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Introduction

Interest in ionic liquids ILs stems from their 
unique solvent properties and potential process 
“self-containment”. Their application in chemical 
processes and biotransformations provides the pos-
sibility for clean manufacturing (“green technolo-
gy”). Besides their solvent and extraction functions, 
ILs also exhibit synergy effects with catalysts (en-
zymes) yielding higher production productivity. 
Theoretically, there is a limitless number of possi-
ble ILs with a very broad range of physical and 
chemical properties. Research on ILs has become 
one of the most interesting application research ar-
eas in novel catalytic synthesis, biofuel production 
from agricultural wastes, integration of chemical 
and enzyme reactors with separation processes, po-
lymerization, nanotechnology, enzyme-catalysis, 
composite preparation and renewable resource utili-
zation1–3. Especially interesting is the use of micro-
reactors for ionic liquid synthesis and possibly as 
production systems for integrated biotransforma-
tions and product separation4. However, the recent 
questions of ILs’ eco-toxicity and their degradabili-
ty have also been raised.

Analysis of their versatile structure is formally 
viewed as a combinatorial problem which can be 
effectively accounted by computers. The object of 
this work is to apply computer modeling by chemo-
metric methodology and decision tree algorithm for 
predicting continuous variables, such as toxicity 
level concentration EC50 and level classification, 
based on the choice of cation and anion structure 
and their chemical compositions. Predictions of ILs 
physical properties are based on literature published 
data and internet available NIST and MERCK data-
bases of physical properties and cytotoxicity5–7.

The main objective of this work is in inferring 
the rules and patterns implicitly contained in a set 
of chemical structures and molecular descriptors. 
Applied is a supervised learning algorithm with tar-
get sets for continuous and classification properties 
revealing relationships between molecular descrip-
tors.

Experimental

The chemical formula of each ion is recorded 
in SMILES and MOL format and evaluated for cor-
responding molecular descriptors8. Hence, each 
combination of ions for a specific IL is represented 
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by 2x797 data points. Since numerical values of 
molecular descriptors cover a range of numerical 
orders of magnitude, each descriptor is autoscaled 
based on the sample average and the corresponding 
standard deviation. For the selected cations, the 
transformation is:
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Similarly, molecular descriptors for the select-
ed anions are transformed accordingly:
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The obtained matrices of the autoscaled de-
scriptors are analyzed for their mutual inter-rela-
tionships. For cations and anions data matrices, the 
average Pearson correlation of R2 =0.4 is obtained, 
which is significant considering the large number of 
samples (ions). Due to high co-linearity between 
various molecular descriptors, the data matrices are 
decomposed into a series of partial components by 
application of singular value decomposition of the 
corresponding anion XA and cation XC covariances 
by solving the eigenvalue problems:

	 ( ) , , ,
T
C C C i C i C iX X v vλ=  1,2j M= 	 (3)

	 ( ) , , ,
T
A A A i A i A iX X v vλ=  1,2j M= 	 (4)

Decomposed matrices, PA and PC, are defined 
by the corresponding eigenvectors vA and vC, and 
the contributions of individual partial decomposi-
tions are evaluated by the ratios of squares corre-
sponding eigenvalues λAi and λA to the number of 
descriptors M.

	  ,1 ,2 ,C C C C C K P X v v v 	 (5)

	  ,1 ,2 ,A A A A A K P X v v v 	 (6)

Based on the preselected level of 99.5 % of the 
total variance, the first ten, K=10, eigenvectors for 
each data set are chosen.

Results and discussion

Compared are the chemometric and decision 
tree models for regression and prediction of concen-
tration E50 and toxicity classification for inhibition 
of acetylchlorinestarase inhibition experimental 
data provided in MERCK Ionic Liquids Biological 
Effects Database7. The model input data are the tar-
get values of molecular descriptor projections. The 

chemometric models are linear models, and applied 
here based on their expected robustness and im-
proved prediction when compared to classical least 
squares multivariate models9–12. The first tested 
model is Principal Component Regression (PCR) 
given by Eq. (7).

	 A A C C    Y P P E  	 (7)

The statistical evaluation and analysis of the 
model parameters are performed by the algo-
rithms  provided by R open source software16 and 
STATISTICA17. Applied is ten-fold cross validation 
within the training set of samples, as well as valida-
tion with the data set that had not been used during 
the modelling phase. The model “quality” for pre-
diction of E50 concentration is relatively “poor” with 
R2 = 0.62 presented in Fig. 1.

The second tested model is Partial Least 
Squares (PLS) which is to improve the predictions 
by separate decomposition of the input and output 
data sets (Eqs. 8-9).

	  TC A X  X T P P E 	 (8)

	  T Y  Y U Q E 	 (9)

The predictive model is built by regression be-
tween the inner projections T and U:

	   U T E 	 (10)

The PLS model predictions on the test data 
slightly improved yielding R2 = 0.64 as presented in 
Fig. 2.

The obtained relatively poor predictions of 
EC50 by the chemometric models is in contrast to 
good predictions for some of ILs physical proper-

F i g .  1 	–	 Comparison between the test samples for measured 
ln(EC50) concentrations and the principal compo-
nent regression model predictions
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ties, as for example, viscosity, given in literature12–14. 
A possible explanation is due to high dispersion of 
the experimental data EC50 involved in measure-
ment of the biological effect of ILs.

In order to elevate the modelling assumption 
on continuity and linearity between molecular de-
scriptors and biological effects, applied are decision 
tree (DT) and random forest (RF) models(11,15,18). 
These are nonparametric models and are not based 
on assumed functional relationships between the in-
put and output data. The main objective of decision 
tree model is a supervised procedure of step-wise 
classification of input data by binary split into sub-
sets for “improved” or more significant information 
content (information gain). It is obtained by mini-
misation of Gini index or pattern entropy. Produced 
models are not given in a closed mathematical form, 
but as a set of logical statements which can be eas-
ily represented in graphical form as a tree of step-
wise decisions. When a DT model is used for re-
gression, the numerical range of output data is 
approximated by pseudo classes for assumed preci-
sion of regression predictions. Here is applied the 
Breiman and Cutler15 algorithm available in R soft-
ware system and tree plotting16–18.

	 ( )ˆ , ,P
DT C ADTY Y P P= 	 (11)

Single decision tree prediction models tend to be 
biased but modelling can be improved by re-initial-
ization of collections of trees by randomisation of the 
split algorithm and production of a random forest. 
Prediction of a random forest is obtained by aggrega-
tion of individual trees with weighted response corre-
sponding to individual tree cross-validation.

	 ( )ˆ , ,P
RF C ARFY Y P P= 	 (12)

Modelling results are presented in Figs. 3–4. 
Prediction of ln(EC50) by the random forest model 
is  greatly improved with Pearson correlation 
R2  =  0.992. Individual decision tree for classifica-
tion of ILs toxicity is depicted in Fig. 5. For acety-
cholinesterase the following classes were here ad-
opted: low (L, EC50

 < 10 μmol L–1), medium (M), 
EC50 [10 – 100 μmol L–1], high (H) EC50  [100 – 
1000 μmol L–1], and very high (VH ) EC50> 1000 
μmol L–1, according to MERCK classification7. The 
advantage of applying uncorrelated principal com-
ponents of the molecular descriptor sets has resulted 
in a simple and transparent model.

Conclusions

Applied are chemometric and decision tree 
models of ILs toxicity based on their molecular de-
scriptors. Toxicity criteria is based on EC50 concen-
trations for inhibition of acetylcholinesterase, In 
view of very large of molecular descriptors their 
colinearity was investigated and was found signifi-
cant average correlation R2 ≈  0.4. In order to sim-
plify and obtain robust models the matrices of cat-
ion and anion descriptors are projected to the 
corresponding spaces of the first ten eigenvectors 
resulting into about 99.95 of variance (data disper-
sion content).

Application of chemometric models, partial 
component regression and partial least squares, re-
sulted in limited quality of prediction on test sets 
with regression coefficients R2 of 0.62 and 0.64. 
However, application of decision tree and random 
forest models significantly improved quality of pre-
diction with R2 = 0.992. Randomization and aggre-
gation of large population (500 trees) resulted with 
the model with low overfitting effects and unbiased 
estimates (besides possible bias in molecule selec-

F i g .  2 	–	 Comparison between the test samples for measured 
ln(EC50) concentrations and the partial least squares 
model predictions

F i g .  3 	–	 Comparison between the test samples for measured 
ln(EC50) concentrations and the random forest mod-
el predictions
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tion). Due to orthogonalisation of training patterns 
derived are simple and transparent decision trees.

Practical application of the derived models is 
their potential use as part of a feedback loop for 
inverse design of new ILs for specific (tailored) 
new process technology needs.
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L i s t  o f  s y m b o l s

A	 –	anions
C	 –	cations
DT	 –	decision tree
E	 –	error matrix
P	 –	vector of principal components by SVD 
PCR	 –	principal component regression
PLS	 –	partial least squares 
Q	 –	output projection PLS matrix
RFDT	 –	random forest decision trees
SVD	–	singular value decomposition
T	 –	projection PLS matrix 

U	 –	projection PLS matrix
U	 –	 input projection PLS matrix
v	 –	eigenvectors
X	 –	matrix of input data
Y	 –	vector of output data
 	 –	vector of model parameters
 	 –	eigenvalues
 	 –	standard deviation
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