Razdvajanje faza u sustavu $La_{0.5}Sr_{0.5}MnO_3$

A. Žužić* i J. Macan

Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Trg Marka Marulića 19, 10 000 Zagreb, Hrvatska

Sažetak

Perovskiti su tema brojnih znanstvenih istraživanja zbog svojih primjenskih svojstava, kao što su električna vodljivost, feromagnetičnost i reduktivnost. Svojstva perovskita dodatno se mogu poboljšati dopiranjem te formiranjem strukturnih defekata. Cilj ovog rada bio je istražiti mogućnost pripreme stroncijem dopiranog lantanova manganita kemijske formule La_{0,5}Sr_{0,5}MnO₃ postupkom koprecipitacije. Dio materijala žaren je na 1200 °C/2h, a dio je prešan u tabletu i sinteriran na istim uvjetima. Iako je rendgenska difrakcijska (PXRD) analiza žarenog praha ukazivala na nastanak čiste faze, morfološkom analizom lomne površine tablete uočene su dvije faze. Energijski razlučujuća rendgenska spektrometrija pokazala je da je svjetlija faza SrMnO₃, dok je tamnija La_{0,76}Sr_{0,24}MnO₃. Tableta je usitnjena te analizirana PXRD-om. Iako su se maksimumi poklapali sa standardnom rendgenskom karticom faze La_{0,5}Sr_{0,5}MnO₃, Rietveldovom metodom utočnjavanja potvrđen je udio Sr od 0,24 i nastanak faze La_{0,76}Sr_{0,24}MnO₃. Ostatak stroncija dodanog tijekom sinteze kristalizirao je u SrMnO₃ fazu. Time je potvrđeno da je supstitucija moguća do određene mjere nakon koje postoji opasnost od izdvajanje nove faze, pogotovo ako je uzorak pripremljen u obliku tablete.

Ključne riječi

Dopirani lantanov manganit, koprecipitacija, razdvajanje faza

1 Uvod

Perovskitni oksidi, skraćeno perovskiti, istražuju se kao potencijalni radni materijali u novim tehnologijama, kao što su gorivne ćelije s čvrstim elektrolitom, termokemijski spremnici energije i magnetski hladnjaci.^{1–3} Perovskiti spadaju u grupu funkcionalne keramike koja se opisuje općom formulom ABO₃. Na poziciji A nalazi se zemnoalkalijski kation (Ca, Sr, Ba) ili kation metala rijetkih zemalja (La, Ce, Nd itd.), dok je na poziciji B kation prijelaznog metala (Fe, Cr, Co, Mn, Ti). Perovskiti se odlikuju električnom i ionskom vodljivošću, magnetskim svojstvima i visokom reduktivnošću.⁴

Najbolja svojstva perovskita postižu se kad je na A poziciji trovalentni kation metala rijetkih zemalja djelomično supstituiran dvovalentnim kationom zemnoalkalijskog metala, a primjer takvog materijala je stroncijem dopirani lantanov manganit (La_{1-x}Sr_xMnO₃, LSMO), koji je tema ovog rada. Zbog supstitucije La sa Sr dolazi do djelomične oksidacije mangana iz stanja +3 u stanje +4 da bi se održala elektroneutralnost spoja, a često dolazi i do formiranja vakancija kisika ili kationa također važnih za svojstva materijala.^{4,5} Budući da veći udio dopiranja ujedno znači i veći omjer Mn³⁺/Mn⁴⁺ te poboljšana svojstva materijala, LSMO s udjelom Sr od 0,5 tema je brojnih istraživanja provedenih tijekom posljednjih nekoliko godina.

Khellaf i sur.⁷ uspješno su pripremili LSMO limunskim postupkom te su dokazali njegovu aktivnost kao elektrokatalizatora u reakciji redukcije kisika, koja je iznimno važna za primjenu manganita u uređajima za konverziju i skladištenje energije. Istraživanja su posebno usmjerena na gorivne ćelije s čvrstim elektrolitom (engl. Solid Oxide Fuel Cell, SOFC) zbog njihove efikasnosti (~60 %) konverzije kemijske energije u električnu uz zanemarive emisije.¹ lako su LSMO materijali već dobro poznati kao katodni materijali u SOFC-u, Dai i sur.⁸ su ih dodatno unaprijedili dopiranjem skandijem i ostvarili 75 % veću izlaznu snagu u odnosu na nedopirane LSMO katode kao i veću kemijsku stabilnost prema CO₂ i vodi. Povećanje udjela supstitucije u LSMO rezultira i porastom Curiejeve temperature iznad sobne, što omogućava njihovu primjenu kao radnih materijala u magnetskim hladnjacima.9 Osim toga, Yan i sur.10 pokazali su da udio dopiranja LSMO od 0,5 rezultira negativnom vrijednošću magnetske permeabilnosti, što rezultira svojstvom elektromagnetskog metamaterijala i mogućom primjenom u novim vrstama antena i strukturama za vođenje elektromagnetskih valova. Budući da je iz našeg prethodnog istraživanja¹¹ poznato da koprecipitacijski postupak rezultira većom nestehiometrijom kisika, koja je uz dopiranje jednako važna za svojstva materijala, cilj ovog rada bio je istražiti mogućnost priprave La0,5Sr0,5MnO3 postupkom koprecipitacije te istražiti uočenu pojavu razdvajanja faza.

2 Eksperimentalni dio

2.1 Sinteza materijala koprecipitacijom

Otopina metalnih kationa (La, Sr, Mn) pripravljena je otapanjem stehiometrijske količine lantanova(III) oksida (La₂O₃, min. 99 %, Sigma-Aldrich), manganova(II) nitrata tetrahidrata (Mn(NO₃)₂ · 4H₂O, 97.5 %, Fisher Scientific) i stroncijeva karbonata (SrCO₃, 99.5 %, Alfa Aesar GmbH) u 0,5 M dušičnoj kiselini (HNO₃, 65 %, Riedel-de Haën).

Ovo djelo je dano na korištenje pod Creative Commons Attribution 4.0 International License

^{*} Autor za dopisivanje: Andreja Žužić, mag. ing. cheming. e-pošta: azuzic@fkit.hr

Otopina je zatim kap po kap dodavana u 10 %-tnu otopinu amonijeva hidrogenkarbonata (NH₄HCO₃, min. 99 %, Honeywell). Obje su otopine zagrijane na 65 °C, a pH vrijednost taložne otopine održavana je na 8 dodatkom vodene otopine amonijaka (NH₃, 28 %, VWR Chemicals). Dobiveni talog je od otopine odvojen filtracijom, ispran filtratom i destiliranom vodom te sušen 24 h na 110 °C i zatim usitnjen. Dio pripremljenog praha prekursora žaren je na 1200 °C/2 h (CL_Sr0.5_p), dok je drugi dio prešan pod tlakom od 30 MPa u tabletu promjera 6 mm i debljine 2 mm te sinteriran na 1200 °C/2 h (CL_Sr0.5 tab).

2.2 Karakterizacija materijala

Analiza faznog sastava uzoraka provedena je infracrvenom spektroskopijom s Fourierovom transformacijom uz prigušenu totalnu refleksiju (FTIR/ATR) i rendgenskom difrakcijom na prahu (PXRD) kako je opisano u radu Žužić i sur.¹² Difraktogram uzorka CL_Sr0.5_tab analiziran je Rietveldovom metodom utočnjavanja u programu FullProf Suite primjenjujući strukturne parametre La_{1x}Sr_xMnO₃ u prvom koraku iteracije.¹³ Utočnjavanje je praćeno statističkim pokazateljima i smatrano završenim za R_{exp} i $R_{wp} < 10$ % te $1.0 < \chi^2 < 2.0.^{14}$ Morfologija prijeloma sinterirane tablete istražena je pretražnim elektronskim mikroskopom (SEM) Vega3 EasyProbe (Tescan, Češka) na naponu od 10 kV. Udio pojedinih elementa određen je energijski razlučujućom rendgenskom spektroskopijom upotrijebivši EDS XFlash 4010M (Bruker, Njemačka).

3 Rezultati i rasprava

Na slikama 1A-C prikazani su FTIR spektri i difraktogrami uzoraka CL_Sr0.5_p, CL_Sr0.5_tab i čiste SrMnO₃ faze za usporedbu. FTIR analizom uzorka CL_Sr0.5_p (slika 1A) zaključeno je da je došlo do uspješnog dopiranja LaMnO₃ budući da je spektar ravna linija koja se uzdiže prema nižim vrijednostima valnih brojeva. Naime, udjeli Sr veći od 0,2 dovode do jačanja ionskog karaktera veza La-O i slabljenja kovalentnog karaktera veze Mn-O, što rezultira nestankom vrpci s FTIR spektra.¹⁵ Za usporedbu

Slika 1 – FTIR spektri u području 2000 – 400 cm⁻¹ (A), FTIR spektar područja 800 – 400 cm⁻¹ (B) i difraktogrami (C) uzoraka CL_Sr0.5_p (a) i CL_Sr0.5_tab (b). Za usporedbu je dan FTIR spektar SrMnO₃ faze (c) pripremljene u prijašnjem istraživanju.¹² Maksimumi identificirani kao SrMnO₃ faza označeni su s *, a također su prikazane i standardne rendgenske kartice La_{0.5}Sr_{0.5}MnO₃ (ICDD 89-0786) i SrMnO₃ (ICDD 24-1213) faze.

Fig. 1 – FTIR spectra in 2000 – 400 cm⁻¹ range (A), FTIR spectra in 800 – 400 cm⁻¹ range (B) and diffractograms (C) of CL_Sr0.5_p (a) and CL_Sr0.5_tab samples. The FTIR spectrum of the SrMnO₃ phase (c), prepared in the previous research,¹² is enclosed for comparison purposes. The maxima identified as SrMnO₃ phase are marked with *, and standard diffraction data of La_{0.5}Sr_{0.5}MnO₃ (ICDD 89-0786) and SrMnO₃ (ICDD 24-1213) phases are shown.

687

je dan spektar uzorka SrMnO₃ pripremljenog koprecipitacijom,¹¹ na kojemu su vidljive vrpce vibracija kovalentnih Mn–O veza. Difraktogram (slika 1C) uzorka CL Sr0.5 p usporeden je s ICDD (engl. International Centre for Diffraction Data) standardnom karticom La_{0.5}Sr_{0.5}MnO₃ (ICDD 89-0786) te je također potvrđeno da je došlo do nastanka ciljane faze. Tome u prilog išli su i rezultati SEM analize uzorka CL Sr0.5 p, prikazani na slici 2a, koji su pokazali ujednačenu morfologiju uzorka sastavljenu od sfernih agregata, karakterističnu za koprecipitacijski postupak sinteze.12 Međutim, prilikom SEM analize lomne površine tablete (slika 2b) uočena su svjetlija i tamnija područja te je provedena EDS analiza u svrhu utvrđivanja razlike u njihovom sastavu, a dobiveni rezultati su prikazani u tablici 1. Rezultati FTIR i PXRD analize praha usitnjene tablete CL Sr0.5 tab prikazani su na slikama 1A-C. Na prikazu FTIR spektra područja 800 – 400 cm⁻¹ (slika 1B) uzorka CL Sr0.5 tab uočavaju se potencijalne vrpce karakteristične za Mn–O vezu, od kojih se vrpca na oko 430 cm⁻¹ poklapa s vrpcom u SrMnO₃ fazi. Ostale vrpce karakteristične za $SrMnO_3$ fazu nalaze se na oko 610 i 540 – 470 cm⁻¹ te nisu uočene u uzorku CL Sr0.5 tab zbog nižeg intenziteta u odnosu na uočenu vrpcu na oko 430 cm⁻¹. Na difraktogramu (slika 1C) uzorka CL Sr0.5 tab uočeni su maksimumi vrlo niskog intenziteta (označeni *), koji su identificirani kao SrMnO₃ (ICDD 24-1213). Difraktogram je dodatno analiziran Rietveldovom metodom utočnjavanja te su izračunate okupancije atoma, prikazane u tablici 1, koje odgovaraju rezultatima EDS analize za tamna područja u uzorku. EDS analiza svijetlih područja u uzorku odgovara SrMnO₃ fazi, a niski udjel detektiranog La vjerojatno je porijeklom iz okolne dopirane $LaMnO_3$ faze.

- Slika 2 SEM mikrografije uzoraka CL_Sr0.5_p (a) i CL_Sr0.5_ tab (b) snimljene na povećanju od 5000 \times
- *Fig.* 2 SEM micrographs of CL_Sr0.5_p (a) and CL_Sr0.5_tab (b) samples obtained at 5000× magnification

Čista La_{0,5}Sr_{0,5}MnO₃ faza uspješno je pripravljena limunskim postupkom i hidrotermalnom metodom sinteze.^{7,16-19} Uzrok razdvajanja faza uočenih u ovom radu može biti nehomogenost postupka sinteze, tj. nepotpuno taloženje Sr u miješane (La, Sr, Mn)-karbonate ili pak taloženje dijela Sr u obliku (Sr, Mn)-karbonata. No treba primijetiti da razdvajanje faza nije bilo primjetno u praškastom uzorku, već samo u tabletiranome. Slična pojava viđena je kod priprave ZrTiO₄ u obliku tablete,²⁰ što može biti posljedica nehomogenosti prilikom prešanja, ili pak manjeg kontakta

- Tablica 1 Rezultati EDS analize na svijetlim i tamnim područjima uzorka i okupancije atoma određene iz Rietveldove metode utočnjavanja
- Table 1 EDS results obtained on light and dark spots in the sample and atom occupancies determined by the Rietveld refinement method (RRM)

Atom	EDS okupancije (svijetlo)	EDS okupancije (tamno)	RRM okupancije
La	$0,13 \pm 0,03$	$0,76 \pm 0,04$	$0,700 \pm 0,004$
Sr	$0,99 \pm 0,02$	$0,24 \pm 0,03$	$0,240 \pm 0,001$
Mn	$1,01 \pm 0,01$	$1,03 \pm 0,03$	$1,002 \pm 0,004$
0	$2,97 \pm 0,05$	$2,95 \pm 0,07$	$2,96 \pm 0,10$

unutrašnjosti tablete s kisikom iz zraka prilikom žarenja. Moguće je da takav koprecipitacijski postupak sinteze nije učinkoviť za udjele dopiranja veće od 0,3,11,13 no u svakóm slučaju treba voditi računa o utjecaju oblika uzorka (prah, tableta) na njegovu kristalizaciju i prema potrebi prilagoditi uvjete priprave i toplinske obrade. Na temelju rezultata dobivenih u ovom istraživanju proizlazi da visokodopirani LSMO materijali ne mogu biti pripremljeni u obliku guste keramike ili keramičkih membrana zbog rizika od izdvajanja dodatnih faza pod tlakom. Dakle, budućnost primjene tih materijala leži u pripravi tankih filmova metodama kao što su doctor blade, depozicija filma pulsirajućim laserom ili pak nanošenje filma rotiranjem (engl. spin coating).²¹ Rodriguez-Lamas i sur.²² uspješno su pripravili LaMnO₃ filmove kemijskom depozicijom iz parne faze primjenjujući tehniku laserskog injektiranja i dokazali visoke vrijednosti koeficijenata difuzije kisika za potencijalnu primjenu u SOFC. Budući da je dopiranje nužno za poboljšanje ostalih svojstava poput električne vodljivosti i kemijske stabilnosti,⁸ bitno je istražiti mogu li se navedenim metodama dobiti jednofazni tanki filmovi dopiranih faza. Potencijalni problemi očituju se višestrukim fenomenima koji se pojavljuju prilikom formiranja tankih filmova, a to su isparavanje otapala, kvašenje podloge, nehomogenost smjese prekursora te teška kontrola nukleacije i rasta kristala.²¹ lako potencijal za primjenu perovskita postoji, jedan od najvećih izazova bit će njihova priprema u obliku pogodnom za komercijalnu primjenu.

4 Zaključak

U ovom radu provedena je analiza razdvajanja faza u stroncijem dopiranom LaMnO₃. Pokazalo se da oblik uzorka (prah, tableta) utječe na njegovu kristalizaciju. Iako je ciljani udio bio 0,5, koprecipitacijskim postupkom sinteze uspješno je pripremljena tableta stroncijem dopiranog La-MnO₃ s udjelom Sr od 0,24. Ostatak Sr dodanog u reakcijsku smjesu tijekom sinteze istaložio se u obliku zasebne SrMnO₃ faze, što se na SEM mikrografu vidjelo kao pojava svijetlih područja u uzorku. Iako i sam SrMnO₃ posjeduje dobra električna svojstva, nehomogenost uzorka nije poželjna za praktičnu primjenu zbog gubitka velikog broja slobodnih nosilaca naboja na granicama faza.

ZAHVALE

Ovaj rad sufinancirala je Hrvatska zaklada za znanost projektom "Nanokompoziti s perovskitima za fotovoltaike, fotokatalizu i senzoriku" (IP-2018-01-5246) te projektom Virtulab (KK.01.1.1.02.0022) sufinanciranim od Europskog fonda za regionalni razvoj).

Popis kratica i simbola List of abbreviations and symbols

- ATR prigušena totalna refleksija – attenuated total reflection
- EDS energijski razlučujuća rendgenska spektroskopija – energy-dispersive X-ray spectroscopy
- FTIR infracrvena spektroskopija s Fourierovom transformacijom
 - Fourier-transform infrared spectroscopy
- ICDD Međunarodni centar za difrakcijske podatke
 - International Centre for Diffraction Data
- LSMO stroncijem dopirani lantanov manganit – strontium doped lanthanum manganite
- PXRD rendgenska difrakcija na prahu – powder X-Ray diffraction
- RRM Rietveldova metoda utočnjavanja – Rietveld refinement method
- SEM pretražna elektronska mikroskopija – scanning electron microscopy
- SOFC gorivna ćelija s čvrstim oksidom kao elektrolitom – solid oxide fuel cell
- θ difrakcijski kut, °
 diffraction angle, °
- v valni broj, cm⁻¹
 - wavenumber, cm⁻¹

Literatura References

- S. Hussain, L. Yangping, Review of solid oxide fuel cell materials: cathode, anode, and electrolyte, Energy Transit. 4 (2020) 113–126, doi: https://doi.org/10.1007/s41825-020-00029-8.
- L. Imponenti, K. J. Albrecht, J. W. Wands, M. D. Sanders, G. S. Jackson, Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications, Sol. Energy **151** (2017) 1–13, doi: https://doi.org/10.1016/j.solener.2017.05.010.
- B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, Z. Chen, Review on research of room temperature magnetic refrigeration, Int. J. Refrig. 26 (2003) 622–636, doi: https://doi.org/10.1016/ S0140-7007(03)00048-3.
- A. S. Bhalla, R. Guo, R. Roy, The perovskite structure a review of its role in ceramic science and technology, Mat. Res. Innovat. 4 (2000) 3–26, doi: https://doi.org/10.1007/ s100190000062.
- K. V. Galloway, N. M. Sammes, Fuel cells Solid oxide fuel cells – Anodes, u J. Garche (ur.), Encyclopedia of Electrochemical Power Sources, Elsevier, 2009, str. 17–24.

- M. Marinšek, K. Zupan, T. Razpotnik, J. Maček, A co-precipitation procedure for the synthesis of LSM material, Mater. Technol. 41 (2007) 85–90.
- N. Khellaf, A. Kahoul, F. Naamoune, N. Alonso-Vante, Electrochemistry of nanocrystalline La_{0.5}Sr_{0.5}MnO₃ perovskite for the oxygen reduction reaction in alkaline medium, Electrocatalysis 8 (2017) 450–458, doi: https://doi.org/10.1007/s12678-017-0397-3.
- H. Dai, Y. Yin, X. Li, C. Ma, Z. Chen, M. Hua, L. Bi, A new Sc-doped La_{0.5}Sr_{0.5}MnO₃₋₈ cathode allows high performance for proton-conducting solid oxide fuel cells, Sustain. Mater. Technol. **32** (2022) e00409, doi: https://doi.org/10.1016/j. susmat.2022.e00409.
- 9. *M. Andrieux, C. Picard*, Nonstoichiometry and phase stability of $La_{0.8}Sr_{0.2}MnO_{3\pm\delta}$ at 1273 K, J. Mater. Sci. Lett. **19** (2000) 695–697, doi: https://doi.org/10.1023/A:1006723014018.
- K. Yan, L. Shen, F. Yin, G. Qi, X. Zhang, R. Fan, N. Bao, Metallic ferromagnet of La_{0.5}Sr_{0.5}MnO₃ with negative permittivity and permeability, Adv. Electron. Mater. 8 (2022) 2101020, doi: https://doi.org/10.1002/aelm.202101020.
- A. Žužić, J. Macan, Permanganometric determination of oxygen nonstoichiometry in manganites, Open Ceramics 5 (2021) 100063, doi: https://doi.org/10.1016/j.oceram.2021.100063.
- A. Žužić, A. Ressler, J. Macan, Evaluation of carbonate precursors in manganite coprecipitation synthesis by Fourier transform infrared (FTIR) spectroscopy, Solid State Commun. 341 (2022) 114594, doi: https://doi.org/10.1016/j. ssc.2021.114594.
- S. J. Hibble, S. P. Cooper, I. D. Fawcett, A. C. Hannon, M. Greenblatt, Local distortions in the colossal magnetoresistive manganates La_{0.70}Ca_{0.30}MnO₃, La_{0.80}Ca_{0.20}MnO₃ and La_{0.70}Sr_{0.30}MnO₃ revealed by total neutron diffraction, J. Condens. Matter Phys. **11** (1999) 9221–9238, doi: https://doi. org/10.1088/0953-8984/11/47/308.
- B. H. Toby, R factors in Rietveld analysis: How good is good enough?, Powder Diffr. 21 (2006) 67–70, doi: https://doi. org/10.1154/1.2179804.
- N. Thenmozhi, S. Sasikumar, S. Sonai, R. Saravanan, Electronic structure and chemical bonding in La_{1-x}Sr_xMnO₃ perovskite ceramics, Mater. Res. Express 4 (2017) 046103, doi: https://doi.org/10.1088/2053-1591/aa6abf.
- D. Wang, R. Yu, S. Feng, W. Zheng, R. Xu, Y. Matsumura, M. Takano, An effective preparation route to a giant magnetoresistance material: hydrothermal synthesis and characterization of La_{0,5}Sr_{0,5}MnO₃, Chem. Lett. **32** (2003) 74–75, doi: https://doi.org/10.1246/cl.2003.74.
- J. Spooren, R. I. Walton, F. Millange, A study of the manganites La_{0.5}M_{0.5}MnO₃ (M = Ca, Sr, Ba) prepared by hydrothermal synthesis, J. Mater. Chem. **15** (2005) 1542–1551, doi: https://doi.org/10.1039/B417003B.
- K. Huang, L. Yuan, Y. Jiang, J. Zhang, Z. Geng, L. Luo, S. Feng, Hydrothermal shape controllable synthesis of La_{0.5}Sr_{0.5}MnO₃ crystals and facet effect on electron transfer of oxygen reduction, Inorg. Chem. Front. 5 (2018) 732–738, doi: https://doi. org/10.1039/C7QI00687J.
- L. L. Wang, J. N. Chu, X. Zhang, Y. H. Ma, Q. C. Ji, W. Li, H. Zhang, G. Mu, X. M. Xie, Hydrothermal synthesis, structure and magnetic properties of Ru doped La_{0.5}Sr_{0.5}MnO₃, Front. Phys. **14** (2018) 13604, doi: https://doi.org/10.1007/ s11467-018-0860-5.
- J. Macan, A. Gajović, H. Ivanković, Porous zirconium titanate ceramics synthesized by sol–gel process, J. Eur. Ceram. Soc. 29 (2009) 691–696, doi: https://doi.org/10.1016/j.jeurceramsoc.2008.07.001.

689

- Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells, Energy Environ. Sci. 14 (2021) 5690–5722, doi: https://doi.org/10.1039/D1EE02018H.
- 22. R. Rodriguez-Lamas, C. Pirovano, A. Stangl, D. Pla, R. Jóns-

son, L. Rapenne, E. Sarigiannidou, N. Nuns, H. Roussel, O. Chaix-Pluchery, M. Boudard, C. Jiménez, R. N. Vannier, M. Burriel, Epitaxial LaMnO₃ films with remarkably fast oxygen transport properties at low temperature, J. Mater. Chem. A **9** (2021) 12721–12733, doi: https://doi.org/10.1039/D0TA12253J.

EXTENDED SUMMARY

Phase Separation in La_{0.5}Sr_{0.5}MnO₃ System

Andreja Žužić* and Jelena Macan

Perovskites are investigated as potential working materials in new technologies, such as solid oxide fuel cells, thermochemical energy storage, and magnetic refrigerators. They are interesting due to their application properties, such as electrical conductivity, ferromagnetic properties, and reducibility. Properties of perovskites can be improved by doping and the formation of structural defects. The aim of this work was to investigate the possibility of preparing Sr-doped lanthanum manganite with the chemical formula $La_{0.5}Sr_{0.5}MnO_3$ by coprecipitation procedure, and to analyse the observed phase separation.

The material was prepared by coprecipitation procedure in which sources of metal cations (La³⁺, Sr²⁺, Mn²⁺) were dissolved in 0.5 M HNO₃. The nitrate solution was added dropwise in 10 wt% NH₄HCO₃ solution, both solutions being heated to 65 °C. To achieve coprecipitation of all present metal cations, the pH value was maintained at 8 by the addition of aqueous ammonia. The obtained precipitate was filtered and dried to obtain the precursor powder. One part of the prepared powder was calcined at 1200 °C/2 h (sample CL_Sr0.5_p), while the other part was pressed into a tablet and sintered in the same conditions (sample CL_Sr0.5_tab).

Even though FTIR and PXRD analyses of the sample CL_Sr0.5_p (Figs. 1A-C) showed the formation of the pure phase, light and dark spots were observed during the SEM analysis of the tablet (CL_Sr0.5_tab) fracture surface (Fig. 2). These spots were analysed by energy-dispersive spectroscopy (EDS). EDS analysis (Table 1) showed that the light spots were SrMnO₃ phase, while the dark spots were La_{0.76}Sr_{0.24}MnO₃ phase. The tablet was then ground and FTIR and PXRD analyses were conducted. The obtained FTIR results (Figs. 1A and 1B) showed some bands characteristic for the SrMnO₃ phase, and low-intensity maxima originating from the SrMnO₃ phase were observed on the diffractogram (Fig. 1C) of CL_Sr0.5_tab sample, confirming the existence of separated phase. This was additionally investigated by the Rietveld refinement analysis (Table 1), and it was determined that Sr concentration was 0.24 instead of the targeted 0.5. Therefore, the La_{0.76}Sr_{0.24}MnO₃ phase was formed, while the rest of added strontium during the synthesis crystallised in the SrMnO₃ phase. Since successful preparation of La_{0.5}Sr_{0.5}MnO₃ by hydrothermal synthesis was reported by multiple authors, it can be concluded that the coprecipitation procedure is not suitable for high concentration doping of LaMnO₃ due to the separation of Sr into the secondary phase, especially when in tablet form.

Keywords

Coprecipitation, doped lanthanum manganite, phase separation

University of Zagreb, Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, 10 000 Zagreb, Croatia Original scientific paper Received March 10, 2022 Accepted May 25, 2022