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The secondary structure of nucleic acids provides a level of description that is, both, abstract
enough to allow for efficient algorithms and realistic enough to provide a good approximate to
the thermodynamic and kinetic properties of structure formation RNA. The secondary structure
model has furthermore been successful in explaining salient features of RNA evolution in nature
and in the test tube. In this contribution we review the computational chemistry of RNA secon-
dary structures using a simplified algorithmic approach for explanation.
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Introduction

Computational Chemistry is often used as a synonym for
Quantum Chemistry. On the other hand, a relatively small
number of measurably physical parameters together with
the knowledge of the structure formula often allows quite
accurate predictions of other thermodynamic, kinetic, or
functional properties of a molecule. As an example consi-
der Hammet’s classical theory of substituent effects expres-
sed in terms of � and � parameters, see e.g.24 The existen-
ce of such semi-empirical laws is also the basis of QSAR
methods.11 In this sense much of the working knowledge
of the organic chemist can be regarded as a coarse grained
picture of the underlying quantum-theory of molecules
and their reactions.

Nucleic acids are unique among molecular systems because
they admit a level of description that is coarse grained even
further: their secondary structures are sufficient to predict
sequence specific thermodynamic and kinetic properties
without recourse to an atom-by-atom model of the molecu-
le. Here we review the questions and computational techni-
ques that can be employed at this level of description.

This contribution is organized as follows: In section 2 we
outline so-called nearest neighbor energy model for RNA
and DNA structures. Then we consider the basic dynamic
programming algorithms for obtaining various aspects of
the thermodynamics of nucleic acid structure formation
and stability. Since the algorithms become rather compli-
cated due to the many case distinctions, implicit in the
standard energy modele, we instead use a simplified va-
riant, the so-called maximum circular matching problem,
to make the basic ideas transparent. The basic bioinforma-
tic questions that can be posed for nucleic acid structures
– structural alignments and pattern search – give rise to al-
gorithmic solutions that are close relatives of the folding al-
gorithms as we shall see in sections 5 and 6. Finally we will
see that even the kinetics of the folding process can be de-
scribed consistently at the level of secondary structures.

Secondary structure graphs and their
free energies

We consider nucleic acid structures at a coarse-grained le-
vel, representing each nucleotide by a single point. Instead
of spatial coordinates, only covalent and non-covalent
contacts (the latter correspond to specific hydrogen
bonds), are used. In other words, only the DNA or RNA
sequence and the list of base pairs, enter our considera-
tions.

A secondary structure � is a special type of contact struc-
ture, represented by a list of base pairs (i, j) with i < j on a
sequence x, such that for any two base pairs (i, j) and (k, l)
with i � k, holds:

(i) i = k if and only if j = l, and

(ii) k < j implies i < k < l < j.

The first condition simply means that each nucleotide can
take part in at most one base pair. The second condition
forbids knots and pseudo-knots. While pseudo-knots are
important in many natural RNAs,44 they can be considered
part of the tertiary structure for our purposes. We will the-
refore neglect them for the purpose of this presentation.
The restriction to knot-free structures is necessary for the
efficient dynamic programming algorithms discussed be-
low.

The two conditions above imply that secondary structures
form a special type of graphs. In particular, a secondary
structure graph is sub-cubic (i.e., the vertex degree is at
most three) and outer-planar. The latter property means
that the structure can be drawn in the plane in such a way
that all vertices (which represent the nucleotides) are ar-
ranged on a circle (the molecule’s backbone), and all ed-
ges (which represent the bases pairs) lie inside the circle
and do not intersect, see Fig. 1.
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The physico-chemical basis for the course grained compu-
tational chemistry of nucleic acids is the possibility to com-
pute the free energy of structure formation given the se-
quence and the list of base pairs. Note that a secondary
structure as defined above corresponds to an ensemble of
conformations of the molecule at atomic resolution restric-
ted to a certain base pairing (hydrogen bonding) pattern.

For example, no information is assumed about the spatial
conformation of unpaired regions. The entropic contribu-
tions of these restricted conformations have to be taken in-
to account, hence we are dealing with (temperature de-
pendent) free energies here.

The energy of an RNA secondary structure is assumed to
be the sum of the energy contributions of all “loops”, i.e.,
the faces of the planar drawing of the structure. This de-
composition has a solid graph theoretical foundation:23

the loops form the unique minimal cycle basis of the se-
condary structure graph. More importantly, however, a lar-
ge number of careful melting experiments have shown that
the energy of structure formation (relative to the random
coil state) is indeed additive to a good approximation, see
e.g.8,21,41,25 Usually, only Watson-Crick (AU, UA, CG and
GC) and wobble pairs (GU, UG) are allowed in compu-
tational approaches since non-standard base-pairs have
in general context-dependent energy contributions that
do not fit into the “nearest-neighbor model”. Individual
non-standard base pairs are therefore treated as special
types of interior loops in the most recent parameter sets.

Qualitatively there are two major energy contribution:
Stacking of base pairs and loop entropies. Stacking ener-
gies can be computed for molecules in the vacuum by me-
ans of standard quantum chemistry approaches, see
e.g.32,22,14 The secondary structure model, however, consi-
ders only energy differences between folded and unfolded
states in an aqueous solution with rather high salt concen-
trations. As a consequence one has to rely on empirical
energy parameters. Loops are destabilizing: the closing base
pair restricts the possible conformations of the sequence in
the loop relative to the conformations that could be formed
by the same sequence segments in a random coil resulting
in an entropy loss and thus an increase in free energy.

Here we explain all versions of RNA folding using the sim-
plified Maximum Circular Matching Problem paradigm.
This will allow us a relatively compact and intelligible re-
presentation of the basic idea behind dynamic program-
ming RNA folding algorithms. In section 8 we will briefy
return to the realistic energy model.

Forward recursions

We begin our exposition by counting the secondary struc-
tures that can be formed by a given sequence x = (x1, x2,
..., xn) of length n. We will simply write “(i, j) pairs” to me-
an that the nucleotides xi and xj can form a Watson Crick
or a wobble pair, i.e., xixj is one of GC, CG, AU, UA, GU,
or UG. The basic idea, behind all dynamic programming
algorithms for RNA folding, is the observation that a struc-
ture on n nucleotides can be formed in only two distinct
ways from shorter structures: Either a structure on n – 1
nucleotides is extended by an unpaired base, or the nth nu-
cleotide is paired. In the latter case it has a pairing partner,
say j such that the (j, n) pair encloses a secondary structure
on the sub-sequence from j + 1 to n – 1 since base pairs
must not cross by definition. The remainder, the interval
from 1 to j – 1 is of course also a secondary structure:

xxxxxxxxxxxxxx = .xxxxxxxxxxxxxx or (yyyyyyy)zzzzzz
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F i g . 1 – Secondary structure of phenylalanine-tRNA from ye-
ast as conventional drawing and in circular representation. The
chords in the circular representation must not cross in secondary
structure graphs.

F i g . 2 – Secondary structure elements that form the basis of
the energy model for nucleic acids



It is now easy to compute the number Nij of secondary
structure on the sub-sequence x�i..j� from positions i
to j:42,43

N N N N
ij i j i k k j

k i k

	 


 
 � 


�1 1 1 1, , ,
,( , ) pairs

(1)

The first term accounts for the case in which position i is
unpaired, the terms in the sum consider the base pairs
from i to some position k. Because of the “no-pseudoknots”
condition, both, the part of the sequence that is enclosed
by the pair (i, k) and the part beyond the base pair form se-
condary structures that are completely independent of
each other: thus we may simply multiply their numbers.
This simple combinatorial structure of secondary structures
was realized by M. Waterman in the late 1970s.42,43 It can
be exploited to derive typical structural features of RNA
molecules such as expected helix length or distribution of
loop types.15

Restricting ourselves to the number Nij(
) of structures with
a fixed energy 
 we can immediately generalize eq.(1) to a
recursion for the density of states of an RNA molecule.3,2

N N N N
ij i j i k k j ik

k

( ) ( ) ( ) ( )
, , ,

,


 
 
 
 
 �



	 
 � � ��

 
 � 


�

�1 1 1 1
( , )i k pairs

� (2)

Energy minimization, as the first step towards computing
the minimum free energy structure of an RNA molecule
was historically the first variant of equ. (1), see ref. 31, 48,
47. The recursion for the minimal energy Eij of any structu-
re on the subsequence x�i..j� is simply
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The free energy parameters are here simplified to contri-
butions �ik for individual base pairs. Variants of this algo-
rithm for the realistic, loop-based, energy model is imple-
mented in Michael Zuker’s mfold package47,46 and in the
Vienna RNA Package18,16 by the present authors. Note that
the free energy parameters � �

ik ik
T	 ( ) explicitly depend

on the temperature as they contain, both, entropic and
enthalpic contributions.

John McCaskill27 observed that essentially the same re-
cursion can be used to obtain the partition function
Z E RT	 �� exp( ( ) )�

�
over all possible secondary

structures �. For the partition function Zij over all structu-
res on sub-sequence x�i..j� one obtains

Z Z Z Z RT
ij i j i k k j ik

k i k
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exp ( )�
pairs

(4)

The partition function is starting point for exploring the
thermodynamics of RNA secondary structure formation.
The free energy of structure formation, for example is,
�G RT Z	� ln . From this we may compute other thermod-
ynamic parameters, e.g. melting curves.

Backtracking

Backtracking is the procedure that generates one or more
RNA structures in a stepwise fashion based on the informa-
tion collected in the forward recursions. The basic object is
a partial structure � consisting of a collection �� of base
pairs and a collection �� of sequence intervals in which the
structure is not (yet) known. Positions that are known to be
unpaired can easily be inferred from this information. The
completely unknown structure on the sequence interval
�1, n� is therefore �	 �� ��( , , ),0 1 n while a structure is com-
plete if it is of the form �	 ( , ).� 0

Suppose I i j	� ���, are positions for which the partial struc-
ture �	 �( , )� is still unknown. If we know that i is unpaired
then �	 � ��� ( , )� with �	� �, �� 	� ���
 ��\ � �I i j1, . If
(i, k), i < k � j is a base pair then �	 �� �� � ( , )i k and
�� 	� ��� 
 � � � 
 ��\ � �I i k k j1 1 1, , , . Here we use the con-

vention that empty intervals are ignored. Furthermore, ba-
se pairs can only be inserted within a single interval of the
list �. We write �	� �� ( )i and �	� �� ( , )i k for these two
cases.

The energy of a partial structure � is defined as

E E I
kl

k l I

( ) ( )
( , )

� �	 

� ��

� �
�

opt (5)

where Eopt (I) = Eij is the optimal energy for the substructu-
re on the interval I = �i, j�

The standard backtracking for the minimal energy folding
starts with the unknown structure. Instead of a recursive
version we describe here a variant where incomplete
structures are kept on a stack �. We write � � to mean
that � is popped from the stack, and �! � to mean that �
is pushed onto the stack.
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Ta b l e 1 – Comparison of backtracking recursions for different algorithms

� ! �.
while � " 0 do
�  �;
if � is complete then output �
�i, j� = I � ��.
�	 
� �� ( )i 1

if E(��)= Eopt then �� ! �; next;
for all k � �i, j� do
�	� �� ( , )i k

if E(��) � Eopt then �� ! �; next;

� ! �.
while � " 0 do
�  �;
if � is complete then output �;
for all �i, j� = I � ��, do
�	 
� �� ( )i 1

if E(��) � Eopt + �E then ��#! �;
for all k � �i, j� do
�	� �� ( , )i k

if E(��) � Eopt + �E then �� ! �;

� ! �.
while � " 0 do
�  �;
if � is complete then output �;
for all �i, j� = I � ��, do
�	 
� �� ( )i 1
�� ! � with probability Z(��)/Z(�)
for all k � �i, j� do
�	� �� ( , )i k
�� ! � with probability Z(��)/Z(�)

Algorithm B1.
Backtracking a single structure31,48

Algorithm B2.
Backtracking of multiple structures45

Algorithm B3.
Stochastic backtracking59 Vienna RNA
Package since version 1.5�.



If we want all optimal energy structures instead of a single
representative we simply test all alternatives, i.e., we omit
the next in algorithm B1 of Table 1. It is now almost trivial
to modify the backtracking to produce all structures within
an energy band Eopt � E � Emax above the ground state.

Stochastic backtracking procedures for dynamic program-
ming algorithm such as pair wise sequence alignment are
well known.29 Replacing Zij by Nij in Algorithm B3 we re-
cover recursions for producing a uniform ensemble of
structures similar to the procedure for producing random
structures without sequence constraint used in.39

Note that the probabilities of �� (i + 1) and �� (i, k) for all k
add to 1 so that in each iteration we take exactly one step.
Hence, we simply fill one structure which we output as so-
on as it is complete.

The Sankoff algorithm

Many functional classes of RNA molecules, including
tRNA, rRNA, RNAse P RNA, SRP RNA, exhibit a highly
conserved secondary structure but little sequence homo-
logy. In order to compare these molecules between diffe-
rent species it is therefore necessary to take structural in-
formation into account.

David Sankoff described an algorithm that simultaneously
allows the solution of the structure prediction and the se-
quence alignment problem.34 The basic idea is to search
for a maximal secondary structure that is common to both
molecules. Given a score �ij,kl for the alignment of the base
pairs (i, j), and (k, l) from the two sequences (as well as gap
penalties � and scores �ik for matches of unpaired posi-
tions), we compute the optimal alignment recursively from
alignments of the subsequences x�i..j� and y�k..l�. Let Sij,kl
be the score of the optimal alignment of these fragments.
We have

Sij;kl = max �Si+1,j;kl+�, Sij;k+1,l+�, Si+1,j;k+1,l+�ik,
(6)

max
( , )p q paired

�Si+1,p–1;k+1,q–1 + �ij,pq + Sp+1,j;q+1,l��

Backtracking is just as easy as in the RNA folding case.
Only now � is a partial alignment of two structures and we
insert aligned positions instead of positions in individual
structures. More precisely we use
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The algorithm is unfortunately very expensive, requiring
O(n4) memory and O(n6) CPU time. Currently available
software packages such as foldalign10 and dynalign26 the-
refore implement only restricted versions. The simple, ma-
ximum matching style version is used in ref. 17 as an ap-
proach to comparing base pairing probability matrices.

It is straight forward to build a density of states and a coun-
ting version from this recursion. Its partition function va-
riant is of particular interest since it could be used to assess
the reliability of the structure based alignments. The basic
recursion reads

Q Q e Q e Q e
ij kl i j kl ij k l i j k l

ik
; ; ; , , ; ,
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�Q Q e
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p q
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( , )
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where we assume that the similarity scores �, �, and � are
already properly scaled with the fictitious temperature RT.

Structural patterns

The partition function formalism can be used to compute
the probability that a sequence will form a particular struc-
tural pattern. For any pattern let � be the set of secondary
structures that contain the pattern. We may then compute
the partition function over all structures containing that
pattern, Z E RT( ) exp ( ( ) )� �

� �
	 �

�
� , and thus its proba-

bility p(�) = Z(�)/Z. For simple patterns it is often possible
to compute Z(�) efficiently by dynamic programming
without much extra effort.

The most common case is the computation of pair proba-
bilities, i.e. �i,j is the set of secondary structures that conta-
in the pair (i, j). To compute these we introduce the parti-
tion function Z ij of structures outside the sequence interval
�i, j�. Since the pair (i, j) divides the structure in two inde-
pendent halves, we have

p Z Z RT Z
ij

ij
i j ij

	 �

 �1 1,

exp ( )� (9)

The exterior partition functions Z ij satisfy the recursion

Z Z Z Z Z Z RTij
i j n

kl
k i j l kl

k i
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 � 
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*
1 1 1 1 1 1 1, , , ,

exp ( )�
; j l*
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Pair probabilities provide a convenient and easy to visuali-
ze representation of structure ensembles, Fig. 3.

A similar technique works if the pattern is an arbitrary sub-
structure � of length d. The probability of finding � at posi-
tion i of the molecule is given by p Z Zi i( )� �	 with

Z Z Z Z Z Zi i i d n
kl

k i i d l
k i j l

�	 

� 
 
 � 
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* *

�( ) exp (, , , ,
;

1 1 1 1 1
�E RT( ) )� (11)

The case, where � is simply a stretch of d unpaired bases
(and thus E(�) = 0), is of particular interest when selecting
target regions for gene silencing via designed siRNAs. In
ref. 4,5 the same problem is approached by sampling
structures using stochastic backtracking. The advantage of
the exact approach is that relative rare structural elements,
p < 1/sample-size, can be delt with.

Kinetic folding

The folding landscape (or Potential Energy Surface,
PES28,12 of a RNA molecule is a complex surface of the
(free) energy versus the conformational degrees of free-
dom. In our case, the allowed conformations are of course
the secondary structures which can be formed by a parti-
cular RNA sequence; the degrees of freedom are the allo-
wed transformations provided by a “move set”, in our case
the insertion/deletion (closing/opening) of single base pa-
irs. Two conformations x and y are said to be neighbors if
they can be inter-converted by applying a single move
from the move set. Instead of a smooth surface defined on
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a space of real-valued coordinate vectors we are therefore
dealing with a landscape on a complex graph.33

A conformation x is a global minimum if E(x) � E(y) for all
y � X, and a local minimum if E(x) � E(y) for all neighbors
y of x. The energy �E of the lowest saddle point separating
two local minima x and y is

� , min max ( )E x y E z
p P zxy

� �	
� �p

(12)

where Pxy is the set of all paths p connecting x and y by a
series of consecutive transformations taken from the move
set. If the energy function is non-degenerate then there is a
unique saddle point s = s(x,y) connecting x and y characte-

rized by E s E x y( ) � ,	 � �. To each saddle point s there is a uni-
que collection of conformations B(s) that can be reached
from s by a path along which the energy never exceeds
E(s). In other words, the conformations in B(s) are mutually
connected by paths that never go higher than E(s). This
property warrants to call B(s) the basin of attraction below
the saddle s.

Two situations can arise for any two saddle points s and s�
with energies E(s) < E(s'). Either the basin of s is a “sub-ba-
sin” of B(s�) or the two basins are disjoint. This property ar-
ranges the local minima and the saddle points in a unique
hierarchical structure which is conveniently represented as
a tree, termed barrier tree.
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F i g . 3 – Base pairing probability matrix of an RNA with many nearly degenerate structures. The con-
tact of the ground state structure are shown in the lower-left part of the matrix. The dots in the upper-right
part have an area proportional to the pairing probability pij. Four examples of suboptimal structures within
about 2kT from the ground state, are shown on the left.

F i g . 4 – L.h.s.: Barrier tree of short artificial sequence lilly UAUGCUGCGGCCUAGGC. The leaves of the tree are
the local minima of the energy landscape. R.h.s.: folding kinetics of lilly from the open structure. Population densities
p� of the basins of attraction of the local minima � is shown as a function of time.



An efficient flooding algorithm,7 starting from an energy
sorted list of all low energy conformations,45 is used to
identify local minima and saddle-points. In this way it is
possible to construct the barrier tree (see Fig. 4) of the
low-energy portion of the folding landscape. The barrier
tree depicts, in a compact form, the likelihood of a conver-
sion between local minima. The leaves of the barrier tree
correspond to local minima, while the internal nodes are
the energetically highest (saddle) points on a path between
any two local minima.

The process of kinetic folding can be modeled as homoge-
neous Markov chain. The probability P(i,t) that a given RNA
molecule will have the secondary structure i at time t is gi-
ven by the master equation

d
d

P i t
t

P j t k P i t k
ji ij

j i

( , )
( , ) ( , )	 � � �

"

� (13)

where kij and kji are the rate constants for the transitions
between the two secondary structures i and j in the deter-
ministic description.9 For short sequences or very restricted
subsets of conformations equation13 can be solved exactly
or integrated numerically.38 Solving the master equation
for larger conformation spaces is out of the question. In
such cases the dynamics can be obtained by simulating the
Markov chain directly by a rejection-less Monte Carlo al-
gorithm6 and sampling a large number of trajectories.

Alternatively, the barrier tree can be used as a starting po-
int for the definition of a coarse grained dynamics. In the
simplest case transition rates between local minima can be
modeled by their respective barrier heights in the tree.
This approximation completely neglects entropic terms ari-
sing from possible multiple paths between the local mini-
ma.

Realistic models for RNA secondary
structure prediction

All the quantities introduced above for the maximum cir-
cular matching problem can be computed similarly for the
full energy model. The recursions do, however, get more
complicated, and often require several auxiliary arrays. For
illustration we show below the recursions for the minimum
energy problem equivalent to Eq. 3.

Let Fij be the optimal free energy on the sequence interval
�i,j�, and let Cij be the optimal free energy under the condi-
tion that i, j form a pair, F

ij
M holds the optimum given that

�i,j� lies within a multi loop and with at least two helices,
while for FM1 only one helix is required.

F F C F
ij i j i k j ik k j
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( )

H(i, j), I(i, j, k, l), a, b and c are parameters for hairpin, inte-
rior and multi-loops (Fig. 2).

Note that the corresponding recursions for the partition
function can be obtained simply by replacing minimum
operations with sums and additions with multiplication.

Concluding remarks

RNA secondary structures are routinely used to display, or-
ganize, and interpret experimental findings. The dominant
role of the secondary structure is also well documented in
nature by the conservation of secondary structure ele-
ments in evolution.1 In vitro selection experiments with
RNA, more often than not, yield families of selected se-
quences that share distinctive secondary structure features.
Furthermore, secondary structures are folding intermedia-
tes in the sense that all helices typically form before tertiary
contacts complete the formation of the three-dimensional
structure.40 In addition, dynamical aspects of RNA secon-
dary structure formation, including transitions at the level
of RNA secondary structure, can play a crucial role for the
understanding ofthe biological function of RNA.30

Extensive computational studies of RNA evolution are fea-
sible only because the RNA folding problem is solved effi-
ciently by the relatively simple algorithms described in the
previous sections. They have revealed the far-reaching
consequences of the principles of RNA structure formation
for evolutionary phenomena, see ref. 36 for a recent re-
view. Four properties of the “genotype-phenotype map”
relating RNA sequences and their minimum free energy
structures, have been predicted:37

(i) More sequences than structures. There are orders of
magnitude more sequences than structures, and hence,
the map is many-to-one.

(ii) Few common and many rare structures. Relatively
few common structures are opposed by a relatively large
number of rare structures.

(iii) Shape space covering. The distribution of sequences
that fold into the same structure is approximately random
in sequence space. As a result it is possible to define a
spherical ball, with a diameter dcov being much smaller
than the diameter of sequence space (n), which contains
on the average for every common structure at least on se-
quence that folds into it.

(iv) Existence and connectivity of neutral networks. Neu-
tral networks (the sets G(S) of sequences that fold into the
same structure S) of common structures are connected in
most cases.

Experimental evidence for the existence and the proper-
ties of neutral networks in the RNA sequence-structu-
re-function relationships provided e.g. in ref.35,13,20
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Ra~unalna kemija sa sekundarnim strukturama RNA
C. Flamm, I. L. Hofacker i P. F. Stadler*

Sekundarna struktura nukleinskih kiselina istodobno je i dovoljno apstraktna, ali i dovoljno odre|ena da
se iz nje mogu na~initi dobra pribli`enja za odre|ivanje termodinamskih i kinetskih svojstava nastajanja
strukture RNA. Model sekundarne strukture pokazao se zadovoljavaju}im za razja{njavanje vidljivih
obilje`ja evolucije RNA, kako u prirodi tako i u pokusu. U ovom prilogu dajemo pregled metoda
ra~unalne kemije, koje uklju~uju pojednostavljene algoritme, a primijenjene su na razmatranje se-
kundarne strukture RNA.
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