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1 Introduction
Water pollution is an alteration in its quality and nature that 
makes its use dangerous and/or disrupts the aquatic eco-
system. It concerns surface water (rivers, bodies of water) 
and/or groundwater. Its main origins are human activity, 
industries, agriculture, and domestic and industrial waste 
landfills.1–3 Phenol and its derivatives are used in a number 
of applications such as the chemical, pharmaceutical, pe-
troleum, paper, wood, rubber, dyes, and pesticide indus-
tries. Phenols are classified as priority pollutants because of 
their toxicity to organisms, even at low concentrations.4,5 
Their adverse effects on the environment and public health 
have been demonstrated by growing evidence, such as the 
death of aquatic life, inhibition of normal activities of the 
microbial community, and carcinogenicity in animals.6 
Due to the high toxicity, high prevalence and poor biodeg-
radability of phenols, it is necessary to remove them from 
wastewater before discharging them into water bodies.

The adsorption treatment process is one of the most im-
portant technologies today. It is widely used for pollution 
control and purification in a wide variety of fields, for ex-
ample, the petroleum, petrochemical and chemical indus-
tries, environmental, and pharmaceutical applications.7,8

Activated carbon fibres (ACF) are generally microporous, 
with a large surface area and a narrow pore distribution. 
The microporous nature gives ACFs adsorption advantages 
because the adsorption energy is increased in small pores. 

In addition, ACFs have a large external surface area and 
their micropores are directly exposed to the surface, result-
ing in a rapid rate of adsorption.9

Machine learning (ML) is a type of artificial intelligence (AI) 
that allows software applications to be more precise in pre-
dicting outcomes without being explicitly programmed to 
do so.10–15 

Support Vector Machine (SVM) is a machine learning or 
statistical technique defined for the prediction of variables. 
Generally, this technique is employed to avoid the overfit-
ting and convex optimisation problems (no local minima), 
and it runs well on smaller databases. This research con-
sists of studying the data of the adsorption of phenols with 
ACFs, and of modelling by the machine learning technique 
(DA-SVM).

2 Support vector machines (SVM) 
technique

The SVM is based on a statistical learning theory. This 
method was introduced by Vapnik.16–18 The architecture of 
SVM model is not determined a priori. The mathematical 
expression of the output estimation of the SVM is given as 
follows:

( ) ( )  f x w x b= ⋅∅ + (1)

where w is a weight vector, b is a bias, denotes the dot 
product, and ⌀ is the non-linear transfer function that maps 

Dragonfly Support Vector Machine Modelling 
of the Adsorption Phenomenon of Certain 
Phenols by Activated Carbon Fibres

https://doi.org/10.15255/KUI.2020.073
KUI-35/2021

Original scientific paper
Received November 10, 2020

Accepted February 24, 2021

M. Hentabli,a* A.-E. Belhadj,a and F. Dahmoune b,c This work is licensed under a 
Creative Commons Attribution 4.0 

International License

a	Laboratory of Biomaterials and Transport Phenomena (LBMPT), Faculty of Technology, 
University Yahia Fares of Médéa 26 000, Médéa, Algeria

b	Département de Biologie, Facultés des Sciences de la Nature et de la Vie et des Science de la 
Terre, Université de Bouira, 10 000 Bouira, Algeria

c 	Laboratoire de Biomathématique, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté 
des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria

Abstract
The objective of this research was to build a mathematical model based on a Support Vector Machine (SVM) capable of pre-
dicting the amount adsorbed at equilibrium (qe). Activated carbon fibres (ACF) were used for the adsorption of certain phenols 
(phenol, 2-chlorophenol, 4-chlorophenol, 2,4,6-trichlorophenol, 4-nitrophenol, and 2,4-dinitrophenol). An experimental da-
taset of 129 points was collected from previously published papers. The inputs considered for modelling were temperature (T), 
concentration at equilibrium (ce), and two descriptors (boiling point (BP) and density (d)) to differentiate between the pollutants 
studied. The data used were pre-processed by the statistical analysis to ensure that they were adequate for modelling. The 
results showed a superiority of the Gaussian kernel function DA-SVM model demonstrated by its determination coefficient 
(R2 = 0.997) and root mean squared error (RMSE = 0.027 mmol l−1).

Keywords
Adsorption, phenols, support vector machine, dragonfly algorithm, activated carbon fibre, amount adsorbed at equilibrium

* Corresponding author: Mohamed Hentabli, PhD student 
Email: hentm92@hotmail.fr

https://doi.org/10.15255/KUI.2020.073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:hentm92%40hotmail.fr?subject=


502   M. HENTABLI et al.: Dragonfly Support Vector Machine Modelling of the Adsorption..., Kem. Ind. 70 (9-10) (2021) 501−508

the input vectors into a high-dimensional feature space, 
in which theoretically a simple linear regression can cope 
with the complex non-linear regression of the input space. 
Vapnik introduced the following convex optimisation prob-
lem with a ε-insensitivity loss function to obtain the solu-
tion to Eqs. (2) and (3):19

(2)

(3)

where  and  are slack variables that penalize training 
errors by the loss function over the error tolerance ε, and 
C is a positive trade-off parameter or capacity parameter 
that determines the degree of the empirical error in the op-
timisation problem and determines the trade-off between 
the flatness of the function and the amount to which devi-
ations larger than (ε) are tolerated.

Eqs. (4) and (5) can be solved using the Lagrangian multi-
pliers and the Karush-Kuhn-Tucker (KKT) optimality condi-
tions, as follows:20

(4)

where αi and αi
* are the Lagrangian multipliers, K is a ker-

nel function defined by an inner product of the nonlinear 
transfer functions:19 

(5)

3 SVM optimisation with Dragonfly 
algorithm (DA) technique

The chosen methodology can be schematised in accord-
ance with the flowchart in Fig. 1, which includes the fol-
lowing steps:

The program shown in Fig.  1 depends on the technical 
SVM and the method of optimisation by the Dragonfly 
algorithm (DA) proposed by S. Mirjalili.21 The DA initially 
feeds the SVM with a random combination of hyperplane 
parameters in their previously defined ranges. In five it-
erations, the steps starting with the data division and up 
to the development of the SVM model are repeated, and 
the minimum value of RMSE obtained is saved as the best 
value.23–26

The DA then generates a new population of parameter hy-
perplanes for the SVM algorithm, and the same set of steps 
is repeated in order to obtain a new best RMSE, among 
which the minimum RMSE corresponds to the DA-SVM 
model optimal result.

Numeric values in the input data matrix have been normal-
ised to improve the optimisation and speed convergence. 
The normalisation function is expressed by the following 
Eq. (6)

0.09
nX X= (6)

To assess the predictive power of the DA-SVM model, a 
root mean squared error (RMSE) Eq. (7) and coefficient of 
determination (R2)) Eq. (8) were used as evaluation criteria.
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4 Data collection, pre-treatment,  
and analysis

The modelling data was collected from the literature,22 the 
database must be analysed statistically. Table 1 summarises 
the values of some statistical parameters, such as standard 
deviation, variance, and KURTOSIS. The database contains 
21 adsorption systems (seven phenols multiplied by three 
temperature changes). The amount adsorbed at equilib-
rium is predicted by the following variables: temperature 

Training data Testing data

Optimise 
hyperparameters  
by DA (C, σ & ε) 
J = 1 & i = i + 1

Change  
division &  
J = J + 1

start

Collection data i = 1

Normalisation of data

Trained SVMR

Trained SVMR 
Save RMSE

Save the best 
SVMR
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No

Yes
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i = 100=

Fig. 1 – DA-SVM technique12
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and concentration at equilibrium as operating conditions, 
and molecular weight, density, and boiling point as de-
scriptors to differentiate between the phenols.

Fig. 2 represents the multicollinearity test of the input vari-
ables. The test is a plot of the Kendall rank correlation coef-
ficients between all pairs of variables, indicating a hypoth-
esis test to determine which correlations are significantly 
different from zero.

5 Results and discussion
SVM was optimised by the dragonfly method. In a hybrid 
program called DA-SVM, the iterations were set at 30, and 
the number of search agents at 10. The program controls 
the hyperplane parameters (C, ε, n, and σ), in the domains 
following C ∈  [1e-3,1e3], σ ∈  [1e-3,1e3], ε ∈  [0,1], pol-

ynomial order « n  »  [2,5] and the ‘Gaussian’ (Eq. 9) and 
‘polynomial’ (Eq. 10) kernel functions.

( )2Gaussian exp j kx x= − − (9)

( )'Polynomial 1  
n

j kx x= + (10)

The database was randomly divided by the Holdout Par-
titions method into two sets: one for the learning (train), 
and another for validation, consisting of 80 % and 20 %, 
respectively.

5.1 Polynomial kernel function results

Fig. 3 displays the linear regression curve of the amount 
adsorbed at equilibrium (qe(cal)) estimated by the DA-SVM 
optimised with the experimental amount adsorbed at 

Table 1 – Statistical criteria

Unit Min Max STD KURTOSIS

input

molecular weight Mw g mol−1   94.11 197.45 31.84 −0.94
density d g cm−3     1.07     1.68   0.20 −1.00

boiling point BP °C 113.00 279.00 47.66 −0.35
temperature T °C   25.00   55.00 12.36 −1.52

concentration at equilibrium ce mmol l−1     0.01     1.12   0.19    3.89
output amount adsorbed at equilibrium qe mmol g−1     0.42     2.68   0.54 −0.78

Fig. 2 – Multicollinearity test
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equilibrium (qe(exp)) for the two phases: learning (train) and 
validation, in using the polynomial kernel function with a 
regression vector [α (slope), β (y-intercept), R (correlation 
coefficient)] = [0.95, 0.015, 0.974], and Table 4 summa-
rises the parameters of the model.
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Fig. 3 – Linear regression between the experimental qe and qe 
calculated by the DA-SVM model using the polynomial 
kernel function

5.2 Gaussian kernel function results

The linear regression curve of the (qe) calculated by DA-
SVM optimised with the (qe) experimental for the two 
phases (learning and validation) using the Gaussian kernel 
function is represented in Fig. 5 with a vector regression [α 
(slope), β (y-intercept), R (correlation coefficient)] = [1.00, 
0.0017, 0.998], and Table 3 summarises the model param-
eters.

5.3	Comparative study of the results  
of the two approaches

The performances of the models developed in this work 
were compared to the statistical criterion (Eqs. 7 and 8). 

To this end, two approaches, among which a polynomi-
al kernel function DA-SVM model and a Gaussian kernel 
function DA-SVM model, were evaluated in terms of cor-
relation performance and prediction accuracy (Fig. 5).
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Fig. 5 – Comparison of the Gaussian kernel function DA-SVM 
model and polynomial kernel function DA-SVM model

Table 2 – Model parameters (Polynomial kernel function)

C Polynomial 
order Epsilon ε Function Amount of support 

vectors
RMSE

learning
RMSE

validation
RMSE
ALL

85 2 0.0015 Polynomial kernel 97 0.1321 0.1162 0.1283

Table 3 – Model parameters (Gaussian kernel function)

C Sigma σ Epsilon ε Function Amount of support 
vectors

RMSE
train

RMSE
validation

RMSE
ALL

44 1.75 4.15 ∙ 10−04 Gaussian kernel 92 0.0164 0.0413 0.0250
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Fig. 4 – Linear regression between the experimental qe and qe 
calculated by the DA-SVM model using the Gaussian 
kernel function
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For more details, it was noticed that the error of learning 
Gaussian kernel function DA-SVM model is eight times less 
than the error of learning polynomial kernel function DA-
SVM model, and the Gaussian kernel function DA-SVM 
model test error three times less than the polynomial ker-
nel function DA-SVM model test error. In general, it can 
be concluded that the prediction capacity of Gaussian ker-
nel function DA-SVM model is five times better than the 
prediction capacity of polynomial kernel function DA-SVM 
model.

5.4 Graphical representation of the Gaussian kernel 
function DA-SVM model

Figs.  6–12 represent the adsorption kinetics of certain 
substituted phenols (phenol, 2-chlorophenol ‘2-CP’, 
4-chlorophenol ‘4-CP’, 2,4,6-trichlorophenol ‘2,4,6 TCP’, 
4-nitrophenol ‘4-NP’, and 2,4-dinitrophenol ‘2,4DNP’) 
experimental and calculated by optimal Gaussian kernel 
function DA-SVM model.

Fig. 6 shows a projection of the experimental values of the 
phenol adsorption at 25, 40, and 55  °C by ACFs on the 
predicted values by the Gaussian kernel function DA-SVM 

model. The results indicate the ability of the model to pre-
dict with high accuracy.

Fig. 7 proves the large amplitude of the Gaussian kernel 
function DA-SVM model for the prediction of the amount 
adsorbed at equilibrium of 2-chlorophenol at tempera-
tures 25, 40, 55 °C.

Results in Fig. 8 indicate the ability of the model to pre-
dict with high accuracy. In addition, the projection of the 
experimental values of the 4-chlorophenol adsorption at 
25, 40, and 55 °C by ACFs on the predicted values by the 
Gaussian kernel function DA-SVM model was perfect.

The experimental data of 2,4-dichlorophenol adsorbed 
amount at equilibrium at 25, 40, and 55 °C, and the data 
calculated by the Gaussian kernel function DA-SVM model 
are shown in Fig. 9. It can be observed that the model has 
excellent prediction.

Projecting experimental values of 2,4,6-trichlorophenol 
adsorbed at 25, 40, and 55  °C by ACFs over the values 
predicted by a Gaussian kernel function DA-SVM model 
demonstrates the model’s ability to predict with high ac-
curacy (Fig. 10).
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Fig. 7 – 2-chlorophenol adsorption kinetics by ACF at different 
temperatures (25, 40, and 55 °C)
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2,4-dichlorophenol

ce ⁄ mmol l−1

q e
 ⁄ 

m
m

ol
 g−

1

0

qe (exp) in T 25/°C qe (exp) in T 40/°C qe (exp) in T 55/°C
qe (cal) in T 25/°C qe (cal) in T 40/°C qe (cal) in T 55/°C

0.1 0.2 0.3 0.4 0.5
1

1.2
1.4
1.6
1.8

2
2.2
2.4

Fig. 9 – 2,4-dichlorophenol adsorption kinetics by ACF at differ-
ent temperatures (25, 40, and 55 °C)

Phenol

ce ⁄ mmol l−1

q e
 ⁄ 

m
m

ol
 g−

1

0

qe (exp) in T 25/°C qe (exp) in T 40/°C qe (exp) in T 55/°C
qe (cal) in T 25/°C qe (cal) in T 40/°C qe (cal) in T 55/°C

0.1 0.2
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0.3 0.4 0.5 0.6 0.7

Fig. 6 – Phenol adsorption kinetics by ACF at different tempera-
tures (25, 40, and 55 °C).



506   M. HENTABLI et al.: Dragonfly Support Vector Machine Modelling of the Adsorption..., Kem. Ind. 70 (9-10) (2021) 501−508

The Gaussian kernel function DA-SVM model demonstrat-
ed its great ability to predict the amount adsorbed at equi-
librium of 4-nitrophenol at 25, 40, and 55 °C, as shown in 
Fig. 11.

The results (Fig. 12) indicate the ability of the Gaussian ker-
nel function DA-SVM model to predict with high accuracy 
the values of adsorption of 2,4-dinitrophenol at 25, 40, 
and 55 °C by ACFs.

From the results of R2 and RMSE of 21 systems mentioned 
in Table 4, it was observed that Gaussian kernel function 
DA-SVM model had a great capacity to predict the values 
related to the amount adsorbed at equilibrium with a con-
fined RMSE error between [0.014–0.051]/mmol  l−1 and 
adjustment capacities R2 between [0.991–1.000].

6 Conclusion
In this research, a Dragonfly Algorithm-based Support 
Vector Machine (DA-SVM) mathematical model was con-
structed to predict the amount adsorbed at equilibrium of 
phenol, 2-chlorophenol, 4-chlorophenol, 2,4,6-trichloro-
phenol, 4-nitrophenol, and 2,4-dinitrophenol by the ACFs 
at three temperature levels (25, 40, and 55 °C). 

The amount adsorbed at equilibrium (qe) was studied with 
a database containing the experimental conditions (tem-
perature (T) and concentration at equilibrium (ce)), and 
three descriptors to distinguish phenols (molecular weight 
(Mw), density (d), and boiling point (BP) to differentiate the 
phenols. The inputs and output were statistically studied, 
and the analysis results proved their ability to predict with 
no multicollinearity.
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Fig. 10 – 2,4,6-trichlorophenol adsorption kinetics by ACF at dif-
ferent temperatures (25, 40, and 55 °C)
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Fig. 12 – 2,4-dinitrophenol adsorption kinetics by ACF at differ-
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The qe modelled was by the SVM technique, the Drag-
onfly optimisation algorithm (DA) was used to assist SVM 
to refine its hyperplane parameters, and Gaussian kernel 
function and polynomial kernel function were tested. The 
Gaussian kernel function DA-SVM model showed an ad-
vantage by giving more accurate values related to a global 
determination coefficient (R2 = 0.997) and a global root 
mean squared error (RMSE = 0.027 mmol l−1).
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SAŽETAK
Modeliranje adsorpcijskog fenomena određenih fenola metodom 

potpornih vektora Dragonfly pomoću vlakana aktivnog ugljena
Mohamed Hentabli,a* Abd-Elmouneïm Belhadj,a and Farid Dahmoune b,c

Cilj ovog istraživanja bio je izraditi matematički model zasnovan na metodi potpornih vekto-
ra (SVM) koji može predvidjeti količinu adsorbiranu u ravnoteži (qe). Vlakna s aktivnim uglje-
nom (ACF) upotrijebljena su za adsorpciju određenih fenola (fenol, 2-klorofenol, 4-klorofenol, 
2,4,6-triklorofenol, 4-nitrofenol i 2,4-dinitrofenol). Eksperimentalni skup podataka od 129 bodova 
prikupljen je iz prethodno objavljenih radova. Ulazi parametri koji su uzeti u obzir za modeliranje 
bili su temperatura (T), koncentracija u ravnoteži (ce) i dva deskriptora (točka vrenja (BP) i gustoća 
(d)) za razlikovanje ispitivanih onečišćujućih tvari. Korišteni podatci prethodno su obrađeni sta-
tističkom analizom da bi se osigurala njihova primjerenost za modeliranje. Rezultati su pokazali 
superiornost modela DA-SVM Gaussove kernel funkcije demonstriranog njegovim koeficijentom 
determinacije (R2 = 0,997) i srednjom kvadratnom pogreškom (RMSE = 0,027 mmol l− 1).

Ključne riječi 
Adsorpcija, fenoli, metoda potpornih vektora, Dragonfly algoritam, vlakno aktivnog ugljena,  
količina adsorbirana u ravnoteži 
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