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Anaerobic reactors are a typical example of processes that exhibit non-linear behavior
and, also time varying parameters; hence their operation is known to be difficult to model
and control. In contrast to modeling approaches, in practice linear controllers are widely
employed for industrial processes because of their easy implementation and manipulation
by plant operators; nevertheless linear approaches are not robust when the operating condi-
tions change suddenly and/or strong disturbances are present. In order to introduce robust
controllers to these processes, this paper addresses the tracking problem for the substrate
(sulphate) control in a class of continuous bioreactors. An experimentally corroborated
bioreactor model serves as benchmark problem for advanced non-linear analysis and con-
trol techniques; taking into account system non-linearities, stability and performance
objectives over large operating regions. It is considered that, as it is common in practice,
the rate of substrate consumption exhibits uncertainty. Results show that the proposed con-
troller exhibits better dynamic performance than a classical Proportional-Integral control
tuned using the methodology suggested by Internal Model Control.
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Target system and its control

Anaerobic digesters of primary sludge

Primary sludge is the name given to those sol-
ids that settle out of the wastewater in the sedimen-
tation tanks, just after the wastewater passes
through the grit chambers. Due to its source of pro-
duction, this sludge has to be treated before waste is
disposed. Anaerobic digestion is preferred to reduce
the high organic loading of primary sludge because
of several process features, such as the rapid growth
of the biomass; moreover, it creates considerably
less biomass than the aerobic process and converts
as much of the sludge as possible to end liquid and
gas products.1

Anaerobic processes are performed, mainly, by
two basic types of bacteria: acid formers and meth-
ane formers. The acid formers are facultative and
anaerobic microorganisms that perform hydrolysis
and dissolve organic solids; soluble products are
then fermented to acids and alcohols of lower mo-

lecular mass. The methane formers are strict anaer-
obic microorganisms that convert acids and alcohol
along with hydrogen and carbon dioxide into meth-
ane.2 This complex blend of microorganisms pro-
vokes the substrate consumption rate to be a known
but uncertain parameter.

Operating stability of the anaerobic process is
very fragile; balance among several microbial pop-
ulations has to be maintained. Hydrolysis and fer-
mentation phases have the most robust organisms
that react quickly to increased food availability be-
cause of their adaptation velocity. Consequently,
volatile fatty acid concentrations increase rapidly
and could provoke the decrease of pH in the sys-
tem.3 This is kept in check by the buffering action
of the system provided by carbon dioxide in the
form of bicarbonate alkalinity, maintaining pH
range under normal circumstances. However, there
are shock-loading situations that provoke the acid
concentration to overcome the buffering action and
raise the pH out of the narrow acceptable limits,
which can kill acetogen and methanogen microor-
ganisms. If this situation occurs, methane produc-
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tion stops and acid levels rise above the tolerance of
acid formers; at this point the system fails.4 There-
fore, it is necessary to implement control systems in
order to prevent system shout-down after usual
feedstock disturbances.

Development of controllers

Anaerobic digesters lead to the necessity of ro-
bust, flexible and efficient industrial operation
modes, therefore corresponding control strategies
play important roles. A number of papers dealing
with new controllers design under the framework of
gain scheduling, predictive, optimal and nonlinear
control theories have been published in the open lit-
erature.5–8 Unfortunately, because of their mathe-
matical complexity most of them cannot be applied
to industrial plants. For this reason, part of the con-
trol theory research has to be focused on the practi-
cal application in industrial processes; especially
because there is always uncertainty in important pa-
rameters, such as the rate of substrate consumption.
In order to solve this problem, control engineers
have to design ad hoc control schemes to be able to
deal with demanding operating conditions. For ex-
ample, Aguilar et al.9 and Aguilar-López and
Martínez-Guerra10 have proposed novel approaches
to design non-linear PI and PID type controllers us-
ing sophisticated tuning techniques, which allow
new friendly rules for the controller’s gains and as-
sure semi-global robust performance.

Experimental

Microorganism: Desulfovibrio alaskensis 6SR was
isolated from oil pipelines.11 Previously, the strain was
cultured in Ravot medium12 over 15 days at 32 °C
under an atmosphere of N2-CO2 (YN2/CO2

= 8:2).
Congenital water medium (CW): A sample of

congenital water was obtained from an oil pipeline
located in the Mexican Southeast region. Chemical
determination of water: chlorides w = 64.0 · 10–3, sul-
phur w = 0.178 · 10–3, sulphate w = 0.35 – 0.40 · 10–3,
pH 8.84. A 1000 mL aliquot of congenital water
was saturated with N2 for 1 hour and enriched with
sodium lactate 6 mL, yeast extract 0.5 g, and reduc-
ing solution 5 mL (acid ascorbic � = 1 g L–1, and
sodium thioglicolate, � = 1 g L–1). The pH was
adjusted to 7 with KOH 1 mol L–1. The CW me-
dium was distributed in serum bottles of 60 mL
using Hungate’s technique;13 the samples autoclaved
at 120 °C for 15 min.

The cultures initiate of Desulfovibrio alasken-
sis in medium Ravot were used to inoculate 45 mL
of CW medium. The culture was incubated for
20 days at 37 °C. This was used to inoculate three
bottles with EC medium to different time: zero, 24

and 36 hours, respectively, and were incubated un-
der same conditions. The bacterial growth was fol-
lowed through Optical Density (OD) methodology,
consume of sulphate and production of sulphide.
Samples from the cultures were taken, avoiding
contact with oxygen, each hour. Sulphate in the me-
dium was measured by the turbid metric method
based on the precipitation of barium.14 Also, the
production of sulphide was measured by a turbid
metric method.15

The OD reading for cell growth was trans-
formed into dry mass (mg mL–1) through a standard
growth curve. The data were analyzed and only the
points that adjusted a straight line (exponential
phase) were used to determinate the growth kinetic
parameters according to Monod’s model.16

Mathematical model of the bioreactor

Anaerobic digesters are large fermentation
tanks provided with mechanical mixing, heating,
gas collection, sludge addition and withdrawal
ports, and supernatant outlets such that can be con-
sidered as continuous stirred tanks for analysis pur-
poses. Sludge digestion and settling occur simulta-
neously in the tank. Sludge stratifies and forms the
following layers from the bottom to the tip of the
tank: digested sludge, actively digested sludge,
supernatant, scum layer and gas. Higher sludge
loading rates are achieved in the high-rate version,
in which sludge is continuously mixed and heated,
anaerobic digestion is affected by temperature, re-
tention time, pH chemical composition of
wastewater, presence of toxics, and competition be-
tween methanogenic bacteria and sulphate-reducing
bacteria.17 However, for control purposes a reduced
order model which describes the dynamic behavior
of the main state variables is adequate. Therefore, a
simple mathematical model, based on classical
mass balances for biomass (�X), sulphate (�S, sub-
strate) and sulphide (�P, product) concentration
(1–6) and initial conditions under continuous opera-
tion is proposed.
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The specific growth rate is considered that fol-
lows Monod`s model16(4) and substrate and product
yields are available18 (5, 6).
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This model was integrated from initial condi-
tions up-to-steady state, finding the following sta-
tionary operating values:

� S eq, .�2 5 g L–1

� X eq, .�0 6875 g L–1 (7)

� P eq, .�2 6123 g L–1

Based on the bioreactor model, open-loop sta-
bility analysis was done in accordance with a linear
approach, evaluating the Jacobian matrix (Jx) on the
steady operating point (eq. (8)); a commercial soft-
ware was used (MathLabTM). It was found that one
eigenvalue (�3) exhibits real positive part (9),
therefore this point is unstable.
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�1 0 025�� .

�2 0 025�� . (9)

�3 0 15357� .

As a consequence of the positive value of �3, it
is possible to note that open-loop operation would
be hard to perform, because any disturbance arriv-
ing to the bioreactor would lead the process to un-
desirable operating points; this justifies the
closed-loop operation using feedback control.

Controller design

As first assumption, the bio-reacting mix is
considered as an incompressible fluid, contained in
a closed tank with the corresponding input and out-
put lines, where the convective input and output
flows are considered with the same value, in accor-

dance with the proposed mathematical model of the
bioreactor; from the above the density of the bio-re-
acting mix is a constant, in consequence the general
mass balance to include volume changes is not nec-
essary, this leads to consider the dilution rate as
control input, instead of the convective input flow.
The operation task is related to the optimum sulfate
consumption, this operating policy is generally ap-
plied when the degradation of sulfure compounds
are required for wastewater treatment.

The model given by (1–4) is transformed into
canonical control form as shown in (10). This par-
ticular equation is known as relative-degree one
system.

� ( ) ( )x f x g x u� �

y C x� (10)

Here x f x
Y

g xS S

X

X S
S in S� � � �� � �

�
� �, ( ) ( ) , ( ) ( ).

/
,

The study of systems that exhibit relative-de-
gree one is very important for many control appli-
cations, since the dynamics of a wide class of
chemical reactors can be described in this form.
Such systems are mathematically modeled as affine
systems with respect to the control input.19 Systems
that present relative-degree one display some inter-
esting features, such as the equivalent dissipative-
ness by means of state or output feedback. In gen-
eral, it is easier to stabilize dissipative systems than
non-dissipative ones.20

In what follows, non-linear systems of the form
(10) will be considered. In order to stabilize the
system defined by (10) via regulation of x, the fol-
lowing nominal I/O linearizing feedback control is
proposed (11).

u g x f xg� � �� �1 1( )[ ( )] � (11)

Here � is the control error with respect to the
set point and  g�0 is a prescribed time-constant.
The controller defined by (11) guarantees asymp-
totic stability of non-linear systems (10) with no
uncertainties and perfect measurements.21 More-
over, it imposes a linear behavior to the system I/O
dynamics by cancelling the non-linearities.

Now, introduce the following function, which
corresponds to the I/O modeling error: Due to the
existence of uncertainty (�( , )x u ) both, the perfect
knowledge of the states (x) and the perfect control
action (u) are impossible to reach. Therefore, it is
necessary to develop an uncertainty estimator (12).
Let functions f x( ) and �g x( ) be model uncertain-
ties related to the non-linear system, and g x( ) is a
nominal value of the control input coefficient. In
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the most general case, the functions f x( ) and �g x( )
are assumed to be unknown.

�( , ) ( ) ( )x u f x g x u� �� (12)

By introducing (12) into (11), a new represen-
tation of the system is obtained (13).

� ( , ) ( )x x u g x u� ��

� ( , )��F x u (13)

y h x C x� �( )

In order to simplify notation, this set of equa-
tions can be written in vector notation (14).
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Since the uncertainty term, �( , )x u is an un-
known function of the states and the control input,
the ideal control law for the regulation of x is not
causal, therefore it cannot be implemented in prac-
tice. Nevertheless, there is another way to develop
an input-output linearizing controller that is robust
against uncertainties. The procedure described be-
low provides a method to estimate the uncertainty
term, �( , ).x u Estimators or observers for states and
uncertainties can play a key role during the early
detection of hazardous and unsafe operating condi-
tions. Following this spirit, several researches have
been focused in the proposition of estimation meth-
odologies for states and uncertainties for monitor-
ing and control purposes.22–25

Now, the following state observer is proposed:
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K k k� [ , ],1 2 (15) can be rewritten as:

�� � ( � )���� �K y y

� ( � ) /K abs y y m�� �� 1
(16)

Here the dynamic equation for K is an adapta-
tion algorithm that updates the time-varying control
gain and � is a parameter design.

In order to prove the convergence of the pro-
posed observer, lets consider the dynamic equation
of the estimation error, ������ , as follows:

� �� ������ �K
(17)

� ( ) /K abs m��� � 1

Because the error is a finite quantity, there
should be a constant L that:

A1. | � | | � |��� � ���L

Taking norms in both sides of (17) and apply-
ing A1 it is obtained:

| � | | | | |� � �� �L K (18)

Now, to solve the system given by (17), consider
the function abs( )� as a positive continuous function
in the integration interval [a, b]; if M is the maximum
of the function on the domain [a, b], then abs( )� is
bounded, i.e. abs M t a b( ) , [ , ],� � � � hence:

abs Mn n( ) / /� 1 1�

n abs M b an n

a

b

� � � ��0 1 1( ) ( )/ /�

(19)

Here, n is restricted to be a positive odd num-
ber i.e. n p p Z� � � �2 1, . Therefore, for p large

enough, the following limit is obtained:

lim sup ( ) / ( )abs p

a

b

� 1 2 1�� �

� � � ��lim sup ( ) ( )/ ( )M b a b ap1 2 1
(20)

Applying the equality | | ( )� � �� sign to (18),
another quota can be found:

sign L b a sign( �) � ( ( )) ( )� � � � �� � � (21)

By solving (21) it is possible to note that the
error is bounded by:

� � � � �� � �
�
�
� �

 
!�

0
1exp ( �) ( )( ( ))sign sign L b a t (22)

Therefore the estimation error will be asymp-
totically and exponentially stable if:

�� � �( )b a L1 (23)

Now, the above observer based uncertainty es-
timator can be coupled with the non-ideal control
law, as:

u g x g� � �� �1 1( )[ � ] � � (24)

In order to analyze the closed-loop stability of
the sulphate trajectories in the reactor, the
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closed-loop dynamic equation of the mass balance
should be used.

� ( � )�  � � �� � ��
g
1 (25)

If �� �" then � �� "� ,0 the ideal control law is re-
covered together with its stability properties; otherwise,
the control error is limited as lim| � | lim ,

t t"# "#
� � �� � $ 0

accordingly with the above development.

Now, consider:
A2. – Let � � �1 2, , ,% k be the distinct eigenvalues
of the matrix A, value �j exhibits multiplicity nj and
n n n nk1 2� �%� � ; if there is any number &
larger than the real part of � � �1 2, , , ,% k that is
& ��max(Re( )),j then there exists a positive con-
stant j that satisfies:

| |exp( ) | | exp( ) | | | |A t j t� & �� � (26)

Considering assumptions A1 and A2, it is pos-
sible to find a bound for the error of the closed-loop
system (25).
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Evaluating the limit when t"#:

| | | |�
&

� "
j$

0 (28)

In order to measure the impact of the control
error � on the closed-loop operation, Ogunnaike
and Ray26 suggested the “Integral Time-Weighted
Squared Error” (ITSE) defined by (29). ITSE ex-
hibits the advantage of heavy penalization of large
errors at long time; therefore is a good measure of
resilience of the controller.

ITSE t t�
#

� � 2

0

d (29)

Results and discussion

Firstly, validation of simulation predictions vs.
experimental data show that the model proposed re-
produces satisfactorily the dynamic behavior of the
open-loop system (Fig. 1). Therefore, this model is
used as the tool to compare the development of the
closed-loop system, when the control developed
and a classic PI tuned by IMC rules26 are used.

Following industrial practice, the control input
considered is the dilution rate (input flow) and the
controlled variable is the sulphate concentration
(substrate), the controller acts at t = 35 h (as seen in
Fig. 2). Regulation and servo-control actions are
simulated by considering two set points: 1) the first
one is �S = 2.5 g L–1 of sulphate, taken from the be-
ginning of the simulation and 2) at t = 50 h it

changes to �S = 0.55 g L–1. Now, tuning gain is con-
sidered as g =1.0 h; note that when the proposed
controller acts at t = 35 h (Fig. 2) it forces the
open-loop of the sulphate concentration to reach the
first set point required, without overshoots and
short settling time; later, at t = 50 h the set point
changes and the performance is also satisfactory, in
contrast classic PI controllers acts slowly in com-
parison with the proposed methodology.

In order to explain the success of the controller
actions, gains and initial conditions shown in Table 1
are used to illustrate the observer ability to follow
the trajectory of the state variables.
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F i g . 1 – Model validation using experimental data

F i g . 2 – Performance of the process under the action of the
controller proposed

T a b l e 1 – Parameters of the observer (15)

Balance Gain
Initial condition

�/g L–1

sulphate 0.01 4.70

biomass �0.01� 1.55

sulphite 0.01 0.15

uncertainty (rate of
substrate up-taking)

0.01 0.28



As it is possible to note, estimation of biomass
(Fig. 3), sulphite (Fig. 4) concentrations as well as
uncertainty (Fig. 5) exhibit the desirable perfor-
mance, achieving actual values of the state vari-

ables via estimation; moreover, the observer pro-
posed follows adequately the dynamic trajectory.

For comparison purposes, simulation of the
closed-loop system was performed using the control-
ler proposed and a classical PI controller tuned by In-
ternal Model Control (IMC) guidelines.26 The corre-
sponding tuning was done via a step disturbance of
5 % in the nominal value of the control input (q =
0.02 L h–1). Steady-state gain is calculated as K =
1400 g h L–1, the characteristic time is  = 170 h, the
time delay is ' = 6 h, therefore the proportional gain
is Kp = 4.857 L h–1 and, integral time is I = 170 h for
the closed-loop time constant � = 35 h. The resilience
of both controllers was evaluated using (29).

Control effort is diminished by the controller
proposed with respect to the linear PI controller
(Fig. 6); moreover, this new controller exhibits
smooth performance in contrast to the oscillatory
behavior of the linear PI one.

Summing up, the controller proposed exhibits
better performance than the classical PI (Fig. 7), as
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F i g . 3 – Estimation of biomass concentration (�X)

F i g . 4 – Estimation of sulphide concentration (�P)

F i g . 5 – Estimation of the substrate uptake rate (uncertainty)

F i g . 6 – Control efforts for the linear PI control law and
the proposed methodology

F i g . 7 – Integral time-weighted error of the controller pro-
posed and the IMC-PI



consequence ITSE does not accumulate diversion
from the desired set point after t = 35 h, the instant
when the control starts to act. Moreover, during the
change of set point at t = 50 h ITSE only accumu-
lates a very small error for the controller proposed.
On the other hand, the system controlled by the PI
is able to regulate the system since the beginning,
but the effort is higher; later, after the change of set
point, the linear PI exhibits large accumulation of
ITSE (Fig. 7). Therefore, the use of these sophisti-
cated mathematical tools, in order to consider dy-
namic properties of the system, improved, notori-
ously, the closed-loop performance of this system.

Concluding remarks

Amathematical model for a class of continuous
anaerobic bioreactor, containing a sulphate reduc-
ing bacteria Desulfovibrio alaskensis, was pre-
sented in this work; the experimental validation of
the kinetic model provided satisfactory description
of the behavior of the bioreactor. The local stability
of the selected set points was analyzed via the
Lyapunov first method and both equilibrium points
were unstable, therefore the bioreactor had to be
controlled via an adaptive proportional control law
with asymptotic and exponential stability character-
istics, as proved. The proposed controller was able
to track reference signals with satisfactory perfor-
mance, as it was illustrated via numerical simula-
tions; furthermore, its dynamic performance was
better than the one exhibited by a classical PI con-
trol tuned by using IMC rules. It will be interesting
to introduce this tuning technique to actual control-
lers in industrial processes.

L i s t o f s y m b o l s

D – dilution rate, h–1

f – nonlinear smooth function

g – invertible nonlinear function

Jx – Jacobian matrix

K – observer’s gain vector, h–1

L – Lipchitz constant, h–1

q – volume flow rate, L h–1

u – control input, h–1

t – time, h

V – volume, L

w – mass fraction, 10–3

x – state variables vector, g L–1

y – measured output, g L–1

Yi/j – yield coefficient

G r e e k l e t t e r s

� – observer`s parameter, h–1

� – estimation error, g L–1

� – control error, g L–1

�S – substrate concentration, g L–1

�P – sulphide concentration, g L–1

�X – biomass concentration, g L–1

� – uncertain kinetic term, g h–1 L–1

q – control gain, h
� – specific growth rate, h–1

( – volume ratio
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