G. RONG et al., A Classification Framework for Process Operation Optimization ..., Chem. Biochem. Eng. Q. 22 (2) 233-243 (2008) 233

A Classification Framework for Process Operation Optimization
and its Application in a Triazophos Plant

G. Rong,” H. Gu, B. Jin, and J. Shao

State Key Laboratory of Industrial Control Technology, Zhejiang University,
Hangzhou, 310027, P. R. China

Original scientific paper
Received: March 12, 2007
Accepted: August 19, 2007

Knowledge-based operation optimization methods may suffer from difficulties in
modeling the chemical processes and solving the mathematical equations. In this paper, a
data-based classification method for operation optimization is introduced. In contrast
with other fields, chemical process is characterized by time delay and interaction be-
tween upstream and downstream units. By rebuilding historical data and constructing a
group of multiple classifiers, both of the characterized problems are overcome. Some
qualitative operational advice may extract from the group of multiple classifiers. As a re-
sult, the operation of chemical processes may achieve to a reachable optimal state using
rolling optimization strategy by updating the classifiers. In addition, some special
data-preprocessing techniques are considered to improve the efficiency of the classifica-
tion. This classification framework customized for chemical process helps a Triazophos
plant to improve the productivity of Triazophos from 93.3 % to 95.8 % after implemen-
tation of the proposed method for more than one year.
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Introduction

Process operation optimization intends to max-
imize the objective function by adjusting operating
conditions under guidance. Mathematical program-
ming methods are known to solve process operation
optimization problems, but may fail when they are
applied to large and complex chemical processes.
Modeling the chemical processes may have the fol-
lowing significant limitations: not all processes are
understood in basic engineering and scientific prin-
ciples; some product properties may not be ade-
quately described and measured; the number of
skilled model builders is limited, and the cost asso-
ciated with building such models is thus quite high.
In contrast with mathematical programming meth-
ods, data mining which is also popularly referred to
as Knowledge Discovery in Databases (KDD) is
data driven. It constructs and trains some patterns
from historical data, in order to reflect salient attrib-
utes and behaviors of the phenomena. When the
chemical plant runs under the guidance of the
steady state optimizer, the process variables always
fluctuate more or less, and the suggested operating
conditions are not exactly the optimal, because
there are no modeling methods which can present
the whole ‘fact’ of a plant. The object of this work
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is thus to provide a method capable of extracting
some patterns from the historical data which reflect
the hidden relations between the maximal (mini-
mal) output variables (e.g. productivity of main
chemical product) and the operating conditions. In
other words, data mining used herein is the comple-
ment technology of mathematical programming, in
order to make the output variables approach the un-
known optimal state.

Recently, data mining has been applied to
chemical industries for quality design,! process
modeling,? fault diagnosis,® planning and real-time
scheduling tasks, supply chain management and
process optimization.* In contrast to the specific so-
lution of mathematical programming methods, data
mining for process optimization finds the qualita-
tive relations between operational conditions and
objective function. Both classification* and associa-
tion rules® methods are able to finish this task in
simulation processes. However, these methods*>
suffer failure when applied to practical processes,
especially in the large-scale processes comprised by
a series of upstream and downstream processes, be-
cause there are some specific problems in chemical
processes like time delay and interaction between
upstream and downstream units. Time delay means
that the real impact factor to OVs[t] (the value of
objective variables that need to be optimized at time
t) is OCs[t — 7] (the value of operating conditions at
time ¢ —t, where 7 is the time constant) instead of
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OCs[t]. OVs[t] may be even impacted by a group
of records of operating conditions within a period
of time, e.g. data between OCs[t—7—¢&,] and
OCs[t — T — &,], taking the upstream-downstream re-
lations of processes into consideration. Dubitable or
even wrong answers may be resulted in when gen-
eral data mining methods are directly introduced
into chemical industries regardless of these specific
problems.

In contrast with the quantitative optimization
methods used in chemical engineering, the main
disadvantage of data mining methods is that it usu-
ally gives only qualitative guidance. Therefore, we
utilize a rolling optimization strategy to fill the gap
in this paper. The operating conditions are modified
a little in the direction of guidance at each period.
As a result, the states of objective variables are im-
proved step by step. Besides the rolling optimiza-
tion strategy, a customized classification framework
for operation optimization is proposed. Under this
framework, sample time based records are trans-
formed into event-based data to overcome the time
delay, and time-related multiple classifiers are con-
structed to reduce the influence of upstream-down-
stream relationship. Decision tree is selected as the
type of classifier in this work, so the proposed
method involving multiple decision trees is called
decision forest. This framework needs the participa-
tion of process engineers. Its performance is shown
by its application in an industrial Triazophos plant.

This work aims at presenting the whole steps to
analyze the operation data and to optimize the oper-
ating conditions using classification technology. In
the remainder of this paper, the rolling optimization
strategy and customized classification framework
are proposed, the flowsheet of Triazophos plant is
described, the general and specific data preprocess-
ing methods are shown, our decision forest algo-
rithm of the framework is proposed, the perfor-
mance of the proposed framework is analyzed, and
conclusions are made orderly.

Rolling optimization strategy and
customized classification framework

As a complement to mathematical program-
ming, the goal of data mining is to approach the
reachable optimal objective according to historical
operation data. Initially, the operating conditions
are set to be the optimal values calculated by the
steady state optimizer. However, the engineers may
adjust the operating conditions to better ones ac-
cording to their experiences when the production
process does not perform in accordance with the de-
scription and prediction of the optimizer. As a re-
sult, redundant process data reflecting knowledge

and experience of many process experts were re-
corded. The classification technology is utilized to
extract the historical optimal operating conditions
that lead to maximal objective function. Then the
operating conditions will be adjusted according to
the rules or suggestions generated from the classifi-
cation results. After a time, the process data has re-
freshed and the data mining task will be restarted
again. After that, a new cycle will be executed in-
cluding data mining, operation adjusting and data
collecting. This rolling optimization strategy is just
like a typical control system, shown in Fig. 1. It
should be noted that it is not an online optimizing
system, since it needs a long time to collect enough
process data.

More controller actuator object
profit Data mining o
and decision 1> Modifying Process
+ K- . parameters plant
making
transducer

Collecting data

Fig. 1 — Rolling process operation optimization strategy
using data mining technology

The object of operation optimization is always
to maximize the productivity and profit or to mini-
mize the consumption of energy and material. The
objective function may be a hybrid function involv-
ing these objects. In order to make readers who are
not familiar with data mining understand easily,
some representations should be illustrated: operat-
ing conditions such as flow rates, temperatures and
so on, which influence the objective variables, are
called attributes to a classifier in classification
field, while the variables involved with the objec-
tive function such as productivity, profit and the
amount of pollution emission, are called classes to
a classifier in classification field. The adjusting di-
rection of operating conditions may be discovered
from the qualitative rules between attributes and
classes in the classification system.

A general classification framework for most
engineering fields such as retail, finance and
telecom is shown in Fig. 2(a). In such typical fields,
the concerned data are transaction records and one
record represents one event. In chemical processes,
however, one event means the whole process of
adding, flowing, blending and reacting of the same
batch of material, so the delay between these ac-
tions or operations should be removed from the da-
tabase. In addition, upstream-downstream relation
of units in a chemical plant is also a characteristic
trouble in chemical engineering, which means that
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Fig. 2 — Customized classification framework for chemical
engineering

the current state of downstream unit is influenced
by the state of upstream unit in an early period. In
contrast, the attributes are independent in other typ-
ical fields. In this paper, a customized classification
framework for chemical processes improved from
the general classification framework is proposed, as
shown in Fig. 2(b). The delay factor is overcome by
transformation from recorded data to event-based
data and the upstream-downstream relation is weak-
ened by adopting multiple classifiers explained in
the section of data preprocessing and algorithm of
decision forest. The multiple classifiers strategy in
this paper is time related and weighted, while the
original one is sampling based, seeing Section algo-
rithm of decision forest.
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Processes description
of Triazophos plant

0,0-diethyl-O-(1-phenyl-1H-1,2 4-triazol-3-yl)
phosphorothioate is the chemical name of Triazo-
phos, which is an effective pesticide. Its formula is
C,H,(N;O4PS. It is widely used to destroy pests in
rice, trees and vegetables.

The manufacturing process of Triazophos
mainly includes four units: synthesis, extraction,
isolation and recycle. Triazophos is made in the
synthesis unit, and separated from other byproducts
in the extraction and isolation units. In the recycle
unit most of the solvent is recycled. Therefore, the
synthesis unit dominates the quality and quantity of
the Triazophos plant, and is the key unit for opti-
mizing the process operation to improve the pro-
ductivity of Triazophos.

Fig. 3 shows the synthesis unit flow diagram.
Ethyl chloride, toluene and sodium alcoholate are the
three main raw materials to produce Triazophos, in
which sodium alcoholate is made by the upstream
processes. The synthesis unit comprises three main
reactions, which are executed in 1., 2. and 3. reactors
respectively. In 1. reactor, phenyl hydrazine reacts
with urea to produce 1-phenylsemicarbazide. Its re-
action equation is shown as follows:

R
NHNHCNH,

HNH, ©
+ NH,CNH;—

In 2. reactor, 1-phenyl-3-hydroxy-1,2,4-triazole
is generated from 1-phenylsemicarbazide and for-
mic acid. Its reaction equation is shown as follows:

+ NH;

2. reactor 3. reactor

extraction
downstream
equipments

steam

Fig. 3 — Simplified synthesis unit flow diagram in the Triazophos plant
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In 3. reactor, 1-phenyl-3-hydroxy-1,2.4-triazole
reacts with O,0-diethylthiophosphoryl chloride to
produce Triazophos with the help of triethylamine
and acetone. Its reaction equation can be written as:

ON Yo+ o Bt

\n }OH * C=Focn,

trlethylamme @
“acetone kN}

OVs are supposed to be the objective variables
which need to be optimized and OCs are supposed
to be the operating conditions which are manipu-
lated variables and used to realize the optimization
target.

The performance of each reactor relies a lot on
its temperature. 7, 7, and 7 shown in Fig. 3 de-
note the temperatures of three reactors respectively.
According to process engineers’ experiences, these
three variables should be added to the set of operat-
ing conditions OCs due to their importance.

Additionally, the productivity of Triazophos
also relies on the utilization factor of raw materials.
Therefore, the flow rate of each kind of feedstock
and the percentage of each kind of feedstock out of
the flows of all the raw materials are very important
for the sake of operation optimization. In Fig. 3, O,
0y and Q. represent the flow rate of materials ethyl
chloride, toluene and sodium alcoholate respec-
tively. The proportion of different feedstock will be
called P in the following discussion. According to
the guidance of process experts, 7}, T,, Ts, O4, Op,
Q. and P, are the major variables which need to be
optimized in order to improve the productivity of
Triazophos. In other words, all of these variables
should be selected into operating conditions OCs.

The objective variable of operation optimization
selected in this paper is the productivity (conversion
rate of key materials) of Triazophos, denoted by Py
The target is to find better settings of operating con-
ditions OCs in order to achieve higher P,

H OC,Hs
\OC Hs

Data preprocessing

The effect of data mining technologies quite re-
lies on the work of data preprocessing. In this sec-
tion, basic and general work of data preprocessing
is introduced first. Subsequently, two customized

preprocessing steps are proposed to overcome two
special problems, time delay and upstream-down-
stream relations.

Basic data preprocessing

The database of Triazophos plant is huge and
there are many variables. However not every vari-
able is closely related to the objective variable. In
addition, not all of the instruments are always
working correctly in the plant and some values may
be wrong. So firstly, the original database should be
made compact and precise through data preprocess-
ing.

The basic preprocessing tasks include feature
selection (also called variable selection) and data
selection (including missing data and outliers detec-
tion).? In addition, due to errors of instruments
there is a special preprocessing step called data rec-
onciliation, which should be first taken into consid-
eration in chemical engineering.

Data reconciliation. Data reconciliation is a
method to improve the data quality in chemical pro-
cesses. Gross error, which may be caused by mal-
functioning instruments, measurement biases and
process leaks, dose a lot of harm to the data quality.
Literature 7 reviewed many methods about detect-
ing gross errors. Fortunately, if the variable having
a gross error is not the member of OCs or OVs se-
lected by feature selection, it will not influence the
accuracy of data mining. Otherwise, the data of se-
lected variables having gross errors should be re-
moved or adjusted.

Missing data processing. There are many
methods to process missing data.!’(Chapter 3 Missing
value can be filled by process engineers, or re-
placed by a global constant or the mean attribute, or
even the most probable value using regression or a
Bayesian formalism. However, we choose to ignore
the records with missing values directly, which is
the simplest and most secure way when the percent-
age of such records is low.

Outlier detection. According to data distribu-
tion analysis!7(Charter 8) and expert suggestions, nor-
mal range of operation values can be evaluated ap-
proximately, which can be used to exclude noisy or
invalid data further.

Feature selection. There may be thousands of
sensors in a plant, so feature selection is necessary.
Feature selection can be divided into two steps, se-
lecting by expert experience and machine learning
methods respectively.
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According to the process engineers' analysis,
most of the control variables that influence the final
productivity lie in the stage of synthesis, shown in
Fig. 3. P; is the only variable selected into the set
of objective variables OVs. It should be noted that
variable P; is also called class in the classification
field as mentioned above. In addition, the operating
conditions OCs, which are also called attribute in
the classification field, are selected by process ex-
perts, including flow rate of material A (Q,), flow
rate of material B (Qy), flow rate of material C
(Qc), heating temperature 1 (7;), heating tempera-
ture 2 (7)), heating temperature 3 (75), and propor-
tion of material A to C (P,).

Table 1 — Features selected into classification from Tria-
zophos plant

Classifier items Selected features

OCs (attributes) O O3, O, T, T, T

OVs (classes) P;

The second step is to detect whether there is a
smaller set of attributes whose information is the
same with that of the full attribute set. A preferred
set of attributes is the one that is highly correlated
with the objective variable but has low inter-corre-
lation. A data mining tool Weka'®®at1 is introduced
here, which provides a function called select attrib-
utes to select a better feature set. The only thing
you need to do is to choose attribute evaluator and
select method.'oCharter 1) Ag ysed herein, we choose
ClassifierSubsetEval on attribute evaluator plus
BestFirst on select method. The result shows that
there is a better and smaller subset comprising Q,,
0y, O T, T,, T;. Indeed, P, is too stable to de-
vote to classification. The final selected features are
shown in Table 1.

Transformation to event-based data

Oultl, Opltl, Oclel, Th[t], Tolz], Ti[t] represent
the sensors' instant value at sample time #, and are

called recorded data. The delay between feeding
and changes of T, T,, T; for the same batch of ma-
terial are supposed to be 7,, 7,, 75 respectively. It
means the liquids that are fed to the system at time
point ¢, will be heated at time (¢ + 7,) in 1. reactor,
at (t+ 7,) in 2. reactor and at (¢ + 7,) in 3. reactor.
Therefore, Q,[7], Q5lf], Oclfl, T\t + 7,1, Tolt +7,]
and T3[¢+ 7,] represent a series of events happen-
ing to the same batch of material, which are called
event-based data herein. This group of valuables is
denoted by OCs[¢] which stands for a series of op-
erating conditions for the material fed to the system

at time z. In addition, there is also a period between
obtaining the productivity of Triazophos P, and ex-
ecuting corresponding OCs for the same batch of
material. Assuming that the period is #n, then the
real record of P, related to operating conditions
OCs(t] in the original database is P, [f+ n].

This step seems simple but it is very important.
The optimization is fruitless if the recorded data are
directly used, because data sampled at the same
time do not represent the operating conditions for
the same batch of material. The time constant 7, 7,,
7, and n can be obtained from the system designer,
process engineer or evaluated as follows:

T=Cap/Aver(Q , + Oz +O.) (D)

where Cap represents the total capacity from
feedstock to the corresponding reactors. For exam-
ple, the Cap value is the sum of the capacities of
feeding pipelines, 1. reactor and 2. reactor when
evaluate 7,. Additionally, Aver(Q , + O, + O ) de-
notes the average flow rate of the three kinds of
feedstock.

Overcome upstream-downstream
relations

Consider the following situation: a former
batch of material fed at time ¢ is still reacting in 1.
reactor while the batch of material fed at time
(t+ ¢) enters into 1. reactor. It means that the oper-
ating condition 7)[t+ 7, + ¢] relates not only to
feedstock at time (¢ + ¢) purely, but also to all of the
feedstock from ¢ to (¢#+ ¢). To some extent, such
phenomena widely exist in continuous processes in
which a variable of one time point is influenced by
another variable in a time interval.

Consider another fact: the delays, like 7,, may
be up to several hours, whereas the sample time of
DCS (Distributed Control System) may be only 1
minute. This may generate a big shift when re-
corded data is transformed into event-based data,
even though only a tiny error happened to the eval-
uation of the delays.

Since the phenomena mentioned in above cases
are caused by the relations of upstream/downstream
processes and units, we call these upstream-down-
stream relations. These phenomena break the appli-
cation worth of data mining optimization methods.
In order to overcome these problems, a method in-
tegrating fuzzy concept and multiple classifiers is
introduced here. Taking these phenomena into con-
sideration, P,[¢+ n]is not decided only by single
group of OCs|], but by all the operating conditions
within time period [ — r, ¢+ r]. As used herein, 2r
is supposed to be the valid range, which may be
calculated as follows:
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2r = AverCap/Aver(Q , + 0, +0.) (2)

where AverCap is the average capacity of all reac-
tors. It should be emphasized that even within the
range the impact factors of the operating conditions
at different time are different more or less. The
principle to allot the weights to different time will
be discussed in detail in the next section.

Algorithm of decision forest

In this paper, decision tree is chosen as the
type of classifier. We use the idea of multiple classi-
fiers to overcome the upstream-downstream rela-
tions. An algorithm called decision forest is pro-
posed subsequently, which means multiple decision
trees.

Decision tree

Decision tree is a kind of classical classifica-
tion method in data mining. It is chosen as the clas-
sifier algorithm prototype in the framework of Fig.
2(b), because the importance of each attribute may
be shown on decision tree directly.

Building a decision tree is a procedure in
which the data sets are divided recursively. At the
beginning, all the training data are in one set. Then
the algorithm chooses the best attribute to split ac-
cording to some criteria. Then the records are parti-
tioned into two or more sets according to the values
on this split attribute. Obviously, the data sets after
splitting are purer than their parents. The operations
are repeated until the requirement is satisfied or
no more partition can be done. So the key point
of decision tree is how to choose the splitting
attribute and when to stop. Early works on decision
tree try to give answers to these two questions.
The representatives included CART,” ID3'° and
C4.5,"' whose split criteria were maximum infor-
mation gain (maximum entropy reduction), maxi-
mum information gain ratio and GINI Index respec-
tively.

However, the early approaches are all mem-
ory-based ones, in which the whole data set must be
kept in memory, but nowadays databases are be-
coming larger and larger. Therefore, the latest study
began to concentrate on the scalability of algo-
rithms. A series of scalable algorithms were pro-
posed, such as SLIQ.,® SPRINT'? and RainForest.!?
These works made it possible to apply decision
trees in the real world. Any of these algorithms may
be chosen as a part of the decision forest algorithm
described later.

Multiple classifier systems

The idea of multiple classifier systems (MCS)
is developed to reduce the risk of the single classi-
fier. MCS consist of an ensemble of different classi-
fiers and a decision function for combining classi-
fier outputs.!® Therefore, MCS involves two main
phases: the design of the classifier ensemble and the
design of the combination function. Different clas-
sifiers are generated on different subsets from the
whole original database. Bagging and boosting are
the two main data sampling techniques.® There are
many combination functions of arbitrary complex-
ity,'# from simple ones like the majority voting rule
to complex ones like ‘trainable’ functions, which
are all available. In this paper, the majority-voting
rule is adopted to coordinate the multiple decision
trees.

The total number of records in the original data
set is supposed to be N. ‘Bagging’ picks up records
randomly from the data set for NV times, one record
a time. Therefore, in the generated data set by bag-
ging, there may be some repeated items, while oth-
ers never appear. ‘Boosting’ does not do sampling
on the data set. It gives different voting weights to
different records according to some rules. This op-
eration is done to the whole original data set several
times. And every time we obtain a new training
data set. Therefore, one record in different training
sets may have different voting weights. Literature 8
pointed out that the precondition to show the ad-
vantages of bagging and boosting is the instability
of the learning machine on the data set.

Decision forest algorithm

The algorithm called decision forest proposed
in this paper is explained according to Triazophos
processes, but it can be extended to other processes.
Decision forest means a group of decision trees.
The main processes of decision forest algorithm are
as follows: first, preprocessing the original data ac-
cording to the basic and customized data prepro-
cessing methods introduced in the last section; sec-
ond, constructing a series of decision trees based on
different training datasets, wherein the differences
lie on the setting value of parameter n, the time
constant between P,[t+ n] and OCs[¢]; third, ar-
ranging weights to each decision tree by the major-
ity voting rule; fourth, analyzing the results of deci-
sion forest.

It can be noted that the training datasets of the
classifier ensemble here are generated according to
practical meanings and following a rule, instead of
‘bagging’ or ‘boosting’ explained above, which are
both based on statistics and with less actual mean-
ings.
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As discussed in Section data preprocessing, all
the operating conditions in period [t — r, ¢+ r] are
influencing the objective valuable P,[¢+ n] in the
Triazophos plant. Therefore, the idea of MCS is
adopted to make the mining results more rational
by integrating the influences of different operating
conditions within the range. In this paper, the
method to generate subsets for multiple classifiers
is different from traditional sampling technologies.
Assuming (2m + 1) classifiers are used to make deci-
sion, classifier (v, w;) denotes the i-th classifier
(i € N), where v, represents the time shift in [—7, 7]
and w; is the weight of this classifier. Classifier
(v,, w;) is built on the new records comprising at-
tributes OCs[t+v;] and class P,[t+ n]. It is as-
sumed that the sample time of DCS is denoted by
samp and the number of classifiers is (2m+ 1), then
the step length of time shift between neighbors de-
noted by p is calculated as follows:

p= fix(r/(m-samp))+1 3)

where fix(-) is the rounding function. Assuming
classifier (v, w,) arranges from left to right on [—7 7]
uniformly, then v, is calculated as follows:

j—r, i=1
r, i=2m+1;

Obviously, the closer to the center of range
[—r, ] v; get, the more the corresponding operating
conditions OCs[t+ v, ] influence on the objective
variable P,[¢t+ n] Therefore, it can be seen that
classifier (v,,,,, w;) should have the highest weight
while classifier (v, w;) and classifier (v,,., W;)
should have the lowest one. Assuming that the
weight descends in exponential function from cen-
ter to two sides, then

[m+1—i]

w,=a , where 0<a <1 &)
The pseudocode of the algorithm to con-
struct decision forest is shown in Fig. 4, where
BuildTree(DB) may be any decision tree algorithm
mentioned in the first subsection of this section.

A subsequent problem is how to make a deci-
sion on the generated multiple decision trees. The
majority-voting rule is selected herein to make a de-
cision from decision forest. Assuming there are ¢
objective valuables in optimization problem, and
objective variable i is divided into ¢’ discrete val-
ues, the total distinct values of all objective valu-
ables is denoted by y, namely, there are y classes. ¢;
denotes the j-th class out of y classes. It can be seen
that

Algorithm: DecisionForest

Input: Database DB, m, n, r
Output: A Forest

Method:

1. Transform recorded data to event-based data,
then obtain new records: {OCs[t],OV s[t + n]};
Forest =), New_DB=empty;

For i=1 to (Zm+1)

Compute v; and wy; using Eq.(3)-(5);

For t=1 to (length(DB)-v;)

A

New_record={OCs[t + v ],0Vs[t + n] };
New_DB=New_DB+New _record;

=1

End;

© ®

Classifier(v;, uw;)=BuildTree(New _DB);
10. Add Classifier(v, wy ) into Forest;

11. New_DB=empty;

12. End;

13. Return Forest;

Fig. 4 — Algorithm to construct decision forest

y=[]r' (6)

To instance Z,

assign Z=>¢; if

2m+1 2m+1

EAji: xEAki, where (7
i=1 i=1

1
Lif Z— ¢, on Classifier(v,,w,);
“0,if Z+ ¢, onClassifier(v,,w,);

g <

®)

It means that for a given group of operating
conditions the future state of objective variables is
predicted to belong to class j if most of the decision
trees arrange it to class j.

Practice in Triazophos plant

The classification framework proposed in this
paper is applied to a Triazophos plant, Zhejiang
Xinnong Chemical Co., Ltd., which had a manufac-
turing capacity of 10,000 tons of raw drugs annu-
ally. We preprocessed raw data and constructed de-
cision forest in the means mentioned above, and
wherein we select scalable algorithm SLIQ® as the
algorithm of BuildTree(DB) in Fig. 4. It should be
noted that the attributes and classes in SLIQ are dis-
crete value. Therefore the continuous values of OCs
and OVs should be split into discrete intervals. As
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used herein, each variable in OCs and OVs is split
into two parts, one part is bigger than average and
denoted by 1, another is smaller than average and
denoted by 0. Obviously, the objective of optimiza-
tion is to promote P, as much as possible, and the
classification framework is used to discover the
corresponding operating conditions with the high

P. In this plant, n is approximated to 10 hours and
r is around 1 hour. The results of three decision
trees are shown in Fig. 6, Fig. 5 and Fig. 7 when
m=1,and the time shifts setasv, =—05h,v, =0h
and v, =05 h respectively. In these figures, a big-
ger rectangle means a data subset, DB Size and
Aver(P;) are two features of this subset. DB Size in-

DB Size: 612911
Aver(Pr): 0.932

=

DB Size: 306957
Aver(Py): 0.910

S

DB Size: 170604
Aver(Pr): 0.886

DB Size: 136353
Aver(Pr): 0.940

=

DB Size: 305954
Aver(Py): 0.955

DB Size: 157279
Aver(Pr): 0.936

DB Size: 148675
Aver(Pr): 0.976

DB Size: 92414
Aver(Py): 0.878

DB Size: 78190
Aver(Py): 0.896

DB Size: 76780
Aver(Pr): 0.952

DB Size: 59573
Aver(Pr): 0.925

DB Size: 89068
Aver(Py): 0.924

DB Size: 68211
Aver(Pr): 0.952

DB Size: 80101
Aver(Py): 0.964

DB Size: 68574
Aver(Pr): 0.990

Fig. 5 — Decision tree of v =0h

DB Size: 613652
Aver(Pr): 0.933

@

DB Size: 307120
Aver(Pr): 0.910

DB Size: 170765
Aver(Pr): 0.885

DB Size: 136363
Aver(Py): 0.941

DB Size: 306524
Aver(Pr): 0.956

DB Size: 158016
Aver(Pr): 0.936

DB Size: 148508
Aver(Py): 0.977

DB Size: 92315
Aver(Pr): 0.878

DB Size: 78450
Aver(Pr): 0.894

DB Size: 76594
Aver(Pr): 0.952

DB Size: 59769
Aver(Pr): 0.926

DB Size: 89490
Aver(Pr): 0.926

DB Size: 68526
Aver(Pr): 0.950

DB Size: 80080
Aver(Pr): 0.965

DB Size: 68428
Aver(Pr): 0.991

Fig. 6 — Decision tree of v =—0.5h
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DB Size: 612203
Aver(Pr): 0.933

@

DB Size: 306550
Aver(Pr): 0.910

@

P

DB Size: 305645
Aver(Pr): 0.955

DB Size: 170433

<P

DB Size: 136125

P

DB Size: 156295

Aver(Py): 0.887

DB Size: 149350

Aver(Py): 0.939

Aver(Pr): 0.937

Aver(Py): 0.975

DB Size: 92584
Aver(Pr): 0.878

DB Size: 77849
Aver(Pr): 0.898

DB Size: 76542
Aver(Pr): 0.951

DB Size: 59583
Aver(Pr): 0.924

DB Size: 88325
Aver(Pr): 0.922

DB Size: 67970
Aver(Pr): 0.955

DB Size: 80476
Aver(Pr): 0.962

DB Size: 68874
Aver(Pr): 0.989

Fig. 7 — Decision tree of v = 0.5 h

dicates how many records are included in this sub-
set, while Aver(P;) gives the average conversion
rate of raw material in this subset. The smaller rect-
angle means the selected attribute to be split. The
value in ellipses represents that the sub nodes of it
all locate in this discrete interval. Taking Fig. 5 as
example, the number of records reaches 612,911 in
the database of v, =0 h and the average P, equals
0.932, the best splitting variable is Q, by gini in-
dex,’ then the database are divided into two parts,
which are Q,=/low and Q,=high. There are
306,957 records in the subset in which Q, = low,
and 305,954 in which Q, = high. Then both the two
nodes will be split in the same way, one by one, a
tree is built following that way. Every node in the
tree can generate a rule except the root node. The
rule corresponding to the leaf node is called a com-
plete rule in the tree.

The trees differ a little from each other as
shown in the three figures, which demonstrate that
the data mining results are very confident under the
range of error tolerance of v. In this situation, the
result of the majority-voting rule is near that of the
single classifier, however, it is still necessary to
adopt MCS in order to guarantee the decision secu-
rity.

Assuming a=0.5, then w,=w;=0.5 and
w, =1 following eq. (5). From Figs. 5, 6 and 7, it
can be seen that the structures of all the triple trees
are the same. However, the average P, and the fre-
quency of each rule are different from forest and

Table 2 — Decision rules with high Py in decision forest

1 Q,=low, Qg =high, T;=1low = P;=0.952 Sup=12.5 %
2 Q,=high, T, =low, T3 =high = P;=0.952 Sup=11.1 %
3 Q,=high, T, =high, T, =high = P;=0.990 Sup=11.2 %
4 Q,=high, = P;=0.955 Sup =49.9 %

5 0,=high, T, =high = P,=0.990 Sup =243 %

trees. We can find three useful rules 1, 2 and 3
shown in table 2 for improving P, which is gener-
ated and combined from triple trees. Beyond the
complete rules, there are two other rules A and B.
In this table, Sup means the percentage of records
supporting this rule. The P, and Sup of rule k are
calculated as follows:

2mHl i )
> (w,zjk= Pyl AllRe c(i)

i=1
2m+1
2
i=1

E%:H(Wi S/ AllRe c(i))
Sup(k) = = 2m+1
Ei=1 Wi

where f;; is the count of records supporting rule k&
in tree i, and A//Re c(i) is the total records of tree
i. Rule A is an integrated form of rules 2 and rules

Pr(k)=

)
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3, while rule 3 is also included in rule B. It can
be noted that the average of P, ascend one by
one from rule A to rule B, until rule 3, which
are extracted from the root down to the leaf
on the same branch. It can also be seen that the
closer to the leaf, the lower the Sup of nodes will
be. However, the support value Sup of rule 3 is
already high enough. Generally speaking, the
complete rule is more effective and worthy of ad-
mission than incomplete one, as long as the support
value Sup of complete one is high enough to be ac-
cepted.

Table 3 — Solutions to improve productivity of Triazophos

1: decrease Q,, increase Qjp, decrease 75
2: increase Q,, decrease T, increase T}
3: increase Q,, increase 75, increase T

In rules 1, 2 and 3, the values of class P are all
labeled with 'high'. Accordingly, there are three so-
lutions can be extracted to improve productivity of
Triazophos, as shown in table 3.

Therefore, there are three different solutions to
be considered, and they cannot be integrated as a
single solution because directions of the same vari-
able sometimes are different, like 7, in solution 2
and solution 3. We should choose the best solution
among the three through cooperation with process
engineers. Firstly, solution 1 is the best when con-
sidering cost. It costs no more than current solution,
because in this solution the only thing that should
be increased is material B, and B is a recyclable
material in Triazophos plant. Theoretically, solution
2 can achieve the same conversion rate as solution
1, but it needs to increase feed of material A and
temperature of 3. reactor, which makes the solution
cost more. Although solution 3 can achieve the
highest conversion rate in theory, it is also the most
costly one. It needs to increase the amount of
steams of 1. and 2. reactors to heighten their tem-
peratures, and increase the feed of material A at the
same time. These costs may be very high, and they
may be beyond the benefit from the improvement
of P, So solution 1 is the most competitive one,
which is effective and economic.

According to the selected solution, process en-
gineers modified settings of some operation vari-
ables to the average of the records related with rule
1. Repeat processes of producing, collecting data,
classifying and modifying parameters as Fig. 1
month by month, then the settings move to the right
direction step by step.

Table 4 — Change of operating variables over one year

0, Op Oc T, T, Ty Pr

Previous 489 929 1426 65 70 72 0.933

Current 369 1002 1097 62 68 70 0.958

The variables that have been modified over one
year were listed in Table 4. Compared to the values
of last year, O, was decreased by 24 %, Q, in-
creased by 8 %, and Q. decreased by 23 %, while
the proportions (Py) keep the same. T, T, and T;
were all decreased a little. As a result, the conver-
sion rate of the expensive material sodium
benzoxazolate has been improved a lot, from last
year's 93 % to today's 95 %, and the productivity of
Triazophos ascend from 93.3 % to 95.8 %. This
case demonstrated the efficiency of the classifica-
tion framework for Triazophos plant optimization.

Conclusions

The design values are usually not the real opti-
mal ones that a real plant can achieve, due to in-
complete modeling and assumptions during mathe-
matical programming. A closed-loop data mining
strategy looking like feedback control systems is
proposed in this paper, as a complement for mathe-
matical programming, driving the settings of oper-
ating conditions to optimal step by step in practical
Triazophos plant. A customized classification frame-
work for process operation optimization is also pro-
posed, which is the core of the rolling optimization
strategy. Chooses process variables into two parts,
one is objective variables, another is operating con-
ditions, and the purpose is to find in which condi-
tions the objective variables can reach the state
we expected. As you know, time delay and up-
stream-downstream relations generally exist in
chemical industries, which are ignored in previous
studies of data mining application to process opti-
mization. Before classifying, a lot of work involv-
ing with data preprocessing have to do first. Espe-
cially, recorded data must transform into event-based
data to make the data in a new record be interre-
lated in order to overcome time delay. One record
of objective variables is actually influenced by a
group of records of operating conditions instead of
by one record of that when take upstream-down-
stream relations into consideration. Therefore, we
construct a group of decision trees, so called deci-
sion forest, to make a decision by changing the time
shift between objective variables and operating
conditions. Training datasets for every decision tree
are organized in a meaningful and time-related way,
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which differ from common sampling technology
like bagging and boosting. The stepwise
closed-loop strategy and customized classification
framework have been applied to a Triazophos plant,
and the practical results over one year demonstrate
the efficiency of the proposed method.
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Nomenclature
OCs - set of operating conditions
OVs
Py proportion of different fluids
Q, - volume flow rate of ethyl chloride, L h™!

set of objective valuables

Qp - volume flow rate of toluene, L h™!

Q¢ - volume flow rate of sodium benzoxazolate, L h™!
T, - temperature of 1. reactor, °C

T, - temperature of 2. reactor, °C

T; - temperature of 3. reactor, °C

P, — productivity of Triazophos
P, — proportion of ethyl chloride to sodium benzoxa-

zolate
n - producing time from raw material to product
r — time range influencing current point
w  — weight of multiple classifiers

Sup — support of a rule
p - time interval between neighboring classifiers

Greeks
T — time delay
v — offset on time dimension of multiple classifiers

¢ - class label
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