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1 Introduction
Synthetic polymers are among the most widely produced 
materials and are used in various fields, such as construc-
tion, electronics, chemical engineering, packaging and 
transportation, due to their excellent chemical and physi-
cal properties.1–3 Polyvinyl chloride (PVC), polystyrene (PS) 
and polymethyl methacrylate (PMMA) are some of the 
most important industrial-scale polymers. The low cost of 
production, the wide range of use, and the good perfor-
mance of PVC, PS, and PMMA products have generated 
interest for these polymers.4,5

However, one of the main disadvantages of the use of syn-
thetic or semi-synthetic polymeric materials is their deg-
radation and aging. Thus, PVC, PS, and PMMA undergo 
photodegradation when exposed to harsh environments, 
such as high temperatures, sunlight, fungi, bacteria, yeasts, 
algae and their enzymes.6 The consequences of this degra-
dation depend on the nature of the polymer and can cause 
scission of the polymer chain, rapid yellowing, and loss of 
gloss, crosslinking accompanied by changes in the physical 
and chemical properties of the polymer.7,8 Finally, we end 
up with useless materials after an unpredictable duration.9

Research on the stabilization of polymers against harmful 
environmental effects is extremely important. They tend to 

reduce or prevent all kinds of damage to polymers. These 
polymers are generally protected against such deterioration 
by the addition of antioxidants, stabilizers against light and 
heat.10 Among the stabilizing systems developed are free 
radical scavengers that have proven effective.11 It should 
be noted that photostabilization and aging of polymers are 
a complex problem to study in practice, as they usually 
take place slowly, and their service life generally reaches 
several decades.12–16 Several studies on photostabilization 
of polymers are reported in the literature.17–22 The photo-
stabilization activities of polymers compounds were deter-
mined by monitoring the carbonyl, polyene and hydroxyl 
indices, as well as the variations in the viscosity average 
molecular weight with the duration exposure. Carbonyl, 
polyene and hydroxyl groups are used to evaluate/meas-
ure the amount of polymer degradation during ultraviolet 
radiation in the presence of oxygen over time. Growth of 
carbonyl groups indicates extent of polymer degradation. 
However, the experimental determination of these indices 
involves costly experimental studies. 

The photostability properties of polymers depend on the 
molecular structures of the polymers during photodegrad-
ation. In addition, the use of in silico predictive methods, 
based on computer tools, offers a fast and cost-effective 
alternative to experimentation. These methods include 
the Quantitative Structure-Property Relationship (QSPR) 
models. This strategy consists of modelling the properties 
of the material as functions of the molecular structure us-
ing QSPR.23 The objective of QSPR is to develop mathe-
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were used to validate these models. The comparison of the results shows that the ANN models are more efficient than those 
of the MLR models. Accordingly, the QSPR model developed in this study provides excellent predictions, and can be used to 
predict ICO, IOH, IOP, and vM  of polymers, particularly for those that have not been tested.
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matical equations capable of establishing the relationships 
between property and descriptors derived solely from the 
molecular structure of the polymer. Once a correlation is 
established and validated, it may be applicable to predict-
ing the property of a new polymer or to discovering new 
materials with the desired properties.24

A few QSPR models have been successfully applied to the 
correlation of many physicochemical properties of various 
polymers. For example, Xu et al.25 developed QSPR mod-
el, which was built to predict refractive indices of linear 
polymers by applying four molecular descriptors. Com-
pared with the existing QSPR models, the proposed model 
requires only four descriptors, which can be obtained by 
simple calculation making it easier to predict the refrac-
tive indices of polymers. QSPR study was elaborated by 
Xu et al.26 The QSPR model was performed between top-
ological indices representing the molecular structures and 
lower critical solution temperature (LCST) with a database 
of 169 data points. A satisfactory mean relative error (MRE) 
was obtained, and the authors concluded that the mod-
el would be very useful in obtaining reliable estimates of 
LCST in polymer solutions. Liu et al.27 developed a QSPR 
model for structural units of 35 polymethacrylates. The 
QSPR of the quantum chemical descriptors and properties, 
such as molar volumes at room temperature, refractive in-
dices, and glass transition temperature, were obtained by 
stepwise regression and artificial neural network (ANN) 
method. The results calculated by ANN method meet the 
experimental data better than those by the stepwise meth-
od. A QSPR to predict the intrinsic viscosity of polymer 
solutions was developed by Gharagheizi.28 With five rele-
vant descriptors and 65 polymer solutions, a radial based 
function neural network (RBFNN) with squared correlation 
coefficient R2 = 0.9100 was constructed. Recently, quan-
titative structure-property relationship for the thermal de-
composition of polymers is suggested by Toropova et al.29 
The data on architecture of monomers is used to represent 
polymers. The average statistical quality of the suggested 
QSPR for prediction of molar thermal decomposition is the 
following: RMSE = 4.71 ± 0.1 and R2 = 0.97 ± 0.01. More 
recently, Duchowicz et al.30 have developed a predictive 
QSPR for the refractive indices of 234 structurally diverse 
polymers. The established equations were validated and 
tested through various well-known techniques, such as the 
use of an external test set of compounds, the cross-valida-
tion method, Y Randomization and applicability domain. 
They concluded that the developed QSPR could be useful 
in assisting the development of new polymeric materials.

Unfortunately, in view of the bibliographic research, no ap-
plication of QSPR studies has been devoted to the predic-
tion of the following parameters: carbonyl index, hydrox-
yl index, polyene index, and viscosity average molecular 
weight. Therefore, given the importance of these parame-
ters in photostabilization studies of polymers, the objective 
assigned to this study was to develop two models based on 
the exploitation of the relationship between the chemical 
structure of polymers (PVC, PS, and PMMA) and each of 
the four parameters using a linear approach (Multiple Lin-
ear Regression: MLR) and a non-linear approach (Artificial 
Neural Network: ANN). 

2 Materials and methods
The general methodology adopted for this study consisted 
of several basic steps to generate valid QSPR models. This 
methodology is indicated in the diagram of Fig. 1.

2.1 Datasets

It is well known that high-quality experimental data are 
essential for the development of high quality QSPR mod-
els.31 The polymers in the database included two families: 
3 polymers (PVC, PS, and PMMA), and 20 polymer mix-
tures (polymers with stabilizers). The experimental values 
of carbonyl index (111 polymers), hydroxyl index (141 pol-
ymers), polyene index (81 polymers), and viscosity average 
molecular weight (118 polymers) were collected from the 
literature.17,32–35 To develop an ANN model, the polymer 
database was divided into two sets: a training set, and a 
test set consisting of 77 % and 23 % of the polymers for ICO, 
60 % and 40 % for IOH, 80 %, and 20 % for IPO and vM , re-
spectively. The collected photostabilization values used in 
this work were performed under the influence of acceler-
ated testing technique: Accelerated weatherometer Q.U.V. 
tester (Q. panel, company, USA).

2.2 Molecular descriptors

The direct calculation of a molecular descriptor for the 
entire structure is not possible due to the high molecu-
lar weight of the polymeric compound. To overcome 
this drawback, a small number of repeating units (U) was 
used.36 In addition, the molecular descriptors calculated 
from their repeating unit structures end-capped with two 
hydrogen atoms can be used in the QSPR studies for sys-
tems polymer.25,37 In this study, we chose polymer units to 
properly represent the interaction between polymers and 
stabilizers around the photodegradation. The chosen pol-
ymer units (UUUUU) are based on existing models in the 
literature.17,33 The list of polymer units used in the develop-
ment of QSPR model is given in Table 1.

One important step in obtaining a QSAR (Quantitative 
Structure-Activity Relationships) and QSPR model is the 
numerical representation of the structural features of mole-
cules, which were named molecular descriptors. Currently, 
there are thousands of molecular descriptors in the litera-
ture that can be used to solve different problems in differ-
ent specialties.38 All descriptors were obtained through the 
online program PaDEL-Descriptor (http://www.scbdd.com/
padel_desc/index/). PaDEL-Descriptor is one of the most 
applied softwares in QSPR studies but also for QSAR anal-
yses.39 In the specific case of this study, for each polymer, 
1875 molecular descriptors were calculated, belonging to 
following classes: Autocorrelation descriptors (346), Basak 
descriptors (42), BCUT descriptors (6), Burden descriptors 
(96), Connectivity descriptors (56), Constitutional descrip-
tors (120), E-state descriptors (489), Kappa descriptors (3), 
Molecular property descriptors (15), Quantum chemical 
descriptors (6), Topological descriptors (265), CPSA de-
scriptors (29), RDF descriptors (210), Geometrical descrip-

http://www.scbdd.com/padel_desc/index/
http://www.scbdd.com/padel_desc/index/
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tors (21), WHIM descriptors (91), and 3D Autocorrelation 
descriptors (80). 

Simplified Molecular Input-Line Entry System (SMILES) no-
tations of polymers were obtained from the ChemBio Ultra 
Software.

2.3 Selection of relevant descriptors

The pre-processing of the database is to eliminate the ir-
relevant descriptors in order to avoid the phenomenon 
of over-fitting. Therefore, we must reduce the variables 
(descriptors) that do not have or have little influence on 

Inputs (Ei)

E1 E2 E1 + E2

Descriptors (Di) Duration (Pi) Di + Pi

Relevant filtered inputs (RFEi)

RFDi RFPi RFDi + RFPi

Filtered inputs (FEi)

FDi FPi FDi + FPi

Outputs (Sj): chemico-physical properties (QSPR)

Yes

Yes

No

**

*

No

Imperfect  
prediction

Performance 
(decision)

Data base and QSPR descriptor calculation by 
PaDEL-Descriptor software

Filtration and pre-treatment

• Any descriptor that had an identical value for > 75 % of the 
samples was removed

• Any descriptor with a relative standard deviation < 0.05 was 
removed

• Descriptor with intercorrelation > 0.75 were removed

Parameters (structure) of the ANNs

• Number of hidden layers (1 : 3)

• Number of neurons in the hidden layers (3 : 30)

• Activation function (tansig, logsig, exponential, purelin)

• Training algorithm (BFGS)

• Number of iterations (1000 iteration)

• Splitting each data set into two subsets (training and test set)

Yes

No

Test
ε2

Modification and  
adjustment of parameters

Test
ε1

ANN estimate

Comparison with

Multiple linear regression (MLR)

Test ε1: Corresponds to the test of (R → 1, E → 0, and Q2 → 1)
Test ε2: Corresponds to the test of (IR > 6 %) “weight method
Test ε3: Corresponds to the test of (Applicability domain “Williams plot”
*: We retain all the descriptors tested (DiFR + PiFR, DiF + PiF) > 6 %
**: We only retain (DiFR + PiFR, DiF + PiF) > 6 %
we remove the (DiFR + PiFR, DiF + PiF) < 6 %

 : First pass loop with test ε1
 : Second pass loop with test ε1 + ε2

Test
ε3

Fig. 1 – Basic steps for generating a QSPR model in this study
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Table 1 – List of structures of the unit polymers (UUUUU) used in the development of QSPR models

PVC (100 % wt/wt)14,33,34 PVC with 0.5 % (wt/wt) additive33 PVC with 0.5 % (wt/wt) additive33

PVC with 0.5% (wt/wt) additive 33 PVC with 0.5 % (wt/wt) additive33 PVC with 0.5 % (wt/wt) additive14

PVC with 0.5 % (wt/wt) additive14 PVC with 0.5% (wt/wt) additive 14 PVC with 0.5 % (wt/wt) additive14

PVC with 0.5 % (wt/wt) additive14 PVC with 0.5 % (wt/wt) additive34 PVC with 0.5% (wt/wt) additive34 

PVC with 0.5 % (wt/wt) additive34 PS (100 % wt/wt)32 PS with 0.5 % (wt/wt) additive32
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the outputs of network (carbonyl index, hydroxyl index, 
polyene index, and viscosity average molecular weight). 
Several methods to simplify the database are available in 
the literature; for example, principal component analysis 
(PCA), curvilinear or orthogonalization method of Graam-
Schmidt are used. In this present study, the method used 
to select the most significant descriptors was described by 
some authors.40–42 It takes place in several stages: (1) the 
minimum and maximum are calculated for each descriptor 
using STATISTICA software, then we remove the descrip-
tors that have the maximum and the minimum equal. (2) 
The descriptor which has the same value for more than 
75 % of the samples is eliminated. (3) Standard deviation 
(SD) is calculated for each descriptor, and those with SD 
values less than 0.05 are eliminated. (4) In this stage, we 
used “Matlab” software; a diagonal matrix is then obtained 
which represents the correlation between the outputs and 
the descriptors retained. The descriptors are classified ac-
cording to the decreasing value of the correlation coeffi-
cient. The descriptor with the highest correlation is taken 
and compared to the other descriptors in the matrix. Those 
whose correlation coefficient value is greater than 0.75 are 
eliminated in their turn. The same is repeated with the de-
scriptor ranked just after the first, and so on. The number 

of descriptors obtained after the selection was 107 for ICO, 
102 for IOH, 67 for IPO, and 107 for vM . (5) A program based 
on the stepwise method is used to select the most rele-
vant descriptors from those obtained previously. Finally, 
the number of descriptors (Table 2) obtained after stepwise 
selection was: 5 for ICO, 5 for IOH, 3 for IPO, and 4 for vM . 
The relevant descriptors as well as the duration exposure 
(evaluated in hours) were used to develop the QSPR pre-
diction model.

2.4 Model development
Descriptors obtained after feature pre-screening were used 
to develop predictive models. Many approaches of model 
development are widely used. Two different approaches to 
developing QSPR prediction models were used.

2.4.1 Linear model 

The linear model was developed by applying Multiple 
Linear Regression (MLR). MLR are the most widely used 

Table 1 – (continued)

PS with 0.5 % (wt/wt) additive32 PS with 0.5 % (wt/wt) additive32 PS with 0.5 % (wt/wt) additive32

PMMA (100 % wt/wt)35 PMMA with 0.5 % (wt/wt) additive35 PMMA with 0.5 % (wt/wt) additive35

PMMA  with 0.5 % (wt/wt) additive35 PMMA  with 0.5 % (wt/wt) additive35
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and known modelling methods, and used as the basis for 
a number of multivariate methods.42 MLR is a commonly 
used method in QSPR due to its simplicity, transparency, 
reproducibility, and easy interpretability. MLR consists of 
a quantitative relationship between a group of variables Xi 
(descriptors) and a response Y, as shown in Eq. (1):

(1)

where Y is the response or dependent variable (outputs), 
Xi represents the molecular descriptors (inputs), and a0 is a 
constant (intercept). MLR calculations were performed us-
ing STATISTICA v. 8.0 (StatSoft, Inc.) and XLSTAT software.

2.4.2 Nonlinear model

Nonlinear model was then developed by submitting the 
relevant descriptors to a statistical learning method: the 
Artificial Neural Network (ANN). ANN is particularly well 
suited for QSPR/QSAR models because of their capability 
to take out nonlinear information from the data set.43 MLP-
ANN is considered the easiest and most commonly used 
ANN type in literature.42 The architecture of an MLP-ANN 
consists of an input layer encompassing the inputs, one or 
more hidden layers (intermediate), and an output layer 
including the outputs. The layers are connected to each 
other linearly by the weights corresponding to the neurons 
in the neighbouring layers upstream and downstream. In 

Table 2 – List of descriptors obtained after stepwise selection and duration of exposure

Parameters 
predicts Descriptor Description Category VIF t-Test

Carbonyl 
index (ICO)

MATS2m Moran autocorrelation – lag 2 / weighted by mass Autocorrelation 
descriptors 1.37 –11.96

minHBd Minimum E-States for (strong) Hydrogen Bond donors E-state descriptors 1.20 –5.62

MATS2s Moran autocorrelation – lag 2 / weighted by I-state Autocorrelation 
descriptors 1.44 –4.72

VE3_Dzm Logarithmic coefficient sum of the last eigenvector from 
Barysz matrix / weighted by mass Topological descriptors 1.34 5.06

MATS7i Moran autocorrelation – lag 7 / weighted by  
first ionization potential

Autocorrelation 
descriptors 1.44 3.65

t(h) duration of exposure duration of exposure 1.01 19.97

Hydroxyl 
index (IOH)

TDB5i 3D topological distance based autocorrelation – lag 5 / 
weighted by first ionization potential

3D Autocorrelation 
descriptors 1.38 –12.32

geomShape Petitjean geometricshape index Geometrical descriptors 1.41 –9.69

minHBd Minimum E-States for (strong) Hydrogen Bond donors E-state descriptors 1.04 –5.82

ATSC7m Centered Broto-Moreau autocorrelation – lag 7 / weighted 
by mass

Autocorrelation 
descriptors 1.53 5.18

P2i 2nd component shape directional WHIM index / weighted 
by relative first ionization potential WHIM descriptors 1.28 –3.85

t(h) duration of exposure duration of exposure 1.01 17.9

Polyene 
index (IPO)

SpMin2_Bhv Smallest absolute eigenvalue of Burden modified matrix – 
n 2 / weighted by relative van der Waals volumes Burden descriptors 2.13 –9.33

VE3_Dzi Logarithmic coefficient sum of the last eigenvector from 
Barysz matrix / weighted by first ionization potential Topological descriptors 1.11 6.70

VR3_Dzv
Logarithmic Randic-like eigenvector-based index from 

Barysz matrix / weighted by
van der Waals volumes

Topological descriptors 2.08 –7.01

t(h) duration of exposure duration of exposure 1.02 17.03

Viscosity 
average 

molecular 
weight ( vM )

RDF25p Radial distribution function – 025 / weighted by relative 
polarizabilities RDF descriptors 3D 1.12 21.56

TDB4i 3D topological distance based autocorrelation – lag 4 / 
weighted by first ionization potential

Autocorrelation 
descriptors 1.03 –4.99

minHBint8 Minimum E-State descriptors of strength for potential 
Hydrogen Bonds of path length 8 E-state descriptors 1.12 4.71

ATSC3c Centred Broto-Moreau autocorrelation – lag 3 / weighted 
by charges

Autocorrelation 
descriptors 1.01 2.67

t(h) duration of exposure duration of exposure 1.00 –16.19
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this work, the tangent sigmoid (tansig), the sigmoid log (log-
sig), and the exponential transfer function were used as a 
transfer function of the hidden layer, while the exponential 
function and the linear function (Purelin) were used as a 
transfer function for the output layer. The number of hid-
den neurons was optimized (from 3 to 30) by trial and error 
procedure in the training process. One output neuron was 
used to represent the experimental values of ICO, IOH, IPO, 
and vM . The network was trained using the quasi-Newton 
BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm.

2.5 Model validation

The relevance of the QSPR/QSAR models is judged on the 
basis of the results of statistical validation. The statistical 
validation of models consists of internal and external val-
idations. Recent studies44–48 have indicated that internal 
validation is essential for the validation of a QSPR/QSAR 
model. In our study, the most important traditional valida-
tion metrics were applied: root mean square error (RMSE), 
determination coefficient (R2), cross validated correlation 
coefficient (Q2

LOO), in addition to the use of the parameters 
( 2

mr ; ) introduced by Roy et al.49 External validation is es-
sential to judge the predictive power of a model.50 For this 
study, the predictive power of the QSPR model was tested 
on the test set not used for model development, using the 
Q2

pred parameter and the validation criteria by Golbraikh 
and Tropsha.51 The statistical parameters are collected in 
Eqs. (2–7), and the terms utilized in these equations are 
defined in the following:

(2)

(3)

(4)

(5)

(6)

(7)

where Yobs is observed (experimental) value of Y, Ypred is 
predicted (calculated) Y-value of training set, test set or val-
idation set, n is the number of compounds in the data set 
(training, test, validation), obsY  is the average of Yobs, and r2 is 
the squared correlation coefficient between the observed 
and predicted value of polymers with intercept.

To see the contribution of each parameter in the explana-
tion of the dependent variable Y in the MLR models, we 
used the test of significance of each parameter t-Student 
“T-test” statistic. From this statistic, it is possible to test one 
by one the nullity of the different parameters of the mul-
tiple linear regression models, and build confidence inter-
vals on these parameters, very useful during the interpreta-
tion phase of the model.52–53 

(8)

where: ti is the T-test for descriptor “i”; ai is the coefficient 
associated with descriptor “i” in the model; s is the stand-
ard error associated with descriptor “i”; α is the confidence 
interval, n is the number of observations (size of database); 
p is the number of independent variables (descriptors). 

2.6 Sensitivity analysis

To see the contribution of each input variable (descrip-
tors with duration exposure) on the outputs (ICO, IOH, IPO, 
and vM ), a sensitivity analysis was carried out using the 
“weight” method. This method, proposed by Garson,54 
provides a quantification of the relative importance (RI) 
of the different inputs (variables) on the outputs of each 
neural network. The process of calculating relative im-
portance by the “weight” method unrolls as follows: We 
calculate the product of input–hidden layer and hidden–
output layer connection weights between each input neu-
ron and output neuron and sum the products across all 
hidden neurons.55

2.7 Applicability domain

Any model of prediction must have a range of accuracy 
satisfactory for its application. This range is defined by the 
applicability domain of the model. Outside this domain, 
the application of the model can lead to erroneous predic-
tions.50 It should be noted that there are several approach-
es to determining the application domains. In this present 
work, we used the leverage approach (Williams plot). The 
influence of a sample on the model is measured at the 
leverage (hi). The leverage of a compound in the original 
variable space is defined as follows:50

(9)

where X is the model matrix derived from the training 
set descriptor values, and the leverage values of training 
set are diagonal elements of the hat or influence matrix 
(hi = diag (H)). The leverage values are always between 
0 and 1. The warning leverage h* is, generally, fixed at 
3(p + 1)/n, where n is the total number of samples in the 
training set, and p is the number of descriptors involved in 
the correlation.50
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3 Results and discussion
3.1 MLR predictive model (linear model)

The linear models obtained for the prediction of ICO, IOH, 
IPO, and vM  of different polymers are represented by the 
following Eqs. (10–13) with the reported statistical param-
eters:

ICO = 0.084 + 5.075E – 04 t (h) – 0.473 MATS2m –   
– 0.118 minHBd – 9.849E – 02 MATS2s +  
+ 2.904E 04 VE3_Dzm + 0.181 MATS7i
(N = 111; R2 = 0.862; RMSE = 0.024;  
F = 106.905; p < 0.0001)

(10)

IOH = 0.585 + 1.933E – 04 t (h) – 5.824E – 04 TDB5i – 
– 9.632E – 02 geomShape – 3.987E 02 minHBd + 
+ 1.850E – 06 ATSC7m – 8.135E – 02 P2i
(N = 141; R2 = 0.802; RMSE = 0.011;  
F = 89.907; p < 0.0001)

(11)

IPO = 1.319 + 6.382E – 04 t (h) – 0.546 SpMin2_Bhv + 
+ 5.742E – 04 VE3_Dzi – 9.128E – 04 VR3_Dzv
(N = 81; R2 = 0.898; RMSE = 0.030;  
F = 165.866; p < 0.0001)

(12)

vM  = 547869. 690 – 324.233 t (h) + 1594.286 RDF25p – 
– 804.937 TDB4i + 5277.705 minHBint8 + 
+ 1293.069 ATSC3c
(N = 118; R2 = 0.891; RMSE = 0.0650;  
F = 181.371; p < 0.0001)

(13)

The large F ratio (106.905; 89.907; 165.866; 181.371) in-
dicates that Eqns. (10), (11), (12), and (13) were powerful 
in predicting ICO, IOH, IPO, and vM .

For each pair of descriptors, the value of the correlation 
coefficient (see Table S1 in the supplementary materials) of 
the four parameters studied was < 0.717, which leads to 
the independence of the selected descriptors. In addition, 
the multi-collinearity of the descriptors used in the MLR 
model can be evaluated by calculating their Inflation Var-
iation Factors (VIF). If the calculation of VIF gives a value 
between 1 and 5, the associated model is acceptable.54 As 
Table 2 shows, all variables have VIF values < 2.13, which 
shows that the resulting model has statistical significance, 
and therefore, the descriptors represent some orthogonal-
ity.

As shown in Table 2, the t-Test value of the exposure time 
(t) of the carbonyl number (ICO) is 19.97 h, the latter val-
ue is greater than the other descriptors, and therefore, it 
corresponds to a significant duration of exposure. Nega-
tive regression coefficients for the MATS2m, minHBd, and 
MATS2s descriptors have a negative impact on ICO. On the 
contrary, a positive influence for the descriptors VE3_Dzm 
and MATS7i, due to the positive signs of the regression 
coefficients, will favour the improvement of the carbonyl 
index. We maintain the same reasoning for the other pa-
rameters (IOH, IPO, and vM ), where some descriptors have 
positive signs (good impact), while others have negative 
signs (impact obsolete).

3.2 ANN predictive model (nonlinear model)

The optimization of the artificial neural network archi-
tecture is essential to obtain an optimal network. In ad-
dition, the database distribution, the activation functions 
(for hidden neurons and output neurons), the number of 
neurons in the hidden layer, and the learning algorithms 
were optimized after several trials. The optimal perfor-
mance of the model is evaluated in terms of RMSE.38 The 
results of optimization of the nonlinear model are shown 
in Table S2 (supplementary materials). Thus, the networks 
architectures obtained are the following: {6-18-1} for ICO, 
{6-23-1} for IOH, {4-13-1} for IPO, and {5-24-1} for vM . 
The predicted values of ICO, IOH, IPO, and vM  in the training 
and test sets have been plotted versus their observed val-
ues in Fig. 2. As may be seen, a close correlation between 
the predicted and the observed values was found. The 
main performance parameters of ANN model are shown 
in Table 3. As may be seen from Table 3, all values of the 
statistical parameters (R2, Q2

LOO, and RMSE) of the training 
set are acceptable. The non-linear ANN model also gives 
good results for the test set. Therefore, these results reveal 
that the ANN model not only performed well in model 
development, but also had excellent prediction. Moreo-
ver, all these results confirm the existence of a non-linear 
relationship between the relevant descriptors of the model 
and the predicted physicochemical properties.

3.2.1 Sensitivity analysis

The weight method was used to calculate the relative im-
portance IR (%) of variables (descriptors + duration expo-
sure) for ANN model. Fig. 3 gives a graphica representation 
of the relative importance IR (%) of each variable on the 
properties of photostabilization (ICO, IOH, IOP, and vM ). Ac-
cording to this figure, all input relevant variables have a 
significant contribution (IR > 6 %) to the photostabilization 
properties. This sensitivity analysis by the weight method 
successfully identified the true importance of all the varia-
bles used for the modelling of physicochemical properties 
during the photostabilization of PVC, PS, and PMMA, and 
therefore, proves the correctness of the choice of variables 
that were used in this study. 

3.2.2 Applicability domain

The applicability domain of the ANN model was analysed 
using a Williams plot (Fig. 4). The vertical line is the critical 
leverage value (h*). As seen in Fig. 4, none of the poly-
mers of the training set and the validation set had a lev-
erage effect higher than the warning value h* (0,2035 for 
ICO, 0,2059 for IOH, 0,1923 for IPO, and 0,1579 for vM ). For 
polyene index and in the training set, one polymer was 
underestimated. In the Williams plot of the carbonyl index 
and the viscosity average molecular weight, two polymers 
belonging to the test set and one polymer for the training 
set can be considered as response outliers. One of which 
is overestimated, while another is underestimated. In the 
domain applicability of the hydroxyl index, there polymers 
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Fig. 2 – Plot of observed vs. predicted: (a) ICO, (b) IOH, (c) IPO, and (d) vM  values from the ANN model

Table 3 – Performance of the ANN model

Models
Internal validation External validation

n R2 RMSE Q2
LOO n R2 RMSE Q2

pred
2

mr k k’

ANN

ICO 86 0.99 0.006 0.99 25 0.96 0.012 0.95 0.89 0.04 0.96 1.00
IOH 85 0.99 0.002 0.99 56 0.98 0.004 0.98 0.97 0.01 0.99 1.00
IPO 65 0.99 0.009 0.99 16 0.99 0.010 0.99 0.98 0.01 0.99 1.01

vM 95 0.98 0.057 0.99 23 0.98 0.093 0.98 0.97 0.01 0.99 1.00

Threshold 
value50,56 > 0.6 > 0.5 > 0.6 > 0.5 > 0.5 < 0.2 0.85 < k < 1.15 0.85 < k′ < 1.15
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of the test set is underestimated. These eleven response 
outliers (3 for ICO, 4 for IOH, 1 for IPO, and 3 for vM ) could 
be associated with errors in the experimental values. The 
results of the ANN models correspond to the third prin-
ciple of the Organization for Economic Cooperation and 
Development (OECD).

3.3 Comparison of the result  
of MLP-ANN with MLR models 

To compare the performance and the predictive quality of 
the ANN and MLR models, the statistical parameters are 
summarized in Table 4. According to Table 4, all the values 
of the statistical parameters seem satisfactory for the two 
models, which show a good robustness. However, a sub-
stantial improvement of the statistical parameters for the 
ANN model can be noted. Thus, it can be concluded that 
the ANN model has better predictive power than the MLR 
model. This means that the model obtained with an ANN 
suggested the existence of a non-linear correlation be-
tween the outputs of the network (ICO, IOH, IPO, and vM ) and 
the selected variables (descriptors + duration exposure).

4 Conclusion
The aim of the present work was to develop a QSPR study 
and to predict the carbonyl, hydroxyl, and polyene indices 
(ICO, IOH, IOP), and viscosity average ( vM ) of poly (vinyl chlo-
ride), polystyrene and poly (methyl methacrylate). These 
physicochemical properties were considered a fundamen-
tal property during the study of the photodegradation of 
the polymers. This QSPR study, which involved 111, 141, 
81, and 118 structurally diverse polymers, and a series of 
descriptors calculated by PaDEL-Descriptor software select-
ed by a stepwise method, was based on the artificial neural 
network (ANN) and multiple linear regression (MLR). The 
built ANN and MLR models were assessed comprehen-
sively (by internal and external validation). They showed 
good values of R2 and Q2

LOO for the training set, and high 
predictive R2 and Q2

pred values for the validation set. All the 
validations indicated that the built QSPR models were ro-
bust and satisfactory. However, a substantial improvement 

of the statistical parameters for the ANN model can be not-
ed. In conclusion, the ANN model developed in this study 
meets all OECD principles for QSPR validation, and can be 
used to predict ICO, IOH, IOP, and vM  of polymers, particularly 
those that have not been tested, and thus help reduce ex-
perimental determination of these indices, which involves 
costly experimental studies.
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List of abbreviations 
Popis kratica

ANN – artificial neural network

vM – viscosity average molecular weight

Di – descriptors
Ei – inputs
FDi – filtrated descriptors
FEi – filtrated inputs 
Pi – physical properties 
Q2 – cross-validated correlation coefficient
BFGS – Broyden-Fletcher-Goldfarb-Shanno
ICO – carbonyl index
IOH – hydroxyl index
IOP – polyene index
LCST – lower critical solution temperature
MLR – multiple linear regressions
MRE – mean relative error
OECD – organization for economic cooperation  

and development
PMMA – polymethyl methacrylate
PS – polystyrene

Table 4 – External validation of the ANN and MLR models

Models n R2 RMSE Q2
pred

2
mr k k’

ICO
ANN

25
0.96 0.012 0.95 0.89 0.04 0.96 1.00

MLR 0.80 0.025 0.80 0.69 0.16 1.00 0.95

IOH
ANN

56
0.98 0.004 0.98 0.97 0.01 0.99 1.00

MLR 0.76 0.013 0.76 0.65 0.17 1.00 0.96

IPO
ANN

16
0.99 0.010 0.99 0.98 0.01 0.99 1.01

MLR 0.88 0.031 0.87 0.81 0.09 0.97 1.02

vM
ANN

23
0.98 0.093 0.98 0.97 0.01 0.99 1.00

MLR 0.84 0.283 0.85 0.77 0.10 1.05 0.91
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PVC – polyvinyl chloride
QSAR – quantitative structure–activity relationships
QSPR – quantitative structure–property relationship
RBFNN– radial based function neural network
RI – relative importance
RMSE – root mean squared error

– korijen srednje kvadratne pogreške
SD – standard deviation
SMILES – simplified molecular input-line entry system
VIF – variation inflation factor
E – error
FPi – filtrated physical properties
IR – relative importance
R – correlation coefficient
RFDi – relevant filtrated descriptors 
RFEi – relevant filtrated input 
RFPi – relevant filtrated physical properties 
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SAŽETAK
QSPR studije karbonilnih, hidroksilnih, polienskih indeksa i  

prosječne molekulske težine polimera pod fotostabilizacijom  
pristupom ANN i MLR

Hadjira Maouz,a* Latifa Khaouane,a Salah Hanini,a Yamina Ammi,a,b  
Mabrouk Hamadache,a and Maamar Laidi a

Jedan od glavnih nedostataka upotrebe sintetičkih ili polusintetičkih polimernih materijala je nji-
hova razgradnja i starenje. Svrha ove studije je primjena umjetnih neuronskih mreža (ANN) i više-
strukih linearnih regresija (MLR) za predviđanje karbonilnih, hidroksilnih i polienskih indeksa (ICO, 
IOH i IOP) i prosječne molekulske mase viskoznosti ( vM ) poli(vinil-klorida), polistirena i poli(metil 
metakrilata). Ta fizikalno-kemijska svojstva smatraju se važnim tijekom proučavanja fotostabiliza-
cije polimera. Iz pet ponavljajućih jedinica monomera prikazana je struktura ispitivanog polimera. 
Kvantitativni modeli odnosa strukture-svojstava (QSPR) dobiveni primjenom relevantnih deskrip-
tora pokazali su dobru predvidljivost. Za potvrdu tih modela provedene su: interna provjera {R2, 
RMSE i Q2

LOO}, vanjska provjera {R2, RMSE, Q2
pred, 2

mr , , k i k’} i domena primjenjivosti. Us-
poredba rezultata pokazuje da su modeli ANN učinkovitiji od modela MLR. Prema tome, model 
QSPR razvijen u ovoj studiji pruža izvrsna predviđanja i može se primjenjivati za predviđanje ICO, 
IOH, IOP i vM  polimera, posebno za one koji nisu testirani.
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Supplementary material

Table S1 (a) – Correlation matrix of the descriptors used for the carbonyl index

t(h) MATS2m minHBd MATS2s VE3_Dzm MATS7i
t(h) 1 –0.056 –0.015 0.053 0.041 –0.038

MATS2m –0.056 1 0.014 –0.447 0.176 –0.200
minHBd –0.015 0.014 1 0.254 –0.029 0.297
MATS2s 0.053 –0.447 0.254 1 0.072 0.187

VE3_Dzm 0.041 0.176 –0.029 0.072 1 –0.441
MATS7i –0.038 –0.200 0.297 0.187 –0.441 1

Table S1 (b) – Correlation matrix of the descriptors used for the hydroxyl index

t(h) TDB5i geomShape minHBd ATSC7m P2i
t(h) 1 0.062 0.034 –0.016 0.080 0.015

TDB5i 0.062 1 –0.198 0.093 0.396 0.063
geomShape 0.034 –0.198 1 –0.091 0.205 –0.333

minHBd –0.016 0.093 –0.091 1 –0.108 0.039
ATSC7m 0.080 0.396 0.205 –0.108 1 0.213

P2i 0.015 0.063 –0.333 0.039 0.213 1

Table S1 (c) – Correlation matrix of the descriptors used for the polyene index 

t(h) SpMin2_Bhv VE3_Dzi VR3_Dzv
t(h) 1 0.097 0.061 0.109

SpMin2_Bhv 0.097 1 0.306 0.717
VE3_Dzi 0.061 0.306 1 0.263
VR3_Dzv 0.109 0.717 0.263 1

Table S1 (d) – Correlation matrix of the descriptors used for the viscosity average molecular weight

t(h) RDF25p TDB4i minHBint8 ATSC3c
t(h) 1 –0.007 0.009 –0.005 0.000

RDF25p –0.007 1 0.069 0.313 –0.016
TDB4i 0.009 0.069 1 –0.063 –0.119

minHBint8 –0.005 0.313 –0.063 1 0.004
ATSC3c 0.000 –0.016 –0.119 0.004 1
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Table S2 – Selected parameters of the optimal ANN model

ANN models ICO IOH IPO vM

Number of input layers 1 1 1 1
Number of hidden layers 1 1 1 1
Number of output layers 1 1 1 1
Number of input neurons 6 6 4 5

Number of hidden neurons 18 23 13 24
Number of output neurons 1 1 1 1

Transfer function of the
hidden neurons Exponential Tanh Tanh Tanh

Transfer function of the
output neurons Identity Exponential Identity Identity

Training algorithm BFGS BFGS BFGS BFGS
Training set 77 % (n = 86) 60 % (n = 85) 80 % (n = 65) 80 % (n = 95)

Test set 23 % (n = 25) 40 % (n = 56) 20 % (n = 16) 20 % (n = 23)
RMSE 0.0079 0.0027 0.0095 0.0650


