
Optimal Sensor Spacing in Experimental Determination
of Heat Transfer Coefficient by Inverse Analysis

F. Balkan* and M. H. Sezar

Department of Chemical Engineering, Ege University,
35100 Bornova, Izmir, Turkey
Tel: +90 232 388 76 00, Fax: +90 232 388 77 76;
*E-mail: firuz.balkan@ege.edu.tr

It is shown that there exists an optimal spacing of thermo-sensors in the determina-
tion of the experimental heat transfer coefficient of a fluid flowing over a plate. The
problem is considered as an inverse heat transfer problem with long thin fin model. The
heat transfer coefficient of the fluid is estimated from simulated steady-state temperature
measurements along the plate. It is shown theoretically that the inner product of the sen-
sitivity vector, JTJ, should be maximum and the group m n d should be equal to 1.692 to
obtain the most accurate coefficients, where m is a system parameter containing heat
transfer coefficient h, n is the number of thermo-sensors and d is the sensor spacing.
These results are also verified by simulated experiments.
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Introduction

Inverse heat transfer problems have become
popular over the last three decades, especially
through the development of computer hardware.1–3

These problems, having been used in a broad area,
can be classified as inverse heat conduction, inverse
convection problems, and parameter estimation,
function estimation, estimation of boundary condi-
tions, and estimation of geometry of boundary of
thermal systems. In direct heat transfer problems,
the temperature field of a given thermal system
with all known physical and thermal properties is
determined by solving the mathematical model that
describes the process using all the initial and/or
boundary conditions of any kind. Whereas, in in-
verse heat transfer problems (IHTP), some un-
known physical and thermal properties and/or some
unknown boundary conditions of the system are es-
timated by processing the space-wise or transient
temperature measurements taken in the system. In
other words, a direct problem determines the “ef-
fect” from the “cause(s)” while an inverse problem
estimates the “cause(s)” from the “effect”. The
“causes” to be estimated from temperature mea-
surements are sometimes physical parameters such
as heat transfer coefficient, thermal conductivity,
constant wall heat flux, etc.; sometimes the parame-
ters of the functions for the temperature-dependent
physical properties, the space-wise or transient vari-
ations of wall heat flux or inlet fluid temperature,
etc. Hence, an inverse problem may often be con-
sidered as a “parameter estimation problem”. Due

to experimental error that is inherent, the parame-
ters can be determined only with some uncertain-
ties; hence, the term “estimation” is used. More-
over, the parameters to be estimated may often be
very sensitive to experimental errors. For this rea-
son, inverse problems belong to a class called
“ill-posed”, while direct heat transfer problems are
“well-posed”. For a problem to be well-posed, its
solution should satisfy the following three condi-
tions introduced by Hadamard:3 existence, unique-
ness, and stability with respect to input data. De-
spite the ill-posed character, the solution of an in-
verse problem can be obtained through its reformu-
lation in terms of a well-posed problem, such as a
minimization problem associated with some kind of
regularization (stabilization) technique. Different
methods based on such an approach have been suc-
cessfully used in the past for the estimation of pa-
rameter and functions. They include the
Levenberg-Marquardt method of parameter estima-
tion and the conjugate gradient method of parame-
ter and function estimation.4

Sawaf and Ozisik5 estimated temperature de-
pendent thermal conductivity and heat capacity of
an orthotropic medium using Levenberg-Marquardt
method. Huang and Yan6 used conjugate gradient
method to estimate thermal conductivity and heat
capacity simultaneously. Huang, Ozisik and Sawaf7

estimated contact conductance during metal casting
using conjugate gradient method. Bokar et al.8 pre-
sented an inverse analysis for estimating the
time-varying inlet temperature in laminar flow in-
side a parallel plate duct. In these and most of other
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works of inverse analysis, the parameter or parame-
ters were estimated successfully using different op-
timization algorithms and the effect of experimental
conditions -such as the number, standard deviation
and the location of the thermo-sensors(s), spacing
and/or time interval for temperature measurements-
on the uncertainty of the estimated parameters were
discussed.1–8

In this work, an inverse analysis is performed
in the determination of convective heat transfer co-
efficient of a fluid in cross-flow over a thin long
plate as shown in Fig. 1. The heat transfer coeffi-
cient, h, is considered as an unknown system pa-
rameter and it is determined from the simulated
steady-state temperature measurements along the
plate. This classical problem was discussed by
Beck2 using temperature responses of the long thin
fin model. Actually, in the experiments the wall
temperatures are measured, but average plate tem-
peratures are used in the calculations. Thin fin ap-
proximation assumes that surface and averaged in-
tegrated temperatures are equal at all the points
along the plate. Thus, plate temperatures do not
vary across the plate wall. This model or the iso-
thermal thin wall approach assumes zero Biot num-
ber and leads us to the ideal surface with zero thick-
ness but finite thermal conductivity. Accuracy of
thin fin approximation has been studied and it has
been shown that the error of approximation is de-
creased as the Biot number decreases.9 This model
considerably simplifies the procedure of parameter
estimation.

The objective of the work is obviously not to
report the heat transfer coefficient estimations for
this relatively simple system. Instead, it is to show
the existence of a criterion for the best parameter

estimation. It is clear that every system will have its
own criterion. It is hoped that this paper will be a
challenge in obtaining such criteria for more com-
plex systems.

In the classical experimental determination of
heat transfer coefficients, the surface heat flux is
measured, as well as the surface and bulk fluid tem-
peratures. The heat transfer coefficient is then cal-
culated from the classical Newton’s law of cooling.
The most important disadvantage of the classical
technique is the difficulty in measuring the heat
flux, due to inevitable heat losses. Whereas, the in-
verse technique used in this work does not need the
measurement of heat flux. The heat transfer coeffi-
cient is determined by steady-state temperature
measurements only. Since a system parameter is to
be determined, the actual IHTP can be considered
as a “parameter estimation” problem. The two im-
portant questions arising immediately are associ-
ated with the optimal spacing between thermo-sen-
sors and with the uncertainties in the parameters to
be determined. In this work, as a new topic of prac-
tical interest, a criterion for optimal spacing be-
tween sensors is developed to obtain the parameter
with minimum uncertainty, and the “expected” pa-
rameter uncertainties are calculated for different ex-
perimental conditions. The theoretical results are
then tested with simulated experiments.

The direct problem

The thermal system is shown in Fig. 1. A fluid
at temperature T% flows cross-wise in z-direction
over the top surface of a long narrow thin plate of
length L. All surfaces are insulated except the top
surface which is subjected to convective cooling
and the left surface is maintained at known constant
temperature T0 (say, by steam condensation). With
the thin fin model, conduction is assured to be in
x-direction only. Convection loss with a known uni-
form heat transfer coefficient h occurs in y-direc-
tion. Uniform h along x-direction is assured by
choosing cross-flow rather than parallel-flow over
the plate. The objective of the direct problem is to
determine one-dimensional steady-state tempera-
ture distribution, T = T(x) from the known coeffi-
cient h.

The steady-state energy balance for this system
is given by the following equation:

d

d

2

2
2 0

&
&

x
m
 � (1.a)

where,

& = T – T% (1.b)

m hP kA� c (1.c)
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F i g . 1 – Simulated experimental system and steady-state
temperature profile along thin long plate (Bi << 1)



P is perimeter, k thermal conductivity, Ac cross-sec-
tional area of the plate.

Boundary conditions are as follows:

1) x = 0; & = &0 = T0 – T% (1.d)

2) x = L; d&/dx � 0 (long plate) (1.e)

The general solution of the above differential
equation is

& = A e–mx + B emx (1.f)

The constants A and B are determined from the
boundary conditions:

A = &0/[1 + exp(–2 m L)] (1.g)

B = &0 exp(–2 m L)/[1 + exp(–2 m L)] (1.h)

The inverse problem

For the inverse problem considered here, the
parameter m of eq. (1.a) is regarded as an only un-
known, when the root (left face) temperature of the
plate, T0 (or &0 ) is assumed to be known. The addi-
tional information obtained from steady-state tem-
perature measurements (Ti) taken at n discrete
points (xi) along the plate is used to estimate the pa-
rameter m, from which the heat transfer coefficient
h can be calculated later using eq. (1.c).

Simulated experimental temperatures

Obviously, it is inevitable to conduct real ex-
periments to determine the values of parameter m.
However, the temperature profile can be obtained
by simulated temperature measurements as ex-
plained below, since the aim of this study is to find
out a criterion for the optimal sensor spacing in de-
termining the parameter with minimum uncertainty
for fixed number of sensors, rather than determin-
ing the value of the parameter. Simulated tempera-
tures at discrete points xi (i = 1, 2, … n) are ob-
tained by adding random errors, generated from a
“random number generator” code, to the tempera-
tures that are the solutions of the direct problem, as
follows,3

Yi = Ti (direct) + ' � (2)

where
Yi – simulated temperatures containing random

errors
Ti (direct) – exact temperatures of the direct

problem
� – standard deviation of the measurement er-

rors
' – random variable with normal distribution.

For 99 % confidence level –2.576 < ' < 2.576.

So, we have a vector of simulated tempera-
tures,

Y = (Y1, Y2, … , Yn) (3)

as well as a vector of temperatures calculated from
the mathematical model for any m:

T(m) = (T1, T2, … , Tn) (4)

The estimation of the parameter m is based on
the fitting of the measured temperature distribution
along the plate to the theoretical model given by eq.
(1.f). The elements of two vectors above are the
temperatures at discrete coordinates xi = i d, where
d is equal spacing between temperature sensors. Es-
timation of the parameter is based on the minimi-
zation of the ordinary least square norm given by
the functional,

S m Y T mi i
i

n

( ) [ ( )]� 

�

	 2

1

(5)

where
S(m) – sum of squares of errors (or the objec-

tive function)
Yi = Y(xi) – measured temperature at xi
Ti(m) – calculated temperature at xi
Eq. (5) can be written in matrix form as

S m m mT( ) [ ( )] [ ( )]� 
 
Y T Y T (6)

The parameter m, is evaluated as
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d
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Let m* be the exact parameter value that could
have been obtained if the measurements were error-
less. Since the measurements are subject to the ex-
perimental errors, the parameters are inevitably de-
termined with any uncertainties. Neglecting higher
order terms, T(m) may be linearized in the vicinity
of m* as,

T T J( ) ( *) ( *)m m m m� � 
 (8)

where J = dT(m*)/dm is the sensitivity matrix3 (or,
sensitivity vector for one parameter problems). Due
to inevitable random errors in the measurements, an
error vector E may be defined as follows,

E = Y – T(m*) = (e1, e2, e3, …, en) (9)

The components of the vector E are assumed to
be described by Gaussian distribution and different
components to be non-correlated:3

<ei> = 0 and <ei ej> = �2 �ij (10)
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where �ij is Kronecker delta. From eq. (9),

Y = E + T(m*) (11.a)

and using eq.(8),

Y E T J� � 
 
( ) ( *)m m m (11.b)

Y T E J
 � 
 
( ) ( *)m m m (11.c)

Therefore, the objective function S(m) in eq.
(6) may be written as

S m m m m mT T T( ) ( *) ( *)� 
 
 � 
E E J E J J2 2 (12)

The derivative of S(m) is set to zero to mini-
mize it:

d

d

S m

m
m mT T( )

( *)�
 � 
 �2 2 0J E J J (13)

From the above equation, the uncertainty of the
parameter m is obtained as

m m
T

T
 �*
J E

J J
(14.a)

Now,
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For single parameter problem, since the sensi-
tivity matrix J is a vector, JTJ becomes the inner
product. Additionally, since the errors are assumed
to be non-correlated (<ei ej>i)j = 0), eq. (14.b) re-
duces to
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From eq. (10), e e en1
2

2
2 2 2� �(� �� . Thus,

we find
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and

�
�

m m m
T

� 
 �| *|
J J

(16)

It follows from eq. (16) that �m, the uncer-
tainty of m, will be minimum in the experiment for
which the inner product (JTJ) is maximum. The rel-

ative uncertainty of m for any experiment can now
be estimated as follows,

� � �

�

�m

m m m m mT T T* * ( )
� �

*
�

J J J J J J

(17)

As seen, to minimize the relative uncertainty in
the experiments with n thermo-sensors, (m2 JTJ)
should be maximized.

A criterion for optimal sensor spacing, dopt

By definition, i-th component of the sensitivity
vector is

J i i
mx

i
mxAx e Bx ei i�
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 (18)
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Using a discrete variable +i = mxi defined by
Ilyinsky et al.10 and substituting the expressions for
A and B into the above equation, we have
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JTJ can be normalized as follows,
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For large number of points the summations
may be replaced by integrals, and defining a com-
bined variable z = m n d, the summations in eq. (22)
may be written in integral form as follows,
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Using eq. (21), the relative uncertainty of pa-
rameter, eq. (17), can be rewritten as

� � �
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For m L values not being so small (around 10
in this work), exponential term can be ignored and
eq. (24.a) simplifies to

� �
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m

m T* ( ) *
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0 J J

(24.b)

or,

�
�

&
m

m
T

�
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It follows from eqs. (24.b-c) that, for a given
fluid flow system (namely m* is fixed), for fixed
base temperature difference, &0, and standard devia-
tion of thermo-sensor, �, the parameter uncertain-
ties become minimum when (JTJ)* is maximum.
The variation of (JTJ)* with z for various values of
m L are shown in Fig. 2. It follows from the figure
that (JTJ)* does not have a global maximum but lo-
cal maxima for m L < 5. For m L . 5 however, the
graphs overlap and posses unique global maximum
at a unique z value. This value is found analytically
to be z = m n dopt = 1.692. This value is independent
of standard deviation of temperature measurements
and it can be used as a criterion for optimum spac-
ing for the best estimation of the parameter.

Simulated experiments and verification
of the criterion

A number of simulated experiments were con-
ducted to verify the theoretical result for the opti-
mum spacing. In the experiments two different
numbers of sensors (n = 5 and 10) and various sen-
sor spacings were used to show the variation of
(JTJ)* with z for two standard deviation values (� =
0.01 and 0.10). The value of parameter m in each
experiment was determined by Levenberg-Mar-
quardt method of minimization. Any experiment
was repeated 50 times under the same conditions
and the calculated values were averaged. The aver-
aged results are given in Figs. 3 and 4. In all the ex-
periments the exact value of m and L were taken as
10 m–1 and 1 m, respectively, so that the condition
m L . 5 is justified.

The validity of 1-D approximation
in the simulated experiments

The Biot number for a long plate of thickness t
insulated at one-side is defined as:

Bi
h t

k
� (25.a)

From eq. (1.c), h can be written as,
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F i g . 2 – Variation of ( )J J
T

theo
* with z for various m L values

(n = 5)

F i g . 3 – Variation of average (JTJ)* with average z.
(a) n = 5, (b) n = 10



h m
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The cross-sectional area and the perimeter of
the plate (see Fig. 1) are Ac = W t, P = W + 2 t.

So,

h m
kWt

W t
m kt�

�
�2 2

2
(Since t << W) (25.b)

Biot number can then be simplified as follows,

Bi
ht

k

m kt t

k
mt� � �

( )
( )

2
2 (25.c)

m was taken as 10 during the simulated experi-
ments; taking, for example, 2 mm for plate thick-
ness, t, then Biot is calculated as

Bi mt� � / / � 0
( ) ( ) . . .2 3 210 2 10 00004 01

So, 1-D approximation is also justified.

Results and discussion

First of all, as seen in Figs. 3–4, the standard
deviation of temperature measurements, �, has

no effect on experimental (JTJ)* values, as ex-
pected from the theory. Although experimental
(JTJ)* values are lower than theoretical ones, as
n increases from 5 to 10, experimental values ap-
proach theoretical ones. For example, the ratio
( ) ( )* *
J J J J

T T
exp theo is 0.779 for z = 0.5 when n =

5; this ratio increases to 0.887 for z = 0.5 when n =
10. It is no surprise since we assumed large number
of sensors in replacing the summations by the
integrals in the theoretical part of the study.

The maximum ( )*
J J

T
exp occurs at z = 1.900 for

� = 0.01 and at z = 1.899 for � = 0.1 when 5 sensors
are used; while z value is 1.700 for both standard
deviations when 10 sensors are used. These z val-
ues, especially 1.700, are very close to 1.692 found
theoretically for infinite number of sensors.

According to eq. (24.c), the uncertainty of the
parameter, �m, will be minimum when (JTJ)* is
maximum. Thus, �m is expected to be minimum at
z = m n d = 1.692 for any �, theoretically. This is
verified by the simulated experiments as shown in
Figs. 4(a)-(d). These figures also show that the un-
certainty is almost linearly proportional to �, as in
eq. (16).

The result that zopt = m n dopt = 1.692, may be
used as a criterion in determining heat transfer coef-
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F i g . 4 – Variation of average uncertainty of m with average z. (a) n = 5, � = 0.01, (b) n = 5, � = 0.10, (c) n = 10, � = 0.01,
(d) n = 10, � = 0.10



ficients from the real temperature measurements. In
the lack of a prior information on h (namely, m), a
few number of experiments are conducted with
some trial sensor spacings. Calculated z values are
then compared with zopt. Comparisons lead us to the
optimum spacing. Obviously, less effort is required
when one has prior information on h. For example,
if m is expected to be in the range of 10–20, and if
the maximum number of sensors which can be
placed practically is 10; optimum d will be in the
range of 16.92–8.46 mm.

Due to the exponential characteristic of the
temperature distribution, the “weak information”
(nearly parallel temperature profile) near the end
of the plate will lead us to the diminishing in accu-
racy of the parameter due to the increasing negative
effect of the experimental errors. So, there must
be an optimum fraction of the plate length to
take all the measurements. The above criterion
may also be used to determine this fraction as fol-
lows:

Interpreting (n dopt) as the measured length,
Lmeas, the criterion can be written as, m Lmeas =
1.692. We know also that m L . 5. Dividing both
expressions side by side, we obtain Lmeas/L
 0.338.
This means that n sensors with equal spacing
should be placed from the left side up to at most
33.8 % of the plate length.

Conclusions

In this study, it is shown that a criterion for op-
timum sensor spacing exists in the experimental de-
termination of heat transfer coefficient of a fluid in
cross-flow over a thin long plate by an inverse anal-
ysis. The steady-state temperatures along the plate
are simulated by adding random experimental
noises to the temperatures of the direct problem.
The inverse problem is solved and the system pa-
rameter m that contains the coefficient h is deter-
mined using Levenberg-Marquardt method of
minimization. The simulated experiments are re-
peated with two different numbers and standard de-
viations of temperature sensors. After theoretical
work, the condition z = m n d = 1.692 is found as a
criterion, and it is verified by the simulated experi-
ments. The criterion assures the best coefficient
value that can be determined experimentally for any
number and quality of temperature sensors, al-
though the accuracy in the coefficient value will in-
crease obviously with increasing number and qual-
ity of sensors used. It is planned to extend the pres-
ent study to more complicated systems with more
than one parameter.
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L i s t o f S y m b o l s

Ac – cross-section area of plate, m2

d – spacing between temperature sensors, m

ei – random measurement error

E – error vector

h – convective heat transfer coefficient, W m–2 K–1

J – sensitivity matrix (or vector)

k – thermal conductivity of plate material, W m–1 K–1

L – length of plate, m

m – system parameter, hP kAc , m–1

m* – exact parameter value, m–1

n – number of sensors

P – plate perimeter, m

S – sum of squares of errors

Ti – calculated temperature, °C

x, xi – conductive heat transfer direction, discrete coor-
dinate for temperature measurements, m

y – convective heat transfer direction

Yi – measured temperature (by simulation), °C

z – flow direction, combined variable, m n d, –

G r e e k s y m b o l s

�m – uncertainty of parameter m

�ij – Kronecker delta

+i – discrete variable, mxi
' – random variable with normal distribution. For

99 % confidence level –2.576 < ' < 2.576.

� – standard deviation of the measurement errors

& – excess temperature, T – T%, °C

, – dummy variable

S u b s c r i p t s

% – bulk fluid conditions

0 – root (left side) of the plate

i – discrete value for x, T and Y

meas – measured

opt – optimum

S u p e r s c r i p t s

T – Transpose
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