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In this paper, multi-objective fuzzy optimization is applied to finding an optimal
policy of a fed-batch fermentation process for lactose oxidation from a natural substra-
tum by a strain Kluyveromyces marxianus var. lactisMC 5. The optimal policy consisted
of feed flow rate, feed concentration of the substrate and initial concentration of the sub-
strate. The multi-objective problem corresponds to the process productiveness, and the
cost of the substrate. A simple combined algorithm guidelines the finding of a satisfac-
tory solution to the general multi-objective optimization problem. The combined algo-
rithm includes a method for random search for finding an initial point and a method
based on fuzzy sets theory, combined in order to find the best solution of the optimiza-
tion problem. The obtained optimal control results have shown an increase of process
productiveness and a decrease of the remaining objective functions.
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Introduction

Multi-objective optimization is a natural exten-
sion of the traditional optimization of a single-ob-
jective function. If the multi-objective functions are
commensurate, minimizing single objective func-
tion, it is possible to minimize all criteria and the
problem can be solved using traditional optimiza-
tion techniques. On the other hand, if the objective
functions are incommensurate, or competing, then
the minimization of one objective function requires
a compromise in another objective function. The
competition between multi-objective functions is a
key distinction between multi-objective optimiza-
tion and traditional single-objective optimization.1–5

The fuzzy sets theory (FST) is widely used for
modelling and optimization of biotechnological
processes (BTP), for fuzzy-decision-making and
optimal control of BTP.6–11

A method based on FST has been used for
optimization of fed and fed-batch fermentation
processes, and for optimization of gas-liquid
mass-transfer in stirred tank bioreactors.12–14 The
main disadvantage of this method, namely de-
creases the number of discrete values of the control
variables. A combined algorithm (CA) has been de-
veloped for elimination of this defect. The CA in-
cludes a method for random search with back step
(RSBS) for finding an initial point and a method
based on FST. CA has been used for optimization of
the passage gas – liquid for stirred tank bioreactor

also for single-objective optimization of fermenta-
tion processes.15,16

In this study, multi-objective fuzzy optimiza-
tion for fed-batch processes of whey fermentation
by a strain Kluyveromyces marxianus var. lactis
MC 5 has been developed. The single-objective
functions reflect process productiveness and cost of
substrate. CA has been used for the determination
of the optimization problem.

Materials and methods

Model of the batch process

The specific features of the process, cultivation
condition and modelling of the batch processes of
lactose oxidation from natural substratum in fer-
mentation of Kluyveromyces marxianus var. lactis
MC 5 have been shown in the paper of Petrov et
al.17 The batch model is used for identification of
the parameters of the model on the basis of real ex-
perimental data. The batch model is based on the
mass balance equations on the perfect mixing in the
bioreactor:17

d

d

X

S O X

�
� � � �

t
� ( , )

2

d

d

S

S O X

�
� � � �

t Y
��

1

1
2

( , ) (1)

d

d

O L

G
O O S O X

�

�
� � � � � �2

2 2 21

1

2t

k a

Y
�

�
� �

( )
( ) ( , )*

M. PETROV and T. ILKOVA, A Combined Algorithm for Multi-objective Fuzzy …, Chem. Biochem. Eng. Q. 23 (2) 153–160 (2009) 153

*Corresponding author: Phone: +359 2 979 3611,

E-mail: mpetrov@clbme.bas.bg

Original scientific paper
Received: December 13, 2007

Accepted: July 21, 2008



where:17,18

� �
�

�

�

� �
�

� � �m

iK K K

S

S S

O

C O O

2

2 2

2

2 2
( ) ( )

,

k a
P

V
vL G�

�

�
	



�
�52

0 38

0 23

.

. , v
q

D
G

v G
�

4

2

,
,




P n d� �60 9 3 5 0 4. ,.� Re Re ,�
�n d

v

2

�G

v G
�

�

�
	
	




�
�
�

�

0 53
3

0 014

. .
,

.
q

n d

The initial conditions of the model (1) are:

� �X X( ) .0 0
0 20� � g L–1;

� �S S( ) .0 0
44 0� � g L–1;

� � �O O O2 2 0 20
36 5 10( )

* .� � � � � g L–1.

The model parameters are identified with the
non-linear regression technique with the assistance
of a computer program which minimizes the devia-
tion between the model prediction and the actual
batch experimental data.

The kinetics model coefficients values, the ba-
sic indexes of mass transfer and the mixing of the
process have the following values (mean values):17

�m = 0.89 h–1; kS = 1.62 g L–1;

kC = 3.37 · 10–3 g L–1; ki = 0.47;

Y1 = 2.24; Y2 = 3.24 · 10–3 g g–1;

�G = 0.0123; qv,G = 120 L h–1;

n = 800 min–1, and kLa = 157 h–1.

The validation of the batch model17 is made
on the basis of the experimental correlation quo-
tients R2 and experimental Fisher quotients FE for
each variable of model (1), and statistic �.19 The
statistic � has Fm,N-m distribution.19 Their values
are:17 R2 �X = 0.993, R2 �S = 0.995, and R2 �O2

=
0.994; FE �X = 54.783; FE �S = 47.373, and FE �O2

=
50.043; � = 66.837. Their theoretical values are:
RT

2 = 0.576; FT(10, 3) = 3.71 and �FT( , )3 10 = 8.79. The
results after simulation are shown in Fig. 1.

The obtained results (correlation quotients,
Fisher quotients, Statistics � and Fig. 1) show that
the model is adequate and can be used for the
multi-objective optimization of the fed-batch fer-
mentation process:
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where: � �S Sin
� �

0
44 g L–1; qv,F (0) = 0.01 L h–1;

V(0) = V0 = 1 L.

Systems variables constrains

Physical constraints have to be applied for
most bioengineering processes. The bioreactor vol-
ume constraint can be described as follows:

g V t V1 0� � �( ) f (3)

The substrate and oxygen concentrations have
to be positive over process time. We therefore have:

g t2 0�� �� S( ) (4)

g t3 2
0�� ��O ( ) (5)

In addition, the stoichiometry of the biomass
formation from substrate and oxygen must be
obeyed, posing two constraints as follows:
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F i g . 1 – Experimental and model results of the batch pro-
cess



If the constraints in eqs. (6) and (7) are not in-
cluded in the optimization problem, an unrealistic
predicted value may be found.

Control variable constrains

The control variables in this work are: feed
flow rate – qv,F (t), feed concentration of the sub-
strate and initial substrate concentration – � Sm

, and
� S0

. Here, the decision variables are bound in
the solution space as follows:

0 30 0 10 3� � � � �q t qv F v F, ,( ) .
max

L h–1;

40.0 g L–1� � � �� � �S S Sin in inmin max
.80 0 g L–1

and 40.0 g L–1� � � �� � �S S S0 0 0
80 0

min max
. g L–1

Because the feed flow rate qv,F(t) is a time de-
pendent variable, the optimal control problem can be
considered such as an infinite dimensional problem.
To solve this problem efficiently, the feed flow rate
was represented by a finite set of control parameters
in the time interval tj�1 < t < tj as follows: qv,F(t) =
qv,F(t)(j) for j = 1, …, K – number of time partitions.

Formulation of the optimization problem

The optimization task has been formulated as a
multi-objective decision-making problem. Two re-
quirements have to be satisfied in such a deci-
sion-making (DM) problem. The first requirement
was to find the optimal values of the feed flow rate,
feed concentration of the substrate and initial con-
centration of the substrate and the corresponding
optimal objective function value. Such an optimal
solution can be obtained by using multi-objective
optimization techniques. On the other hand, the sec-
ond requirement was to check whether the optimal
solution should have satisfied the pre-assigned
threshold values. If the optimal solution does not
satisfy the threshold values, the DM has to trade-off
some threshold values. The search efforts should be
repeated to find another local optimal solution.

This problem is simply called the multi-objec-
tive optimization problem and is expressed as:

max ( ) [ ( ) ],( )Q
t

V t Vt1 0

1
0

u � �
f

X f Xf
� � g h–1 (8)
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The first objective function corresponds to the
processes productiveness, the second and third ob-
jective functions correspond to the cost of substrate.

The multi-objective optimization problem (8)–(10)
was transformed to a problem with a single-objec-

tive function by general utility function with weight
coefficients for each single utility coefficients crite-
rion. The single-objective functions Qj(u) are trans-
formed in utility coefficients �j(u) by the formula:20
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After transforming the physical parameters into
dimensionless, the generalized utility function is
composed from the type:
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where: w g g tj

j

N

k

�
�
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1

1 0; max[ , ( )];� N = 3 and
p = 5.

The optimal decision u0, maximizing the gen-
eral utility function (12) was found by using CA for
optimization.

A combined algorithm for optimization

Random search with back step algorithm

The random search algorithm is well-known
from the literature.20 Its rate of congruence, which
is also valid for other algorithms, depends on the
choice of a starting point. For augmentation of the
congruence rate, a preliminary choice of a random
set is used on the following scheme:20

A starting point in the admissible space is gen-
erated in an accidental method:

u u u u0, min, max, min,( ),i i i i i� � ��

i M� �1 2, , , ; M
m

m m

m

�
� �

�  

�
�
�

2 4 3

2 4 3

at

at

where: �i = URAND(IY). URAND(IY) is a random
generator of random numbers [0!1].

The point with the best result concerning some
criterion Qa(u), is chosen as a starting point. After that,
random search with back step algorithm is applied.

Fuzzy algorithm

Fuzzy sets theory allows the possibility to de-
velop a “flexible” model that reflects in more details
all possible values of the criterion and control vari-
ables under the developed model.8–11 The model of
the fed-batch process (2) is considered as the most
appropriate but deviations are admissible with small
degree of acceptance. It is represented by fuzzy set
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of the following type �X, �S and �O2
is come into

view approximately by the following relations:8
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The prepositional “flexible” model of process
reflects the better influence of all well values of the
kinetics variables.

Fuzzy criteria from the following type: “Qa(u)
to be in possibility higher”, is formulated and pre-
sented with the subsequent membership function:
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The membership function of the model and cri-
terion are shown in Fig. 2.

The fuzzy set of the solution is presented with
membership function of the criteria "0 and model "i:
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The solution was obtained by using the com-
mon defuzzification method BADD:9
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An effective combined algorithm for process
optimization is synthesized by using the fuzzy sets.
The generalized combined algorithm scheme is:

START

1. Input: number of the control variables m, and
single-objective function N; integer constant IY; mini-
mal, maximal and initial values of vector of control
variable: umin, umax and u0 respectively; parameter for
step HStep and initial variables for fuzzy method %i
and �; number of discrete values q of vector u.

2. Computing step h for each control variable:
h u u� �( )/ .max min HStep

3. Computing criterion Q aB
( )u

0 before optimi-
zation from (12)

4. CALL RSBS (m, IY, umin, umax, h, u0, Qa).

5. Optimal value of the vector of control vari-
ables u0 and criterion Qa(u

0) received from RSBS.

6. Possible area for each control variable Umin

and Umax, are determined in the vicinity of '20 %
the received with RSBS point: Umin = 0.8 · u0 and
Umax = 1.2 · u0. If Umin or Umax exceeds the admissible
values umin or umax, then Umin = umin and Umax = umax.

7. Computing low and upper values for fuzzy
criterion received from RSBS: Q Q

La a� �0 08 0. ( )u
and Q Q

Ua a� �1 2 0. ( ).u

8. CALL FUZZY (m, q, Umin, Umax, Q La
,Q

Ua
,

�, %, u0, Qa)

9. Optimal value of the vector of control vari-
ables u0 and criterion Qa(u

0) received from FUZZY.

10. Computing model after optimization.

11. Print results: constructive and regime pa-
rameters: d, D, L, n, qv,G; parameters of mass-trans-
fer: (P/V), �G, and kLa, model before and after opti-
mization; optimal values of control variables u0 and
criterion Qa(u).

12. END
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F i g . 2 – Membership functions: a) Membership function
for the model; b) Membership function for the
general criteria



The generalized FUZZY Algorithm scheme is:

START

1. Computing discrete values of each control

variable: u
U U U

i

k

q
�

� �

�

( ( ))

( )
,

min max min

1
(i = 1, …, m),

(k = 0, …, q).

2. Computing of deviations �i from the basic
model (2);

3. Computing membership function "i(t, u) for
model from (13).

4. Computing membership function "0(t, u) for
criterion from (14).

5. Computing the membership function of the
decision "D(t, u) from (15).

6. Obtaining of solution u0 using defuzzifica-
tion operator from (16)

7. Returns optimal values of control variables
u0 and criterion Qa(u).

END

All programs were written using a FORTRAN
77 programming language version 5.0. All compu-
tations were performed on a Pentium IV 1.8 GHz
computer using a Windows XP operating system.

The obtained results after optimization were:
� Sin
�50 8. g L–1 and � S0

51 4� . g L–1. It should be
noticed that the values of � Sin

and � S0
are obtained

with the dynamic process optimization. The results
of the general kinetic variables before and after op-
timization with CA are shown in Fig. 3.

The optimal values of process productiveness –
criteria Q1(u) and feed flow rate are shown in Fig. 4.

Results and discussion

The obtained results after optimization for the
feed concentration and initial concentration of the
substrate � Sin

�50 8. g L–1 and � S0
51 4� . g L–1

show that the difference between them is insignifi-
cant, and the mean value between them can be cho-
sen � �S Sin0

51 1� � . g L–1.

The obtained results (Fig. 3a) show increase of
the biomass concentration by more than 16 %
(19.69 g L–1 – before optimization and 23.0 g L–1

after optimization).

The residual substrate concentration (Fig. 3a)
decreases by more than 69 % (0.146 g L–1 – before
optimization and 0.044 g L–1 after optimization).

Fig. 3b shows good oxygen consumption from
the microorganisms – at the end of the process it
decreases by more than 7 %, from 6.05 mg L–1 to
5.63 mg L–1.

Process productiveness increases by more than
19 % (Fig. 4a).
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F i g . 3 – The kinetics variables of the process, before and
after optimization: a) Profiles of the biomass and substrate
concentration, before and after optimization; b) Profile of the
oxygen concentration, before and after optimization

F i g . 4 – The profile of the feed flow rate and the criteria
Q1(u), before and after optimization: a) Criteria Q1(u), before
and after optimization; b) Optimal profile of the feed flow rate



Conclusions

1. Proposed combined algorithm for optimiza-
tion, based of random search method with back step
and fuzzy sets theory decreases vastly the time for
the solution of the optimization problem. The appli-
cation of the combined algorithm eliminates the
main disadvantage of the used fuzzy optimization
method, namely decreases number of discrete val-
ues of the control variables. Thus, the algorithm al-
lows problems with larger scale to be solved. The
combined algorithm can be used for decision of
other optimization problems in the area of bio-
process systems.

2. The obtained optimal profile of the feed
flow rate and obtained results after the theoretical
optimization have shown clearly practical applica-
bility of the used techniques, in particular, for maxi-
mization of process productivity.

3. The obtained results from the study have
shown that multi-objective optimization is a more
complex approach to minimizing the risk in the de-
cision-making procedure and maximizing the for-
mulated objective.

L i s t o f s y m b o l s

D – bioreactor diameter, m

d – impeller diameter, m

�FT – theoretical values of the Fisher quotients for sta-
tistics �

FE – experimental values of the Fisher quotients

FT – theoretical values of the Fisher quotients

IY – integer constant

Ki – inhibition constant, –

kLa – volumetric mass-transfer coefficient, h–1

KS, KC – Monod saturation constants, g L–1

L – height of the liquid in the bioreactor, m

m – number of the control variables

M – number of the generated point’s

n – agitation speed, min–1

N – number of single-objective functions, N = 3

p – number of constraints, p = 5

P – power input, W

q – number of discrete values for u

Q1(u)– process productiveness, g h–1

Q2(u) and Q3(u) – the cost of the substrate, – and g

Q
La – low values of general criteria

Qa – general criteria

Q
Ua

– upper values of general criteria

Qc,j – most superfluous result for Qj(u)

Qmax,j– maximal values of Qj(u), (i =1, …, 3)

Qmin,j– minimal values of Qj(u), (i = 1, …, 3)

qv,F – feed flow rate, L h–1

qv,G – gas flow rate, m3 s–1

R2 – experimental values of the correlation quotients

R2
T – theoretical values of the correlation quotients

Re – Reynolds number, –

rk – penalty parameters, (k = 1, 2, …, p)

t – process time, h

u – vector of control variables,

u u
,

�
(
)(

*
+*� � �q tv F inS S( )

, ,
0

umin and umax – possible limits for vector of control vari-
able

V – working volume, L

vG – gas velocity, m s–1

wj – weight coefficients

Y1 and Y2 – yield coefficients, g g–1

G r e e k L e t t e r s

�G – gas hold-up, –

� O
B A2 ,

– oxygen concentration before and after the opti-
mization

� O2
– dissolved oxygen concentration in liquid phase,

g L–1

� O2

*
– equilibrium dissolved oxygen mass concentra-

tion, g L–1

�S – concentration of substrate, g L–1

�Sin
– feed concentration of substrate, g L–1

�S0
– initial concentration of substrate, g L–1

�SB A,
– substrate concentration of the before and after

the optimization, g L–1

�X – biomass concentration, g L–1

�XB A,
– biomass concentration before and after the opti-

mization, g L–1

� – liquid density, kg m–3

, – liquid dynamic velocity, Pa s

� – parameter, characterized the compensation degree

� – parameter, characterized the compensation degree

� – specific grown rate of biomass, h–1

� – statistic �
"i – membership functions, (i = 0, …, 3)

%i – parameters, given of weights of "i(u)

�i – uniformly distributed random numbers,
(i = 1, 2, …, M)

�m – maximal grown rate of biomass, h–1
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