a threshold value which has to be determined for each
individual model and for each class separately.

Data

The database of 553 man-made chemicals suspected to
act as endocrine disrupters was published by the EU Com-
mission.13 The chemicals were searched through the litera-
ture to find several effects related to the endocrine disrup-
tion potency. According to the report,13 they were grou-
ped in three categories: (1) Endocrine disrupter, (2) Poten-
tial endocrine disrupter, and (3) Non-active as endocrine
disrupter. The third category was further split into Uncerta-
inly-non-active and Non-active-endocrine-disrupter. See
Table 1 for details.

After pruning the dataset (no literature data or molecular
structure determinable), 106 structures (see Table 2) were ac-
cepted for the procedure of developing the automated classi-
fication model. All the structures were optimized with the
MOPAC program, using AM1 or PM3 semi-empirical met-
hod to obtain 3D atomic co-ordinates. For a small group of
compounds containing tin atoms (Sn) it was not possible to
process this calculation with AM1 method. These compo-
unds are printed in bold stamp in Table 2. The PM3 se-
mi-empirical method, which provides parameterization also
for Sn atoms, was applied in the case of tin-compounds.

Methods

The methods used to calculate descriptors of molecular
structure were the following:

– MOPAC for 3D structure optimization (AM1 and PM3
semi-empirical methods for minimization of total molecu-
lar energy), to obtain atom co-ordinates.

– CODESSA14 for calculation of five classes of structural
descriptors: constitutional, geometrical, topological, elec-
trostatic, and quantum-chemical descriptors.

– Methods to obtain LogP values: experimental (from the
experimental values database,15 and from Hansch’s ma-
nual16) or estimated by KowWin program.17

Counterpropagation neural network18–20 was employed as
a classification model. Below it is described shortly how
the standard counterpropagation neural network can be
modified to predict discrete classes of compounds. The
counterpropagation neural network is based on a supervi-
sed learning method, only one part of the learning process
(initial mapping of inputs) involves elements of the unsu-
pervised learning. For the learning procedure a set of in-
put-output pairs �Xs,Ys� is required. In the classification
problem the input Xs = (xs1, xs2, ...xsi ...xsm) is a structure re-
presentation of the s-th compound, represented by m
structural descriptors or “independent variables”. The cor-
responding output or “dependent variables” Ys = (ts1, ts2,
...tsj ...tsp) is a p-component vector of zeros and ones. The
value ysj indicates whether the s-th compound is (ysj = 1)
or isn’t (ysj = 0) in the j-th class. The ANN is trained to re-
spond for each input structure representation Xs from the
training set with the output vector Outs identical to the tar-
get (class-vector) Ys. The unsupervised element in the co-
unterpropagation neural network learning procedure is the
mapping of the structure-representation vectors into the
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Ta b l e 1 – Categories of substances, suspected endocrine di-
srupting chemicals, studied by the EU Commis-
sion

Cate-
gory Labeling Description

1 Endocrine di-
srupter

At least one study was found provi-
ding the evidence of endocrine di-
sruption in an intact organism. Not a
formal weight of evidence approach.

2 Potential endo-
crine disrupter

In vitro data indicating potential for
endocrine disruption in intact orga-
nisms. Also includes effects in-vivo that
may, or may not, be ED-mediated.
May include structural analyses and
metabolic considerations.

3 Undefined acti-
vity or Non-en-
docrine disrupter

No scientific basis for inclusion in list
of endocrine disrupters.

3A Undefined acti-
vity
– No evidence
for non-ED

No data available on wildlife relevant
and/or mammal relevant endocrine ef-
fects.

3B Undefined acti-
vity
– Some evidence
for non-ED

Some data are available but the evi-
dence is insufficient for identification.

3C Non-endocrine
disrupter
– Certain evi-
dence for
non-ED

Data available indicating no scientific
basis for inclusion into the list of acti-
ve ED chemicals.
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Ta b l e 2 – The database of 106 compounds optimized with
MOPAC, using AM1 or PM3 (compounds denoted by an asterisk)
semi-empirical methods. The enumeration is taken from the com-
plete set of compounds reported by the EU Commission.13

No. Class Label CASNR Name

2 2 P 10605-21-7 Carbendazim

10 2 P 309-00-2 Aldrin

11 1 E 12789-03-6
(57-74-9) Chlordane

13 3 B U 3734-48-3 Chlordene

15 2 P 60-57-1 Dieldrin

16 2 P
115-29-7

(959-98-8 or
33213-65-9)

Endosulfan (also alfa and
beta)

19 2 P 72-20-8 Endrin

20 1 E 143-50-0 Kepone (Chlordecone)

21 1 E 2385-85-5 Mirex

22 2 P 27304-13-8 Oxychlordane

25 3 B U 39765-80-5 Trans-Nonachlor

27 2 P 94-75-7 2,4-Dichlorophenoxy acetic
acid (2,4-D)

29 2 P 67747-09-5 Prochloraz

42 1 E 50-29-3 DDT (technical) = clofeno-
tane = p,p'-DDT

44 2 P 115-32-2 Dicofol = Kelthane

57 1 E 3563-45-9
Tetrachloro DDT = 1,1,1,2-
-Tetrachloro-2,2-bis(4-chlo-
rophenyl)ethane

60 2 P 36734-19-7 Iprodione

63 1 E 50471-44-8 Vinclozolin

73 1 E 137-26-8 Thiram

78 1 E 58-89-9 Gamma-HCH (Lindane)

85 2 P 330-54-1 Diuron

87 1 E 330-55-2 Linuron (Lorox)

104 2 P 333-41-5 Diazinon

106 2 P 60-51-5 Dimethoate

109 3 C N 55-38-9 Fenthion

113 2 P 121-75-5 Malathion

115 2 P 298-00-0 Methylparathion

119 2 P 56-38-2 Parathion = Parathion(-ethyl)

No. Class Label CASNR Name

141 1 E 61-82-5 Amitrol = Aminotriazol

142 1 E 1912-24-9 Atrazine

156 2 P 122-34-9 Simazine

159 2 P 43121-43-3 Triadimefon

163 1 E 34256-82-1 Acetochlor

164 1 E 15972-60-8 Alachlor

169 3 A U 106-93-4 Dibromoethane (EDB)

176 2 P 76-44-8 Heptachlor

177 3 B U 1024-57-3 Heptachlor-epoxide

179 2 P 74-83-9 Methylbromide (bromomet-
hane)

182 1 E 1836-75-5 Nitrofen

183 3 B U 4685-14-7 Paraquat = 1,1'-di-
methyl-4,4'-bipyridinium

187 2 P 709-98-8 Propanil

190 3 A U 29082-74-4 Octachlorostyrene

191 1 E 100-42-5 Styrene

194 2 P 120-83-2 2,4-Dichlorophenol

195 2 P 1570-64-5 4-chloro-2-methylphenol

196 2 P 59-50-7 4-chloro-3-methylphenol

198 1 E 118-74-1 Hexachlorobenzene (HCB)

215 2 P 98-54-4 4-tert-Butylphenol

216 1 E 140-66-9
4-tert-Octylphenol =
1,1,3,3-Tetra-
methyl-4-butylphenol

277 3 B U 103-23-1 Bis(2-ethylhexyl)adipate

278 1 E 85-68-7 Butylbenzylphthalate (BBP)

279 1 E 117-81-7 Di-(2-ethylhexyl)phthalate
(DEHP)

280 3 B U 84-61-7 Dicyclohexyl phthalate
(DCHP)

281 3 B U 84-66-2 Diethyl phthalate (DEP)

283 2 P 26761-40-0 Diisodecyl phthalate

284 2 P 28553-12-0

diisononyl phthalate =
1,2-Benzenedicarboxylic
acid, diisononyl ester
(DINP)

286 1 E 84-74-2 Di-n-butylphthalate (DBP)
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No. Class Label CASNR Name

318 2 P 1675-54-3

2,2'-bis(4-(2,3-epoxypro-
poxy)phenyl)propane =
2,2'-�(1- methylethylide-
ne)bis(4,1-phenyleneox-
ymethylene)�bisoxirane

326 1 E 80-05-7
2,2-Bis(4-hydroxyphenyl)pro-
pan = 4,4'-isopropylidene-
diphenol = Bisphenol A

348 3 A U 106-89-8 Epichlorohydrin (1-chlo-
ro-2,3-epoxypropane)

370 3 B U 92-52-4 Diphenyl

371 2 P 90-43-7 o-phenylphenol

405 3 B U 38380-07-3 PCB 128 (2,2',3,3',4,4'-He-
xachlorobiphenyl)

406 2 P 38411-22-2 PCB 136 (2,2',3,3',6,6'-He-
xachlorobiphenyl)

408 1 E 35065-27-1 PCB 153 (2,2',4,4',5,5'-He-
xachlorobiphenyl)

409 2 P 38380-08-4 PCB 156 (2,3,3',4,4',5-He-
xachlorobiphenyl)

410 1 E 32774-16-6 PCB 169 (3,3',4,4',5,5'-He-
xachlorobiphenyl)

417 1 E 2437-79-8 PCB 47 (2,2',4,4'-Tetrachlo-
robiphenyl)

418 2 P 70362-47-9 PCB 48 (2,2',4,5-Tetrachloro-
biphenyl)

419 3 A U 35693-99-3 PCB 52 (2,2';5,5'-Tetrachlo-
robiphenyl)

420 2 P 33284-53-6 PCB 61 (2,3,4,5-Tetrachloro-
biphenyl)

421 2 P 32598-12-2 PCB 75 (2,4,4',6-Tetrachloro-
biphenyl)

422 1 E 32598-13-3 PCB 77 (3,3',4,4'-Tetrachlo-
robiphenyl)

435 2 P No CAS 046
2,2',4,4'-Tetrabrominated
diphenyl ether (2,2',4,4'-te-
traBDE)

436 2 P No CAS 044 Decabrominated diphenyl
ether (decaBDE)

444 3 B U 135-19-3 2-Naphthol

467 1 E 40321-76-4 1,2,3,7,8-Pentachlorodiben-
zodioxin

472 1 E 1746-01-6 2,3,7,8-Tetrachlorodiben-
zo-p-dioxin (2,3,7,8-TCDD)

483 2 P 57117-41-6 1,2,3,7,8-Pentachlorodiben-
zofuran

No. Class Label CASNR Name

484 2 P 83704-53-4 1,2,3,7,9-Pentachlorodiben-
zofuran

485 2 P 58802-20-3 1,2,7,8-Tetrachlorodibenzo-
furan

486 2 P 71998-72-6 1,3,6,8-Tetrachlorodibenzo-
furan

487 1 E 57117-31-4 2,3,4,7,8-Pentachlorodiben-
zofuran (2,3,4,7,8-PeCDF)

488 2 P 67733-57-7 2,3,7,8-Tetrabromodibenzo-
furan

489 2 P 51207-31-9 2,3,7,8-Tetrachlorodibenzo-
furan

512* 1 E 688-73-3 Tributyltin hydride

513* 1 E 56-35-9 Tributyltin oxide = bis(tri-
butyltin) oxide

516* 1 E 4342-30-7 Phenol, 2-�(tri-
butylstannyl)oxy�carbony

517* 1 E 4342-36-3 Stannane, (benzoyloxy)tri-
butyl-

518* 1 E 4782-29-0 Stannane, �1,2-phenylene-
bis(carbonyloxy)�

521* 1 E 24124-25-2 Stannane, tributyl�(1-oxo-
-9,12-octadecadienyl)�

522* 1 E 3090-35-5 Stannane, tri-
butyl�(1-oxo-9-octadecenyl)�

524* 1 E 1983-10-4 Stannane, tributylfluoro-

525* 1 E 2155-70-6 Tributyl�(2-methyl-1-oxo-
-2-propenyl)oxy�stannane

530* 1 E 1461-25-2 Tetrabutyltin (TTBT)

531* 1 E 668-34-8 Triphenyltin

532* 1 E 900-95-8 Fentin acetate = tri-
phenyltin acetate

536 1 E 95-76-1 3,4-Dichloroaniline

538 1 E 99-99-0 4-Nitrotoluene

541 3 A U 119-61-9 Benzophenone

545 3 A U 68-12-2 Dimethylformamide (DMFA)

548 3 C N 107-21-1 Ethylene glycol (etha-
ne-1,2-diol)

557 2 P 127-18-4 Perchloroethylene

558 3 C N 108-95-2 Phenol

560 1 E 108-46-3 Resorcinol

564 3 B U 108-05-4 Vinyl acetate



Kohonen layer (input layer of the counterpropagation neu-
ral network consisting of nx × ny neurons). For this step no
knowledge about the target vector is needed. Once the
position of the input vector is defined, the weights of the
neurons in, both, input and output layers are corrected ac-
cording to the particular element from the training set,
�Xs,Ys� pair (training object). The trained output layer con-
sists of nx × ny output neurons arranged in squared neig-
hborhood. The levels of the output layer represent p re-
sponse surfaces for the p classes. The points of the respon-
se surfaces correspond to the weights of the output neu-
rons Out = (out1, out2, ...outj ...outp). After the training,
each weight outj is a numerical value between 0.0 and
1.0. For the final prediction of classes the response surface
values must be again transformed into discrete values, ze-
ros and ones. The threshold value, between 0.01 and 0.99,
must be determined for each of the p classes. Below the
threshold all predictions are negative and denoted by a ze-
ro, what means that the s-th compound does not belong to
the j-th class, while the predictions above the threshold are
positive and denoted by one. The threshold is determined
according to the number of correct/wrong class predictions
if the trained network is tested by the same objects as it
was trained with, i.e. �Xs,Ys� pairs from the training set.

Results and discussion

The classification model was developed and tested on the
dataset containing 106 compounds (Nmol = 106). The mo-
lecular structures were described by constitutional, topolo-
gical, geometrical, electrostatic and quantum-chemical de-
scriptors calculated with CODESSA. 766 descriptors were
obtained; 484 of them were available only for a limited
number of molecules (so called incomplete descriptors),
while 16 descriptors were equal for all molecules and thus
neglected. The remaining 266 descriptors of each molecu-
lar structure (m = 266) were descriptive and available for
all compounds, thus accepted for structural descriptors.
The descriptors calculated by CODESSA from molecular
3D co-ordinates were appended by an experimentally ob-
tained parameter LogP, which reflects the compounds'
hydrophobic property usually playing an important role in
the mechanism of action of particular biological activity.21

LogP, the logarithm of octanol-water partition coefficient,
describes equilibrium partitioning of a chemical between
octanol and water phases. Experimental LogP values were
obtained from literature (evidence from Physical Pro-
perties Database15), from Hansch,16 or estimated using
KowWin program.17 All descriptors were normalized with
mean = 0 and standard deviation = 1.

The ED categories associated with the 106 compounds
from the dataset are following:

– Category No. 1 with label E (evidently active) – 43 com-
pounds

– Category No. 2 with label P (potentially active) – 43
compounds

– Category No. 3 (A+B) with label U (uncertain evidence)
– 17 compounds

– Category No. 4 (C) with label N (non active) – 3 compo-
unds

The literature evidence of the risk for a chemical to be an
endocrine disrupter is decreasing from the first towards the
fourth class. The first 3 classes (p = 1…3) are relatively
well populated, while there is evident lack of compounds
in the fourth (p = 4) class. We decided to split the third ca-
tegory into two classes, because the uncertain evidence of
3A and 3B is not strong enough for such an important de-
cision, which our predictive model is trained for, that wo-
uld classify a chemical to be harmless regarding the endo-
crine disrupting activity. Only for the category 3C there is
no drought about non-activity.

For the model building purpose the data was split into the
training and the test set using the Kohonen maps as the se-
lection method.20,22 Since the compounds are not evenly
distributed between the classes, we made the selection in
such a way, that two thirds of compounds of each class
were kept for training, while one third for testing and vali-
dating the constructed classification model. 71 compo-
unds were assigned to the training set, 35 to the test set.

A method similar to the one used for the selection of training
and test sets20,22 was applied for the selection of descriptors.
The main difference is in the way how the matrix of input
data is represented; in the case of the selection of descriptors
the transposed data matrix is used instead of original data
matrix, in which the rows and columns (Nmol = 106 rows
and m = 266 columns) correspond to molecules and de-
scriptors, respectively. The transposed matrix consists of m =
266 rows (descriptors) and Nmol = 106 columns (molecules).
It is important that the transposed matrix is normalized co-
lumn-wise before it is used for training the Kohonen network
for a certain training time (epochs). The result is a Kohonen
map, in which the descriptors are self-organized onto the nx
× ny positions (neurons). A Kohonen network with 5 × 5 =
25 neurons was used producing a map with 25 positions. All
266 descriptors were placed onto these 25 positions (neu-
rons). This means that each neuron was occupied in average
by 11 descriptors. In Fig. 1 it is demonstrated how many de-
scriptors were placed on individual neurons.

The neurons and descriptors are labeled by the indices i
and s, respectively. In the procedure for selecting descrip-
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Nx
Ny

1 2 3 4 5

1 12 10 4 9 11

2 11 9 3 10 6

3 4 8 14 3 6

4 22 20 3 8 10

5 10 7 4 25 37

F i g . 1 – The distributions of descriptors in the 5 × 5 top-map
of the Kohonen neural network. (a) Number of descriptors occup-
ying an individual neuron; (b) Top left section of the top-map with
a list of descriptors on the neurons shown; (c) Two descriptors
from each neuron chosen on the basis of smallest and largest di-
stance between the neuron and the descriptor’s vector.



tors, the dimension of neurons is equal to the number of
molecules in the data-set (Nmol = 106); this is also the
number of components of the descriptors’ representation
vectors obtained as rows in the transposed data matrix
(XT

js, j = 1, Nmol). The i-th neuron is represented as a vec-
tor of weights (Wji, j = 1, Nmol). In the training procedure
of the Kohonen neural network, similar descriptors are fal-
ling onto the neighboring neurons. If the number of trai-
ning objects significantly exceeds the number of neurons,
many objects occupy the same neuron. The criterion for
the selection of descriptors assembled on the same neuron
was the Euclidean distance between the descriptor Xs

T and
neuron Wi:

ds i j s
T

j i
j

N

, , ,
( )	 �

	

� X W 2

1

mol

(1)

Only two descriptors from each neuron were chosen for fi-
nal representation of molecular structure, one with the
smallest and one with the largest distance from the excited
neuron.

The network with dimensions 5 × 5 × 106 was trained for
50, 100, 300, 500, and 1000 epochs. The distribution of
objects (descriptors) in the 5 × 5 top-map and the distan-
ces of all objects on one neuron was examined. The
network trained for 300 epochs was chosen for final
descriptor selection procedure because of the most even
distribution of objects and small differences between the
maximal and minimal distances ds,i calculated at each
neuron. The reduced set contained 50 descriptors, two
from each neuron: the most similar one and most different
one regarding the distance from the particular neuron
(Eq. 1).

Two different sets of descriptors were tested for this study:
the non-reduced set of 266 descriptors, and the reduced
set of 50 descriptors, for which the reduction method is
described above. With these two datasets, each divided
into a training (72 molecules) and test set (35 molecules),
different models were built. The CP NN parameters that
were varied were: number of neurons (nx × ny), training
time (epochs), while the learning rate and momentum
term were 0.5 and 0.01, respectively, in all constructed
models.

The evaluation of the class-predictions from the resulting
models is not straightforward. The predictions are obtai-
ned from the output layers of individual models. However,
they are presented as real numbers from 0.0 to 1.0, one
prediction from each of the four levels of the output layer
for four possible classes. As described in the Methods sec-
tion, the prediction obtained for individual molecule is a
four-dimensional vector Out = (out1, out2, out3, out4),D
0.00 � outj � 1.00. It is necessary to determine the thre-
shold value (T+), above which the prediction for a j-th class
is positive (confirmative). T+ enables the transformation of
the model output values to discrete class predictions, i.e.
one for a confirmative and zero for a rejecting answer.
There are four classes, so we need four threshold values
for each of the constructed model (Tj

+ , j = 1, 4). They are
determined according to the number of correct/wrong
class predictions if the trained network is tested by the sa-
me objects as it was trained with, i.e. molecules from the

training set. Below the threshold all predictions are rejec-
ting and denoted by a zero, what means that the compo-
und does not belong to the j-th class, while the predictions
above the threshold are positive and denoted by one (the
compound belongs to the j-th class). In Fig. 2 to 4 exam-
ples of the determination of Tj

+ for three different con-
structed models are shown.

As can be seen from Figs. 2–4, the individual threshold is
positioned where the sum of errors of, both, false positive
and false negative predictions, is the lowest. If the Tj

+ were
positioned close to zero, the predictions of the j-th class for
most of the molecules from the training set would be con-
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F i g . 2 – The thresholds determined Tj
+ for the class-predic-

tions in the model from the counterpropagation neural network of
9 x 9 neurons, trained for 100 epochs with the molecules repre-
sented by a non-reduced set of descriptors. The diamonds and
squares stand for positive (confirmative) and negative (rejecting)
predictions, respectively.



firmative (Outj > 0). The molecules from the j-th class
would be correctly predicted, while the predictions for
the rest of molecules would be so called false positive. On
the other hand, if the Tj

+ were close to one, majority of
predictions for class j would be rejecting. This would pro-
duce false negative predictions of the molecules that are
actually in the j-th class. The threshold has to be determi-
ned for each individual model when tested for its predicti-
ve ability.

Once the thresholds were defined, the models were vali-
dated by checking the class-predictions for 35 test molecu-
les. The misclassification tables, obtained by comparison of
actual and predicted classes of test compounds, are shown
in Fig. 5.

The best model is chosen on the basis of several criteria:

– the largest number of correct predictions (sum of the dia-
gonal elements);

– the smallest number of false negative predictions, which
are more severe errors than false positives, because they
would classify a harmful compound as a nontoxic one;

– the smallest sum of predictions that are wrong for more
then one category (model (k) in Fig. 5).

Model (a) from Fig. 5, with 69 % of correct predictions,
would be the best if used for class-predictions, while for
the priority settings model (k) is better, because it makes
the range-list of tested chemicals from most to least har-
mful (according to the literature evidence) less erroneous,
because the prediction never misses the correct class for
more than one class.
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F i g . 3 – The thresholds determined Tj
+ for the class-predic-

tions in the model from the counterpropagation neural network of
9 x 9 neurons, trained for 300 epochs with the molecules repre-
sented by a non-reduced set of descriptors. The diamonds and
squares stand for positive (confirmative) and negative (rejecting)
predictions, respectively.

F i g . 4 – The thresholds determined Tj
+ for the class-predic-

tions in the model from the counterpropagation neural network of
9 x 9 neurons, trained for 100 epochs with the molecules repre-
sented by a reduced set of 50 descriptors. The diamonds and
squares stand for positive (confirmative) and negative (rejecting)
predictions, respectively.



Conclusions

A computational model based on the counterpropagation
neural networks for classification of endocrine disrupter
activity of compounds of known chemical structures, is
proposed. The emphasis is on the determination of the
threshold for each model, which converts the real number
predictions into a discrete class number. The dataset con-

tains structurally very diverse chemicals. Nevertheless, the
two-step modelling principle of the counterpropagation
neural network enables to build a classification model ca-
pable of treating all chemicals together. The class predicti-
ve power of constructed models is reasonable for priority
setting and would be significantly improved if more data
were available, specially in the low endocrine activity re-
gion.
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F i g . 5 – Classification tables with the number of correct (diagonal elements), false positive (upper triangle), and false
negative predictions (lower triangle). The predictions are acquired from 12 models (from (a) to (l)), constructed on the basis
of three different spectral representations (DS1, DS2 and DS3), using two different neural network architectures (9 x 9 and
12 x 12 neurons), while the training time was 100 or 300 epochs.
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SA@ETAK

Primjena umjetnih neuralnih mre`a u QSPR istra`ivanju –
Automatska klasifikacija kemikalija {tetnih za endokrini sustav

M. Novi~ i A. Roncaglioni*

Europska unija je dostavila popis od 553 kemikalije koje se trebaju ispitati radi mogu}ih {tetnih dje-
lovanja. U izvje{}u temeljenom na desetgodi{njem eksperimentiranju procijenjen je niz u~inaka koji
pokazuju nehomogenost dobivenih podataka. Na temelju objavljenih ~injenica o njihovom djelovanju,
Komisija je predlo`ila klasifikaciju o{te}iva~a endokrinog sustava (EDs). U ovom prilogu prikazuje se
prijedlog metodologije kojom bi se prona{ao model za automatsko predvi|anje pripadnosti pojedinim
kategorijama. Za rje{enje tog problema primijenjene su tehnike skupljanja i klasifikacije. Iz popisa od
553 kemikalije, za 106 molekula s odre|enom kemijskom strukturom odre|ena je pripadnost ED klasi.
Molekulske strukture svih 106 kemikalija prikazane su pomo}u 3D atomskih koordinata izra~unatih AM1
ili PM3 semiempirijskim metodama. Iz 3D koordinata izra~unati su molekulski deskriptori. Ispitan je
klasifikacijski model koji se temelji na neuralnim mre`ama CP NN (counterpropagation neural network).

Kemijski nacionalni in{titut, Ljubljana, Slovenija Prispjelo 12. prosinca 2003.
* Institut Mario Negri, Milano, Italija Prihva}eno 18. svibnja 2004.


