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1 Introduction
Physical properties of chemical compounds, such as crit-
ical properties and acentric factor are important for sci-
entists in designing and modelling chemical processes1 
such as supercritical extraction and their importance in the 
application of different equation of states. Experimental 
computing of these properties is costly, time-consuming, 
and sometimes even impossible, given that some larger 
compounds or higher molecular weight may chemically 
degrade before they reach critical conditions.1 Therefore, 
different predicting methods have been published in the 
literature to compute these critical properties when exper-
imental values are not available. To date, two approaches 
have been proposed to estimate critical properties, group 
contribution, and quantitative structure-property relation-
ship (QSPR) models. Since group contribution based mod-
els have some limitations,2 another approach based on 
QSPR was used to estimate the physical properties solely 
from the molecular descriptors, which are computed by 
applying certain mathematical algorithms on the molecular 
structure of components.2–4 Several approaches have been 
employed to estimate these properties, namely, group con-
tribution from molecular structures,5,6 multi-linear regres-
sion based on QSPR approaches from descriptors.1 In ad-
dition to different computational techniques like artificial 
neural networks (ANNs),7,8 adaptive neuro-fuzzy inference 
system (ANFIS), and support vector machine (SVM) have 
been successfully used to estimate these properties of dif-
ferent components from descriptors.1,9–12

A well-known intelligent learning method, such as SVM, 
is used as a powerful predictive tool to fit the non-linear 
behaviour of any system.13 This approach has great mod-
elling capability when large datasets are available and the 
relationships of parameters are complicated.14 In addition, 
SVM approach was originally developed by Cortes and Va-
pnik15 and identified as a low parameter technique with a 
rapid calculation process to find the best tuning parame-
ters and robust performance for overcoming the overfitting 
problem compared with traditional intelligent learning al-
gorithms. 

Therefore, the novelty of this work is in the use of a hybrid 
approach between SVMs and Dragonfly optimisation al-
gorithm (DA) to model the critical properties and acentric 
factors of pure compounds based on a large and represent-
ative data set.

2 Materials and methods
In this work, a dataset of 6700 chemical compounds was 
collected from previously published papers and books 
in the literature.1,16 Descriptors were computed using  
alvaDesc software based on the simplified molecular-in-
put line-entry system (SMILES) of each compound, which 
computes 5305 types of descriptors, (i.e., 0D, 1D, 2D, and 
3D descriptors).17 The relevant descriptors were pre-select-
ed in two steps. The first selection was performed using 
alvaDesc software by reducing all descriptors as follows: 
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• Constant and near constant descriptor values were 
removed;

• All missing values or at least one missing value were 
removed;

• Any descriptor with a relative standard deviation 
< 0.001 was removed;

• Descriptors with pair correlation larger or equal to 
≥ 0.95 were removed.

The second step consisted of using stepwise MLR as final 
screening to select only the relevant descriptors. Five de-
scriptors remained after the final screening, as follows: {Sp: 
sum of atomic polarizabilities (scaled on carbon atom), 
Mp: mean atomic polarizability (scaled on carbon atom), 
GD: graph density, H% percentage of H atoms, and C%: 
percentage of C atoms}. The number of inputs for each 
property was 5 descriptors, boiling temperatures (Tb), and 
molecular weights (Mw). 

The performances of SVM method for regression depend 
mainly on several parameters and the kernel function. 
Since the relationship among selected molecular descrip-
tors and the selected properties is non-linear and for re-
gression tasks, a commonly used kernel function is the 
Gaussian radial basis function (RBF) due to its good general 
performance – this method is well explained in the follow-
ing paper.18

2.1 Description of SVM and DA method

SVMs are a supervised learning method presented for the 
first time in 1992 by B. E. Boser et al.19 A few years later, 
they were introduced by C. Cortes and V. Vapnik15 for clas-
sification cases. In 1995 they were expanded and adjusted 
to regression problems by V. Vapnik20 to map the non-linear 
relationship between inputs and outputs, and construct the 
regression estimation function in high-dimensional feature 
space Φ(x), map back to the original space and define the 
suitable kernel function K(xi,yi), where xi is the input value, 
yi is the output value, and {i = 1,…,m} m is the size of 
the learning dataset D = (xi,yi).21 The regression function 
is designed by y = WT ∙ Φ(x) + b, where W is the weight 
vector and b is the bias.22 The major advantages of SVM 
model are the absence of local minima during the training 
stage, it deals with non-linear regression, sparse, employs 
kernel functions.23 More details about the SVM model op-
timisation equation and the kernel functions can be found 
in ref.24–26 A novel metaheuristic optimisation algorithm 
named Dragonfly (DA) was developed by S. Mirjalili27 
based on the behaviour of dragonflies.27 This algorithm was 
coupled with SVM method to tune its hyper-parameters.28 

3 Results and discussion
3.1 Critical temperature 

The predicted critical temperature values using the de-
veloped MLR model was compared to the experimental 
values using two metrics, average absolute relative devia-
tion (AARD%) and determination coefficient (R). Fig. 1(a) 

shows the performance of the MLR model in terms of 
{AARD% = 3.376 % and R2 = 0.9104}. In this figure, the 
red solid line indicates the exact fit between the experi-
mental and predicted properties, whereas the black circles 
demonstrate the training points, and the blue squares show 
the test points correlated for all properties by the proposed 
model vs experimental data. The closer the points to the 
solid line, the more accurate correlated properties data. 
The equation of this model is written as follows: 

Tc = −18.93 − 0.0977 Mw + 1.47 Tb + 3.60 Sp +  
+ 55.56 Mp + 31.90 GD + 0.28 H% + 0.57 C% (1)

Secondly, the parameters of the best ANN model were 
determined based on a trial-and-error method. Results 
showed that the best multi-layer perception feed-for-
ward back-propagation neural network trained with  
Levenberg–Marquardt algorithm (MLP-ANN) was ob-
tained with the architecture of {7, 15, 1} neurons in the 
first layer, hidden layer, and output layer, respectively. 
Tangent hyperbolic (f) and linear (g) transfer functions 
were used in the hidden layer and the output layer, re-
spectively. The regression curve is presented in Fig. 1(b), 
where the performance of the ANN model in terms of 
{AARD% = 2.639 % and R2 = 0.9450} and its expression 
can be written as follows: 

= =

  
= + +     

∑ ∑
15 7

1, ,   O1
1 1

 S I
c j j i i hj

j i
T g W f W X b b (2)

where Xi is the input vector, ,   1,, I S
j i jW W  are input-hidden lay-

er and hidden-output layer weights matrix, and bhj, bO1 are 
biases of hidden and output layers, respectively.

Another model was developed based on the SVM ap-
proach, the best model was based on the optimisation 
of its parameters, namely, capacity (Box Constraint) (C), 
the kernel width parameter (Kernel scale) (γ), the quan-
tity of support vectors (QSV) and the kernel function. The 
accurate model was found with RBF kernel function and 
{C = 10, γ = 1, and QSV = 4008} for the critical temper-
ature. This model was found with {AARD% = 1.224 %, 
and R2 = 0.9375} as reported in Fig. 1(c).

The last model was based on the use of SVM hybrid with 
recent optimisation algorithm named Dragonfly, which 
was inserted in the MATLAB software. The graphical com-
parison between the predicted and the experimental 
critical temperatures was conducted using the postreg  
MATLAB function. Based on the obtained results presented 
in Fig. 1(d), the proposed SVM-DA model can highly model 
the critical temperature in terms of {AARD% = 0.7551 % 
and R2 = 0.9699} in comparison to the other developed 
models. The obtained SVM-DA was found with RBF kernel 
function and {C = 10, γ = 0.5, and QSV = 3293}.

3.2 Critical pressure 

Results showed that the MLR model was able to predict 
the critical pressure values with {AARD% = 10.47 % and 
R2 = 0.7821}. The critical pressure can be written in func-
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tion of the selected inputs via the best MLR model as fol-
lows:

pc = 18.96 − 0.0751 Mw + 0.0734 Tb − 1.13 Sp + 
+ 10.97 Mp + 47.62 GD − 0.124 H% − 0.1548 C% (3)

For the best ANN model, results showed that the best 
structure of the best model was {7, 15, 1} neurons in 
the first layer, hidden layer, and output layer, respective-
ly. The regression comparison is depicted in Fig. 2(b), 
where the performance of the ANN model was found as 
{AARD% = 5.897 % and R2 = 0.911}. 

The best SVM model was obtained with the RBF ker-
nel function and {C = 10, γ = 1, and QSV = 4990} 
for the critical pressure. The accuracy of this model was 
{AARD% = 2.575 % and R2 = 0.9491}, and the regression 
plot is presented in Fig. 2(c). 

The graphical comparison presented in Fig. 2(d) between 
the SVM-DA predicted and the experimental values of 
the critical pressure and the calculated statistical param-
eters shows the performance of this model in terms of 
{AARD% = 1.962 % and R2 = 0.9673}. This model was 
found with a RBF kernel function and {C = 10, γ = 0.5, 
and QSV = 4785}, and showed high capability of predict-
ing critical pressure compared to other tested models in 
this study. 

Fig. 1 – Comparison between experimental and predicted critical temperature of the entire database: (a) MLR, (b) ANN, (c) SVM, 
and (d) SVM-DA
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3.3 Critical volume

Fig. 3(a) shows the performance of the best MLR model 
in terms of {AARD% = 6.627 % and R2 = 0.9339}. The 
equation of this model is written as follows: 

Vc = 127.14 + 0.4065 Mw + 0.1988 Tb + 28.169 Sp − 
− 129.90 Mp − 11.84 GD − 1.1247 H% − 1.3638 C% (4)

Fig. 3(b) illustrates the regression plot and shows the accu-
racy of the best ANN model with {AARD% = 4.534 % and 
R2 = 0.971}. This model was found with the architecture 
of {7, 15, 1} neurons in the first layer, hidden layer, and 
output layer, respectively. Tangent hyperbolic (f) and linear 
(g) transfer function was used in the hidden layer and the 
output layer, respectively.

Fig. 3(c) illustrates the regression plot and shows the accu-
racy of the best SVM model with {AARD% = 2.338 % and 
R2 = 0.9792}. The accurate model was found with RBF 
kernel function and {C = 10, γ = 0.5, and QSV = 4817} 
for the critical volume. 

Fig. 3(d) shows the regression plot between experimen-
tal and predicted critical volume using SVM-DA model. 
Results show that SVM-DA can highly model the critical 
volume with {AARD% = 1.929 % and R2 = 0.9856} 
in comparison to the other developed models. The ob-
tained SVM-DA was found with RBF kernel function and 
{C = 10, γ = 0.5, and QSV = 4795}. 

Fig. 2 – Comparison between experimental and predicted critical pressure of the entire database: (a) MLR, (b) ANN, (c) SVM, and 
(d) SVM-DA
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3.4 Acentric factor 

The acentric factor (w) was modelled using the best MLR 
model with the performance of {AARD% = 23.76 % and 
R2 = 0.232}, as presented in Fig. 4(a). The equation of this 
model is written as follows: 

w = 0.3369 − 6.86 ∙ 10−5 Mw + 1.25 ∙ 10−3 Tb +  
+ 9.858 ∙ 10−3 Sp − 0.333 Mp − 0.246 GD −  

− 1.448 ∙ 10−3 H% − 5.069 ∙ 10−3 C% 
(5)

The acentric factor was modelled using the best ANN 
model with the performance of {AARD% = 9.733 % and 
R2 = 0.890}, as presented in Fig. 4(b). This model was op-
timised with the structure of {7, 20, 1} neurons in the first 
layer, hidden layer, and output layer, respectively. Tangent 
hyperbolic (f) and linear (g) transfer functions were used in 

the hidden layer and the output layer, respectively.

The acentric factor was modelled using the best SVM 
model with the performance of {AARD% = 6.140 % and 
R2 = 0.8725}, as presented in Fig. 4(c). The accurate 
model was found with RBF kernel function and {C = 10, 
γ = 1, and QSV = 4349}. 

The acentric factor was modelled using the best SVM-DA 
model with the performance of {AARD% = 2.173 % and 
R2 = 0.9766}, as presented in Fig. 4(a). The obtained SVM-
DA was found with RBF kernel function and {C = 100, 
γ = 0.5, and QSV = 3032}.

Fig. 3 – Comparison between experimental and predicted critical volume of the entire database: (a) MLR, (b) ANN, (c) SVM, and (d) 
SVM-DA
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All values of the critical properties predicted through each 
model and corresponding experimental values are pre-
sented as supplementary data.

As may be seen in Fig. 5, the SVM-DA model was able 
to predict the selected parameters with high accuracy in 
comparison to the other models. Therefore, a sensitivity 
analysis, the applicability domain, and the statistical evalu-
ation and validation section were performed based on the 
obtained SVM-DA parameters.

3.5 Applicability domain of the developed models

In this study, the applicability domain is presented using 
William’s plot. This plot illustrates the standardised residu-

als against the leverage values (h). The leverage of the ith (hi) 
component is defined as follows:

( )−=
1T T

i i ih X X X X    i = 1, 2, 3 … n (6)

where X is the descriptor matrix of the training set, Xi is 
the descriptor vector for the desired compound, the super-
script means transpose, and n is the number of molecular 
structures in the training set. In this plot, the critical lever-
age (h*) was computed according to the following equa-
tion:

( )= +* 3 1 /h P n (7)

where P is the number of descriptors in the model. The 
standardised residuals δ were calculated by: 

Fig. 4 – Comparison between experimental and predicted acentric factor of the entire database: (a) MLR, (b) ANN, (c) SVM, and (d) 
SVM-DA
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(8)

where yi and îy  are the experimental value and calculated 
value for the ith compound, respectively. 

The outliers are data points when the values of standardised 
residual are in the range of ± 3 standard deviations units 
and leverage value should be higher than h*. As may be 
observed in Fig. 6, the outliers represent only about 4.791, 
4.382, 4.772, and 5.492 % of total compounds in the data 
set for TC, pC, VC, and w, respectively. The developed mod-
els were capable of predicting the majority of experimental 
data with values of standardised residual lower than ± 3. 
A few points are out of the application range with larger 
values of h or standardised residuals. However, outliers do 
not mean that the prediction capability of the model is not 
good, the AARD% and R are a judgement of the predictive 
ability for SVM-DA model.Fig. 5 – Model prediction performance of four parameters

Fig. 6 – William’s plot for each related property (a) TC, (b) pC, (c) VC, and (d) w
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3.6 Statistical evaluation and validation 
of the developed models

Fig. 7 illustrates the values of absolute relative deviation 
ARD% of the modelled properties. Results proved that 
these models made a good prediction by yielding a very 
low error of almost all the dataset, and confirmed that all 
the selected descriptors for each model were not chosen 
by chance. 

3.7 Global sensitivity analysis 

The objective of the global sensitivity analysis is to assess 
the effect of inputs on each output using the cosine am-
plitude method (CAM).29–31 This method is based on the 
calculation of the relevance factor (rij) which measures the 
strength relationships between the output xj and input xi 

parameters. This factor can be represented by the follow-
ing expression:26

=

= =

= ∑
∑ ∑

1

2 2
1 1

m
ik jkk

ij m m
ij jkk k

x x
r

x x
(9)

The used data pairs build a data array X, which are defined 
as X = {X1, X2, X3,..., Xm} where Xi is a vector of lengths 
m, expressed as: Xi = {xi1,xi2,xi3,...,xim}. i and k are the di-
mensions of the input matrix (i = 1 to 6700, k = 1 to m), 
j represents the dimensions of the output vector (j = 1 to 
6700), and m is the number of input parameters (m = 7). 
Fig. 8 shows the importance of the selected inputs on each 
output. It is clearly shown that all parameters have approx-
imately the same effect on each output.

Fig. 7 – Absolute relative deviation (ARD%) of the proposed models for the prediction of TC, pC, VC, and w of about 6700 data points, 
( )= − ×exp pred expARD% / 100i i iy y y
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Fig. 9 shows another comparison of a sample of com-
pounds during the test stage between the experimental 
literature properties (shown as white face markers) and the 
SVR-DA predicted properties (shown as full face markers). 
This figure shows an excellent agreement between pure 
compounds properties and those experimental.

The best SVM-DA model was implemented in friendly 
graphical user interface designed by MATLAB software, and 
presented in Fig. 10. This interface can compute the de-
sired outputs by knowing only the selected inputs for 6700 
systems. 

4 Conclusion
The goal of this study was to test the applicability of four in-
telligence computational methods in modelling the critical 
properties and acentric factors of 6700 pure compounds. 

Four models were designed, namely, MLR, ANN, SVM, 
and SVM-DA. The experimental dataset of the properties 
were collected from the literature, while the input matrix 
consisted of a mixture of 05 descriptors and 02 thermody-
namic properties.

All models were assessed statistically in terms of AARD% 
and R2. The obtained results showed that the SVM-DA 
was found with a very low deviation (AARD%) of {0.7551, 
1.962, 1.929, and 2.173} and high determination coef-
ficient R2 of {0.9699, 0.9673, 0.9856, and 0.9766} for 
the four properties. It can be concluded that the SVM-DA 
model is capable of establishing a satisfactory nonlinear 
relationship between the molecular descriptors and the 
critical properties of pure compounds with high accura-
cy. Based on the SVM-DA model, a sensitivity analysis in-
vestigation was performed to assess the effects of inputs 
on each output. The results showed that all inputs had a 
strong effect on the output, and their choice was based on 

Fig. 8 – Importance of inputs on each output
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their contribution on the studied phenomenology. A sepa-
rate section of this study is the applicability domain of the 
model against the data set used, and the results show that 
the SVM-DA model can be applied to fit almost 95 % of 
the used data, which suggests the capability of the model 
when modelling the studied properties in comparison to 
the other models. Finally, to facilitate the use of this mod-
el, a friendly graphical user interface was designed using 
MATLAB software without knowing the details about the 
phenomenology or the used software. 
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Fig. 9 – Experimental vs predicted by SVR-DA properties of some compounds during the test stage

Fig. 10 – Graphical user interface
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SAŽETAK
Kritična svojstva i acentrični čimbenici modeliranja čistih spojeva  

primjenom modela QSPR-SVM i algoritma Dragonfly
Mohammed Moussaoui,a,b,* Maamar Laidi,a Salah Hanini,a  

Abdallah Abdellah El Hadj c i Mohamed Hentabli d

Cilj ovog rada bio je modeliranje kritičnog tlaka, temperature, volumnih svojstava i acentričnih 
čimbenika 6700 čistih spojeva na temelju pet relevantnih deskriptora i dva termodinamička 
svojstva. U tu svrhu primijenjene su četiri metode: višestruka linearna regresija (MLR), umjet-
na neuronska mreža (ANN), metoda potpornih vektora (SVM) i algoritam optimizacije Dragonfly  
(SVM-DA), koji se za modeliranje svakog svojstva koriste sekvencijalnom minimalnom optimiza-
cijom (SMO) i hibridnim SVM-om. Rezultati su pokazali da hibridni SVM-DA daje bolje predvi-
đanje u odnosu na ostale modele u smislu postotka prosječnog apsolutnog relativnog odstupanja 
(AARD%) od {0,7551, 1,962, 1,929 i 2,173} i R2 od {0,9699, 0,9673, 0,9856, i 0,9766} za kri-
tičnu temperaturu, kritični tlak, kritični volumen i acentrični faktor. Razvijeni modeli mogu se pri-
mjenjivati za procjenu svojstava novodizajniranih spojeva samo iz njihove molekularne strukture.

Ključne riječi 
Metoda potpornih vektora, kritična svojstva, algoritam optimizacije Dragonfly,  
kvantitativni odnos struktura-svojstvo
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