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A generalized regression neural network with external feedback was used to predict
plasmid production in a fed-batch cultivation of recombinant Escherichia coli. The neu-
ral network was built out of the experimental data obtained on a few cultivations, of
which the general strategy was based on an initial batch phase followed by an exponen-
tial feeding phase. The different cultivation conditions used resulted in significant differ-
ences in bacterial growth and plasmid production. The obtained model allows estimation
of the experimental outputs (biomass, glucose, acetate and plasmid) based on the
bioreactor starting conditions and the following on-line inputs: feeding rate, dissolved
oxygen concentration and bioreactor stirring speed. Therefore, the proposed methodol-
ogy presents a quick, simple and reliable way to perform on-line feedback prediction of
the dynamic behaviour of the complex plasmid production process, based on simple
on-line input data obtained directly from the bioreactor control unit and with few cultiva-
tion experiments for neural network learning.
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Introduction

Plasmids are highly desirable vectors for gene
therapy and DNA vaccination, as they offer multiple
advantages over viral vectors, including large pack-
aging capacity, stability without integration and re-
duced toxicity. Furthermore, plasmid DNA can be
delivered to many different tissues, using a variety of
delivery techniques currently being developed.1

Gene therapies are a promising alternative to classi-
cal medical techniques for prevention, treatment, di-
agnosis or cure of genetic defects such as cystic fi-
brosis or acquired diseases like cancer and AIDS.
Vaccines can also be developed on the basis of genes
to provide immunity against infectious agents (e.g.
malaria) and tumours, presenting several advantages
over traditional vaccines as whole attenuated/killed
organism or protein-based vaccines. One relevant
drawback of plasmids as vectors, is the low
transfection efficiency observed in vivo and the con-
sequent low expression level of the target gene, that
results in the requirement of large amounts of
plasmids per treatment. Although considerable atten-
tion has been paid to genetic engineering of the
plasmid backbone, substantially less attention has

been given to the practical challenges of producing
large amounts of plasmids. Therefore, the develop-
ment of methodologies to control and optimize
plasmid production processes constitutes a challenge
for the biotechnology industry.2

In relation to the cultivation strategies avail-
able, the main advantage of a batch mode is sim-
plicity, as all the nutrients, as glucose, for cell
growth and plasmid production are presented at the
cultivation beginning. However, in the presence of
high glucose concentrations, acetate is formed aero-
bically by the overflow metabolism. Acetic acid
production usually inhibits the cell growth and de-
creases the recombinant product yield. In order to
optimise the glucose concentration in the bio-
reactor, and consequently increase the volumetric
productivity, a fed-batch strategy is usually applied.
In fed-batch mode, glucose is added along a certain
period. However, the optimal flow rate of the feed-
ing medium containing glucose must be deter-
mined. A higher flow rate in relation to the optimal
will result in overflow metabolism, and a lower
flow rate will result in low productivities.3,4,5 Tradi-
tional models based on reaction kinetics and/or re-
actor kinetics, qualitative simulation of metabolic
networks and complex rate law models for entire
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metabolic pathways, are usually unsuitable for
fed-batch modelling and optimization.6,7 In part,
these limitations result from the complexity and
high non-linearity of the biological phenomena.
Furthermore, to obtain enough data to construct a
suitable model framework, usually a high quantity
of information of the biological reactions is needed.
However, industrial cultivation with recombinant
microorganisms presents aseptic requirements that
result in serious limitations on on-line and off-line
measurements regarding the bioprocess. There is
evidence that the ability of neural networks to
model any kind of function, given enough learning
examples and adequate network topology, lead to
models that are superior to mechanistic models in
the description of bioprocesses.7,8,9

Generalized regression neural network (GRNN)
is proposed for non-linear correlation of the process
output variables with the operating variables. The
advantages of the GRNN-based models are (i) unlike
partial least squares (PLS) these models can effi-
ciently and simultaneously approximate non-linear
multiinput–multioutput (MIMO) relationships and,
(ii) these models can be developed in a significantly
shorter time in comparison with the multilayered
perceptron (MLP) or radial basis function network
(RBFN)-based process models, since the training of
the model, which is a one-step procedure, involves
fixing a value of only a single free parameter.10

In this work, the development and implementa-
tion of a dynamic model, based on generalized re-
gression neural networks, of the fed-batch cultiva-
tions of recombinant E. coli producing the plasmid
pVAX-LacZ in complex media is performed.
Plasmid production is closely related to variables
such as glucose, acetate and biomass concentra-
tions. However, on-line sensors to monitor these
variables are not generally used, as are the pH and
dissolved oxygen concentration sensors. Further-
more, at industrial scale, and to avoid contamina-
tion, the minimum set ups of sensors should be
used. Thus, the present model includes a real-time
estimation of those variables, based on the
bioreactor initial conditions and the few on-line
data such as the feeding rate, pH, dissolved oxygen
concentration and the stirring speed.

Materials and methods

Bacterial strain and pre-culture

Escherichia coli DH5-� containing the plasmid
pVAX-LacZ (Invitrogen, USA) was used. The stock
cultures, grown on 2 % (w/v) Luria-broth (Sigma,

UK) and 30 �g mL–1 kanamycin, were maintained in
40 % (v/v) glycerol with 10 mmol L–1 Tris-HCl buffer

pH 8.0 at –80 °C. An aliquot of 10 �L of stock cul-
ture was inoculated into 1 L shake flask containing
300 mL with 20 g L–1 bactotryptone (BD), 10 g L–1

yeast extract (Difco, USA), 10 g L–1 sodium chloride

(Merck, Germany) and 30 �g mL–1 kanamycin
(Merck, Germany). The cotton-stopped flasks were
incubated in an orbital shaker (Agitorb 160E, Aralab,
Portugal) at 250 rpm and 37 °C for 16 h.

Cultivation

The pre-cultures were used for inoculating the
culture at 10 % (v/v). The cultivations were per-
formed in a 5 L bioreactor (Biostat MD, B. Braun,
Germany) with a 3 L working volume, in absence
of antibiotic. Cultivation was maintained at pH 7.0
by automatic control through 4 moL L–1 NaOH or
2 moL L–1 H2SO4 addition, and at 37 °C with a
minimal dissolved oxygen concentration of 30 % of
air saturation by automatic adjustment of the agita-
tion rate by two Rushton turbines, with a constant
air flow rate of 3.3 L min–1 during the batch phase
and of 4.4 L min–1 during the feeding phase. The
initial batch cultivation medium contained 10 g L–1

sodium chloride (Merck, Germany) and 10 g L–1 of
yeast extract (Difco, USA), and different concentra-
tions of bactotryptone (BD, UK) and D(+)-glucose
(Merck, Germany) as shown in Table 1. After the
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T a b l e 1 – Medium composition of four fed-batch cultivations, based on
a batch phase followed by a feeding phase. The batch phase always con-
tained 10 % (w/v) NaCl. The starting time of the feeding phase and the feed-
ing rate is also indicated.

Culti-
vation

Batch phase
Medium composition:

Feeding phase
Starting period:

Medium composition:

1

Glucose: 10 g L–1

Yeast extract: 10 g L–1

Bactotryptone: 20 g L–1

Started after 8 h of cultivation
With: glucose: 90 g L–1

Yeast extract: 45 g L–1

Bactotryptone: 45 g L–1

2

Glucose: 20 g L–1

Yeast extract: 10 g L–1

Bactotryptone: 20 g L–1

Started after 21 h of cultivation
With: glucose: 90 g L–1

Yeast extract: 45 g L–1

Bactotryptone: 45 g L–1

3

Glucose: 8 g L–1

Yeast extract: 10 g L–1

Bactotryptone: 16 g L–1

Started after 23 h of cultivation
With: glucose: 53 g L–1

Yeast extract: 10 g L–1

Bactotryptone: 16 g L–1

4

Glucose: 10 g L–1

Yeast extract: 10 g L–1

Bactotryptone: 20 g L–1

Started after 16 h of cultivation
With: glucose: 90 g L–1

Yeast extract: 45 g L–1

Bactotryptone: 45 g L–1

Feeding rate (similar to all 4 cultivations):

0–30 min flowrate = 110 mL h–1 30–60 min flowrate = 122 mL h–1

60–90 min flowrate = 138 mL h–1 90–120 min flowrate = 152 mL h–1

120–150 min flowrate = 170 mL h–1 150–180 min flowrate = 190 mL h–1

180–210 min flowrate = 212 mL h–1 210–240 min flowrate = 236 mL h–1

240–270 min flowrate = 264 mL h–1 270–300 min flowrate = 296 mL h–1



batch-growth phase, the feeding rate was sequen-
tially increased and started with mixtures of yeast
extract, bactotryptone and D-glucose (Table 1).

Analysis of biomass, glucose, acetate
and plasmid concentration

Biomass in units of dry cell weight per volume
of culture medium (g L–1) was determined by
centrifugation of cultivation samples, washing the
pellet with 0.9 % (w/v) sodium chloride and drying
at 80 °C until constant weight.

Glucose and acetate were determined by HPLC
with a L-6200 Intelligent Pump (Merck-Hitachi,
UK), a L-7490 LaCrom-Ri-detector (Merck, Ger-
many), a D-2500 Chromato-integrator (Merck-Hi-
tachi, Germany) and with a HPLC column for cul-
ture broth monitoring from Bio-Rad at 50 °C, with
H2SO4 at 0.6 mL min

–1 as eluent.

Lysis and Primary Plasmid isolation: samples
from cultivation were harvested in a centrifuge
(Sigma-201) at 10 000 rpm for 15 min and the pel-
lets were frozen for later use. The bacterial pellet
was resuspended in TE buffer (10 mmol L–1 Tris-HCl
buffer pH 8.0, and 1 mmol L–1 ethylene-diamine
tetraacetic acid). In order to obtain a similar cellular
quantity in all the performed cellular lysis, the vol-
ume of TE buffer used to resuspend the cellular pel-
let was estimated by dividing 6 by the absorbance
at 600 nm of the cellular sample before centri-
fugation. The dilution degree was based on a previ-
ous experiment (not published) conducted in order
to determine the effect of the dilution degree on the
reproducibility of the alkaline cell lyses. An equal
volume of lysis buffer (200 mmol L–1 NaOH, 1 %

SDS) was added to 400 �L of the resuspended pel-
let and gently mixed by inverting five times the
eppendorf, and then incubated at room temperature

for 5 min. An aliquot of 325 �L of cold neutralisa-
tion buffer (3.0 mol L–1 potassium acetate buffer pH
5.5) was added and mixed by gently inverting five
times, and then incubated on ice for 15 min. Lysate
was clarified by two consecutive centrifugations at
15 000 rpm, 4 °C for 30 min and 15 min, respec-
tively, with a Sigma –1K15 centrifuge.

The plasmid concentration and its purity de-
gree was performed by hydrophobic interaction
HPLC, using a SourceTM 15PHE column (Amersham
Biosciences) as described in Diogo et al.11

The model

Neural networks are non-linear statistical data
modeling tools. They can be used to model com-
plex relationships between inputs and outputs. The
neural network chosen for the model was the gener-
alized regression neural network (GRNN).12 This

type of network has a radial basis function (RBF)
layer and a special linear layer.

This network makes a single pass through a set
of training instances and maps each instance to a
neuron in the network. The parameter S defines the
spread of the radial basis function. The first layer
has as many neurons as there are training instances
(input/target pairs). The first layer weights are set to
the input data. The second layer weights are set to
the target data, which is the desired output given
the input.

GRNN training

The input/output pairs used for GRNN training
were: Input: feeding rate, dissolved oxygen concen-
tration (DO), stirring speed, biomass, glucose, ace-
tate and plasmid at instant t; Output: variation of
biomass, glucose, acetate and plasmid. For simula-
tions, only initial conditions (of biomass, glucose,
acetate and plasmid) and on-line data (of volume,
DO, stirring speed and feeding rate) are provided to
the network. Off-line inputs on training network
were biomass, glucose, acetate and plasmid.
Off-line inputs were not provided to the validation
experiment: the network estimates this data. We
used exponential feeding rate (Table 1). The on-line
data (volume, DO and stirring speed) can be cap-
tured directly from the bioreactor unit control al-
most in real time.

In order to provide feedback predictive quali-
ties, the models must have knowledge of previous
states of the output variables, therefore these vari-
ables are on an external delay feedback loop, pro-
viding the model with previous outputs as new in-
puts. The externally recurrent neural network was
used in a similar model6 and was first developed by
Nerrand.13 It performed recursion over traditional
Multi-Layer Perceptrons (MLP). However, MLP
have a topological limitation: its number of hidden
units needs to be explicitly given, so it is a parame-
ter that is usually fine-tuned by experience.
Fine-tuning network topology usually works rea-
sonably well for systems with a limited number of
variables, or whose behaviour is known to some
reasonable extent: that is not the case of this prob-
lem. In order to avoid an extra parameter, with this
approach we use a recurrent version of the general-
ized regression neural network (GRNN). GRNN
determine their own number of hidden units, while
performing well at non-linear noisy systems.

With this model, product quantities are used to
calculate proportions between each of the products
which are used as neural network inputs along with
feeding rate, volume, DO and stirring speed. Out-
puts are the derivative of product concentrations.
The outputs are then integrated and fed back with a
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time delay, as described in Fig. 1. Proportions layer
is a linear layer that produces one output for every
combination of two inputs. Those outputs are the
proportion of each input in the sum of both. To ev-
ery quantity a small value (0.1) is added to avoid
prediction distortions caused by a division of a near
zero value.

The neural network was trained with only three
cultivations, and only a small number of inputs were
provided for it to learn the system dynamics: reactor
initial conditions, evolution over experiment time of
the off-line concentration values of biomass, glu-
cose, acetate, and plasmid, evolution of total volume
over time and the feedback control provided during
the experiment: dissolved oxygen concentration and
stirring speed. Latter values were obtained on-line
from bioreactor control unit; the other values were
obtained by a posteriori sample analysis. Samples
were acquired at irregular intervals of time. Due to
this sampling irregularity and noisy nature of data,
cultivation was divided into sections and a sec-
ond-degree polynomial curve was fitted to each
product quantity for each of the sections. The fol-
lowing four sections were defined: (i) On the batch
phase, the glucose consumption phase; (ii) On the

batch phase, the acetate consump-
tion phase, that started just after all
glucose was consumed and ended
just before the starting of the feed-
ing phase; (iii) The feeding phase;
(iv) After ending the feeding phase
and until the end of cultivation
(Fig. 2). For on-line data, linear in-
terpolation was a reasonable op-
tion as data was acquired in very
short lime intervals.

On-line data was collected
for each cultivation periodically,
but with a different number of
samples. Cultivations C1, C2, C3
and C4 were sampled, respec-
tively, 12, 15, 18 and 19 times.
On-line data samples were lin-
early interpolated in order to have
inputs (to feed the network) with
an exact 30-minute periodicity.
Therefore, as C1, C2, C3, and C4
took 11.5 h, 20.5 h, 27.5 h and
29.5 h, respectively, the number
of inputs was 23, 41, 55 and 59.

When testing an experiment,
GRNN was fed with the following
data: i) initial system conditions
(mass values of biomass, glucose,
acetate, and plasmid); ii) on-line
data over time: feeding rate, dis-
solved oxygen concentration, and
stirring speed.

We favoured mass prediction instead of con-
centration prediction. GRNN makes prediction, at
each step t, for the mass of biomass, glucose, ace-
tate, and plasmid at time t + 1, which corresponds
to 30 minutes later. These values were used to
self-feed the GRNN with the necessary inputs at the
next learning iteration and (using the acquired
on-line data) make the next prediction.

Results and discussion

Fed-batch cultivations

Fed-batch cultivations used for neural network
learning and model validation were performed fol-
lowing a similar general strategy based on an initial
batch phase followed by an exponential feeding
phase. To establish different performances on the
fed-batch cultivations, the four cultivations differ in
relation to the glucose concentration on the batch
phase or in the feeding medium, the ratio between
the C-source and N-source used and on the feeding
start period (Table 1). For example, cultivation 2
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F i g . 1 – Generalized regression neural network with external feedback applied



was conducted with two-times more glucose con-
centration on the batch phase than cultivation 4.
Cultivation 3 presented a totally different medium
composition concerning the C-source/N-source ra-
tio in relation to the other three cultivations. In
cultivations 2 to 4, the feeding phase started only
after all the acetate formed during the batch phase
was consumed, contrary to cultivation 1. During the
batch phase, the high glucose concentrations result
in acetate formation (Fig. 2), that may inhibit both
the cell growth and the plasmid production. For that
reason, it is relevant that the acetate formed during
the batch phase is consumed before the feeding
phase started. With the present cultivation condi-
tions, a high range of plasmid productions per bio-
mass and plasmid final productions was observed
(Fig. 3).

The present expression system, in a high-den-
sity cultivation conducted in non-defined and
non-selective media, presented a complex behav-
iour. For example, in cultivation 1 the feeding
started before the acetate produced during the batch
phase was metabolised, contrary to cultivation 4.
Contrary to the expected, cultivation 4 presented a
lower biomass concentration than cultivation 1, but
as expected a higher plasmid production per bio-

T. SILVA et al., Prediction of Dynamic Plasmid Production by Recombinant …, Chem. Biochem. Eng. Q. 23 (4) 419–427 (2009) 423

F i g . 2 – Fed-batch cultivation 3

F i g . 3 – Biomass, plasmid and plasmid produced per bio-
mass obtained at the end of cultivations 1 to 4 (as defined in
Table 1), in relation to the maximum value obtained in all
cultivations. The maximum values obtained for each variable
(equivalent to the graph 100 %) was for biomass concentra-
tion, plasmid produced per biomass and plasmid concentra-
tions 19.2 g L–1; 7.0 mg g–1 and 121 mg L–1, respectively.



mass than cultivation 1. One possible explanation is
that in cultivation 4, when the feeding phase was
started in an environment with low acetate concen-
tration, a 2.4-fold higher plasmid production per
biomass was obtained in relation to cultivation 1.
However, a higher plasmid content will submit cells
in cultivation 4 to a higher consumption of energy
and metabolic precursors (as nucleotide bases for
plasmid replication) and as consequent in 28 %
lower biomass concentration in relation to cultiva-
tion 1 (Fig. 3).

An increased production of plasmid per bio-
mass was observed in the following order: cultiva-
tion, 1, 4, 2 and 3. While the biomass concentration
obtained at the end did not follow a similar increase
or decreased order. If it is considered that plasmid
maintenance and multiplication represents a meta-
bolic burden to the cell, it is expectable that, in two
different cultivations, the one presenting higher
plasmid concentration per biomass will present a
lower biomass concentration. However, a decreased
biomass concentration was observed in the follow-
ing order: cultivation 1, 3, 4 and 2, different from
the observed relation of increased plasmid produc-
tions per biomass.

In recombinant systems, plasmid stability is a
very important factor. High plasmid content per
cell, which results in an extra-cellular metabolic
burden, usually represents lower biomass concen-
trations and specific growth rates in relation to cells
lacking plasmids. In complex rich media, without a
selection marker (in this work the antibiotic
kanamycin), the selective advantage of the cells that
lost part or all the plasmid could result in a cellular
population with a higher content of cells lacking
plasmid population, and consequently cultivation
productivity decrease. These factors are exacer-
bated in high-density cultivations, as in our case
where dry cell weights as high as 19 g L–1 were
achieved, using complex media and without selec-
tion pressure. Therefore, a dynamic and complex
interaction, as the one represented in Fig. 2 usually
occurs. If a kinetic model is to be defined, usually
numerous experiments to define kinetics constants
are required. Furthermore, some kinetics constants
are highly difficult to determine. An example of an
important parameter is the acetate threshold deter-
mination. It is well known that a primary barrier to
total productivity in recombinant E. coli cultivation
is the acetic acid production, which can inhibit
growth, and decrease the recombinant product
yield.14 Therefore, a common methodology to opti-
mize fed-batch cultivations is to avoid acetate syn-
thesis. However, in rich cultivation media, contain-
ing for example yeast extract and tryptone as in the
present case, the detection of acetate threshold
tracking is highly difficult.15

GRNN training and validation results

In order to test the prediction ability of the
model, we used cross-validation. For that purpose,
we used 3 cultivations for learning and one for test-
ing, and then changed the learning set (and conse-
quently the testing experiment). We used 3 different
learning-dataset combinations, always using the re-
maining one for testing: dataset D1={C1,C2,C3};
dataset D2={C1,C3,C4}; D3={C2,C3,C4}. Cultiva-
tion 3 was always included for learning and never
for testing, because this experiment was made un-
der much different conditions in comparison with
the others – see Table 1, and was deliberately intro-
duced to enforce learning diversity and therefore
generalization power, so it would make no sense to
use it for testing. Learning included both determin-
ing an optimal spread while fitting the neural net-
work to the experimental data, using that spread.
This could have been done by using just 2 experi-
ments for optimizing neural network weights and
the remaining one for adapting spread parameter.
Unfortunately, learning examples provided by just 2
experiments usually lead to very poor covering of
the search space, and using all 3 experiments for fit-
ting weights was found to be strongly desirable. We
decided to make a brute-force approach, using all
possible spread values (with a 0.01 step) from 0.10
to 2.00, for updating the neural network. We then
determined the spread that leads to the best coeffi-
cient of determination R2 (16), for the 3-experiment
learning data set. Although the spread was not up-
dated with an independent experiment, we sacri-
ficed learning generalization power in favour of
reasonable network optimization. Nevertheless, pre-
diction power was later tested with the independent
testing experiment, by measuring the coefficient of
model prediction Q2 (this measure was obtained in
the same way as R2, but applied to test experiment)
for each learning-and-testing combination.

We used Matlab Software for model design,
training and testing. Coefficient of determination R2

was obtained for learning datasets D1, D2 and D3,
under a spread ranging from 0.10 to 2.00. Table 2
shows spread results from 0.10 to 0.30; remaining
results were excluded for clarity. For each learning
dataset, obtained GRNN weights and optimal
spread parameter were used to test model prediction
(Q2) with the remaining cultivation. Therefore, D1
was tested with C4; D2 was tested with C2, and D3
was tested with C1. GRNN simulations are shown
in Fig. 4, and Q2 values are shown in Table 3. It is
usual to quantify the variables as biomass, glucose,
acetate and plasmid in units of concentration, as
represented in Fig. 2. However, to compare differ-
ent fed-batch, as represented in Fig. 4, the quanti-
ties of the variables in mass instead of concentra-
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tion should be used. Indeed, in a fed-batch the final
concentration of variables depends on the degree of
dilution of the feeding medium. For example, for
two fed-batches based on the same strategy, the one
with a more diluted feeding medium will present
the same biomass and plasmid quantities in mass,
but not the same concentrations. Fig. 4 presents the
performance of the network by comparing pre-
dicted and real values over time, at all cross-valida-
tion tests, for plasmid, acetate, biomass and glu-
cose. It shows masses instead of concentrations, be-
cause GRNN was designed to estimate variable
masses.

Model prediction coefficient Q2, for all
cross-validation tests, is shown at Table 3. We ob-
serve very good behaviour at D2 validation and an

overall good network prediction (Q2 above 0.7) at
all validations except in Acetate prediction at D3
validation and Plasmid prediction at D1 validation.
Besides obvious difficulties due to the scarce infor-
mation provided by only 3 cultivation sets of train-
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T a b l e 2 – Coefficient of determination (R2) for each dataset, for each value of Spread (we represent only the most interesting
range, from 0.10 to 0.30). For each dataset, R2 is measured for estimating biomass, glucose, acetate, and plasmid. We optimize spread
by considering the value that leads to greater R2 average. Spread was set to 0.17 for D1; 0.16 for D2 and 0.28 for D3.

Spr.
Dataset D1 = {C1,C2,C3} Dataset D2 = {C1,C3,C4} Dataset D3 = {C2,C3,C4}

bio. gluc. acet. plas. aver. bio. gluc. acet. plas. aver. biom. gluc. acet. plas. aver.

0.10 0.949 0.951 0.904 0.991 0.949 0.983 0.960 0.927 1.000 0.968 0.851 0.865 0.541 0.922 0.795

0.11 0.954 0.955 0.915 0.992 0.954 0.986 0.960 0.926 0.999 0.968 0.846 0.870 0.504 0.928 0.787

0.12 0.961 0.959 0.926 0.992 0.960 0.989 0.961 0.930 0.999 0.970 0.860 0.875 0.630 0.917 0.821

0.13 0.968 0.963 0.934 0.993 0.964 0.990 0.961 0.935 0.999 0.971 0.863 0.879 0.681 0.908 0.833

0.14 0.976 0.966 0.939 0.993 0.968 0.990 0.960 0.939 0.999 0.972 0.854 0.880 0.695 0.898 0.832

0.15 0.982 0.968 0.940 0.993 0.971 0.990 0.959 0.943 0.999 0.973 0.828 0.878 0.684 0.882 0.818

0.16 0.987 0.971 0.939 0.993 0.972 0.990 0.957 0.945 0.998 0.973 0.791 0.878 0.676 0.882 0.806

0.17 0.991 0.973 0.936 0.992 0.973 0.989 0.956 0.946 0.998 0.972 0.779 0.876 0.677 0.845 0.795

0.18 0.994 0.975 0.932 0.991 0.973 0.988 0.956 0.945 0.997 0.972 0.775 0.878 0.688 0.855 0.799

0.19 0.997 0.976 0.926 0.990 0.972 0.987 0.956 0.943 0.997 0.971 0.780 0.881 0.703 0.844 0.802

0.20 0.998 0.977 0.920 0.988 0.971 0.986 0.958 0.940 0.996 0.970 0.785 0.884 0.717 0.837 0.806

0.21 0.998 0.978 0.913 0.987 0.969 0.984 0.960 0.936 0.994 0.969 0.793 0.888 0.731 0.822 0.808

0.22 0.997 0.978 0.905 0.985 0.966 0.983 0.962 0.932 0.992 0.967 0.797 0.893 0.747 0.831 0.817

0.23 0.995 0.977 0.897 0.983 0.963 0.980 0.965 0.927 0.990 0.965 0.806 0.901 0.768 0.829 0.826

0.24 0.992 0.975 0.889 0.981 0.959 0.977 0.967 0.921 0.987 0.963 0.820 0.912 0.797 0.825 0.839

0.25 0.988 0.973 0.881 0.979 0.955 0.973 0.970 0.915 0.983 0.960 0.834 0.924 0.826 0.817 0.850

0.26 0.984 0.970 0.872 0.977 0.951 0.968 0.971 0.908 0.979 0.957 0.846 0.934 0.846 0.812 0.860

0.27 0.978 0.967 0.863 0.976 0.946 0.961 0.972 0.902 0.974 0.952 0.855 0.941 0.859 0.797 0.863

0.28 0.973 0.962 0.853 0.974 0.940 0.954 0.972 0.894 0.968 0.947 0.862 0.946 0.865 0.788 0.865

0.29 0.966 0.957 0.841 0.973 0.934 0.946 0.970 0.886 0.962 0.941 0.868 0.950 0.868 0.767 0.863

0.30 0.959 0.952 0.829 0.971 0.928 0.937 0.967 0.877 0.956 0.934 0.873 0.952 0.869 0.750 0.861

T a b l e 3 – Q2 obtained for each dataset, in respect to each
variable. Dataset D1 was validated with C4; dataset D2 was
validated with C2; dataset D3 was validated with C1.

D1 � C4 D2 � C2 D3 � C1

Biomass 0.865 0.900 0.840

Glucose 0.803 0.953 0.846

Acetate 0.735 0.922 0.564

Plasmid 0.045 0.799 0.727
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F i g . 4 – GRNN model cross-validation. Comparison between estimated and experimentally observed masses of plasmid, acetate,
biomass and glucose for: a) cultivation test C4 after learning dataset D1; b) cultivation test C2 after learning dataset D2; c) cultiva-
tion test C1 after learning dataset D3. O: experimental data; X: estimated data.



ing data, the higher analytical error associated with
plasmid prediction is most probably associated with
the low reproducible procedure of the alkaline cell
lyses method used to extract plasmid.

Conclusions

With the present GRNN model, it was possible
to predict the dynamic behaviour of high-density
cultivations of recombinant E. coli, conducted in
complex and non-selective medium. GRNN learn-
ing was based on a few numbers of complex
cultivations, on the bioreactor initial conditions and
few on-line variables: the feed-rate, percentage of
dissolved oxygen concentration and the bioreactor
stirring speed. The use of on-line measurement
variables that are routinely analyzed in the
bioreactor will simplify the control process as it
avoids the use of other measurement probes, reduc-
ing further interferences with fluid circulation and
higher costs. Oxygen- and stirring-speed-based
feedback controllers present several advantages due
to their sensitivity, versatility and on-line availabil-
ity. Therefore, the present GRNN may be used to
detect real on-line changes in the system, having
the potential to be implemented as a simple and in-
expensive on-line control of plasmid production
process. The present process is in accordance with
the Process Analytical Technology guidance that
stimulates pharmaceutical companies to develop
global methods for on-line process monitoring, to
ensure a pre-defined final product quality. This
model presents the advantages to be based on few
cultivations for learning and uses the general probes
present in a regular stirrer-tank bioreactor, operat-
ing in situ and is able to generate on-line informa-
tion on multiple key bioprocess variables.
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L i s t o f s y m b o l s

GRNN � Generalized Regression Neural Network

DO � Dissolved Oxygen Concentration

MIMO � MultiInput–MultiOutput

MLP � MultiLayered Perceptron

RBFN � Radial Basis Function Network

S � Spread of the radial basis function

RBF � Radial Basis Function
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