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In this work are applied three global optimisation algorithms for adaptation of the
mathematical model of the central metabolism of Escherichia coli to data obtained in the
experiment with response to glucose impulse. Applied is the adaptive simplex method by
Nelder-Mead, evolutionary algorithms of differential evolution, and simulated annealing.
The original model has been modified by the following steps: closure of Entner-
-Doudoroff pathway with pyruvate balance, introduction of phosphoenolpyruavate
carboxylase and carboxykinase reactions in the balance of phosphoenolypyravate, ac-
count for loss of pyruvate in biomass synthesis, change in kinetic rate expressions for
several enzymes, and partial re-estimation of the kinetic parameters by the global optimi-
sation algorithms. The modified model correctly predicts observed oscillatory response
to glucose impulse in concentrations of pyruvate and p-ribose-5-phosphate. To discern
metabolic control, evaluated are dynamic intracellular fluxes by the model simula-
tion around the following network branching metabolites: a-p-glucose-6-phosphate,
6-phospho-p-gluconate, glyceraldehydes-3-phosphate, and pyruvate. The simulation of
the fluxes around phosphoenolypyruvate show that phosphoenolpyruavate carboxylase
and carboxykinase (PEPCK) activity and phosphotransferase system (PTS) are closely
dynamically tied, indicating that glycolysis and TCA metabolisms can not be separated
under the given transient conditions. Overall model adequacy is evaluated by standard
deviations of the model predictions and experimental data for each metabolite.

Key words:

Escherichia coli, central metabolism, glucose impulse, dynamic metabolic flux analysis,
global optimisation

Introduction ate application of genomic data in mathematical
modelling are the structural metabolic models ex-
pressed in a form of complete stoichiometric matri-
ces including all possible reactions coded in ge-
nome. The stoichiometric matrix is used as a set of
mass balance constraints which need to be comple-
mented with experimental data of extracellular
rates, and/or thermodynamic feasibility of reac-
tions, with possible inclusion of cybernetic princi-
ples for purposeful cell adaptation. From industrial
stand point, cell adaptation is strongly dependent on
numerous extracellular (reactor) conditions, such as

From industrial biotechnology view point, met-
abolic engineering is the improvement of cellular
activities by manipulation of enzymatic transport
and regulatory functions of the cell with the use of
genetic engineering manipulations with purpose to
improve the present and, more importantly, to de-
velop new biotechnological processes. Availability
of experimental techniques to manipulate genome
greatly exceeds our present information and under-
standing of complexity of cell regulation. In order
to have a rational approach in application of possi-

ble genetic manipulations, a systematic study of the
system by means of metabolic engineering rules is
needed.'? Development of mathematical models of
cellular metabolism is needed to guide planning of
experimental genetic engineering manipulations.
Due to availability of genomic data of many indus-
trially important microorganisms, metabolic mathe-
matical models are based on complete information
on details of reaction networks. The most immedi-
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composition of synthetic or natural nutrients, tem-
perature, pH, hydrodynamics, viscous shear stress,
and others. In order to develop metabolic models
under realistic unsteady state bioreactor conditions,
experimental data on intracellular activity are
needed under variate working conditions.

Important attempts to cope with the metabo-
lism regulation are models that include, at kinetic
level, the main fluxes of the central metabolism
(phosphotransferase system, glycolosis, penthose-
-phosphate, precursors).’” These works provide es-
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sentially new experimental information on response
of intracellular concentrations of Escherichia coli
under transient conditions imposed by Dirac or
Heaviside glucose impulse in a laboratory bio-
reactor. The data are obtained with very sophisti-
cated and fully automated sampling and analytical
system (based on LC-MS/MS). Intracellular com-
position is sampled at the frequency of 4 Hz (i.e. in
intervals of 0.25 s). Due to a short time window of
observations (about 20 s) gene regulatory effects do
not have an impact on the observations, and only
complex feedforward and/or feedback interaction of
metabolites and coenzymes with enzymes are ob-
served. Samples are immediately frozen and deacti-
vated, and due to high sampling rate, data are be-
lieved to capture essential dynamic effects of en-
zyme kinetics and regulation. The data are average
values of cells from samples drawn from bioreactor
at intensive mixing rate to avoid spatial distribution
of cells with different metabolic states.

This work is aiming to use the experimental
data of D. Degenring,® with glucose impulse fed to
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Escherichia coli K12, to test global optimisation
techniques for estimating the kinetic parameters,
and to improve an extended kinetic model for the
E. coli metabolism. Especially, predictions of the
experimentally observed complex oscillatory be-
haviour in pyruvate and D-ribose-5-phosphate
(which the original model does not predict) will
provide a “strong” test for model validation. Based
on the improved models a dynamic metabolic flux
analysis around the key branching metabolites will
be determined.

Modelling

The original model, adopted from literature
and reduced by using the parameter sensitivity and
the principal component analysis, is a stiff system
of 10 highly nonlinear ordinary differential equa-
tions including 24 expressions for the kinetic
rates.®’ The model equations can be written in the
following matriceal form:
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Here the kinetic functions of the original model
have been modified by the following functions:?

for phosphotransferase system

Veprs " CoLe * Cpep

In Fig. 1. the reaction network is graphically
presented, by including the model reactions, indi-
vidual metabolites, and pools of metabolites intro-
duced after the model reduction. Balances for the
cofactors (ATP, ADP, NADH, NAD) are not ac-
counted for explicitly in the model, being included
into the reaction kinetic as experimentally deter-
mined time varying interpolation functions.®’

Due to the complex interconnectivity between
the flux balances, and the wide range of time scales
in the enzyme kinetics, integration of the model
equations is subjected to possible numerical er
rors.®? In the present study, a very accurate and reli-
able self adaptive integration procedure NDSolve,
provided by Wolfram Reasearch Mathematica,"
has been applied.
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The new adopted kinetic expressions are se-
lected from the literature,® by using numerous

model simulations with the aim to achieve a better
fit with the experimental data.® Additional rates are:
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Fig. 1 — Reaction network of the glycolysis, penthose phos-
phate and Entner-Dourdoff pathways of Eschericchia coli K
12. The reactions labels are: r; = Vpyrg, ¥y = Vpgp '3 = Vppgs Yy =
VEBPase 1's = Varpor V6 = Vi 77 = VGarreEp Ts = Ve 79 = Vepws
"10 = YGerpmw "'11 = VaGsppw V12 = VeGpw 713 = Vikara 714 = VPGHL
T1s = Ve Y16 = Vmur 717 = Veeeew T1s = Vary T'19 = VeeEPBM T20 =
Vser T21 = Vrerko 122 = Vpanps 723 = Veepck 724 = VPyrBM:

Model parameter estimation

The model properties essentially depend on the
numerous kinetic parameters, which determine the
reaction rates, saturation constants, and strong acti-
vation and inhibition effects of numerous cofactors
and metabolites distributed throughout the network.
Thus, even if difficult, the parameter estimation is
an essential numerical step in analysis. This step
can be performed by minimizing the unweighted
sum of squares of residuals, i.e. the errors between
the model predictions of the metabolite concentra-
tions and measured data, given by:

S*(B)=(c—cy)(c—cy)' 8)

In this work, three potentially effective algo-
rithms for global optimisation have been com-
paratively tested in order to search for the ki-
netic parameter of the E. coli central metabolism
model.

Nelder-Mead optimisation

The first applied search algorithm is the sim-
ple, but the very “code cost effective” method of
Nelder-Mead (NM)D. This method can be de-
scribed as a “down hill simplex descent”. Although
it is an “old” method, it has a “reputation” of being
effective if a suitable initial parameter guess is pro-
vided. The search starts with an initial (usually ran-
domly picked) simplex of N+ 1 vertices in the N
dimensional space. The simplex edges are taken as
unit vectors, and at the vertices objective function is
evaluated, and values sorted in decreasing order. In
the next step the vertex with the highest value is
improved. Centroid of N vertices is calculated, ex-
cluding the highest (labelled with i = 1), by:

1 N+1
X mean =N' Exi (9)
i=2

From this point of high f~value, a new search
direction is determined by reflection from the cen-
troid

xlneW = X mean +(xmean _xl) (10)

If f(x"")< f(xy4) then the new vertex is

in a downhill direction. A better point is attempted
by doubling the move. If after the reflection the
new point is still the highest, a reflection and
shrinking is attempted:

xlnew=xmean+§'(xmean_xl) (11)

If this does not improve, then just shrinking is
attempted:

N 1
xlew=xmean_§'(xmean_xl) (12)

Finally, if this also fails, then all the vertices
are shrunk toward the “best” one

1

xlnewzxi_i'(xi_xNHl) i=12,...,N (13)

Through successive iterations, a simplex tum-
bles downhill with a continuous change of scale
and adaptation in size and location following the
configuration of the response surface. However, for
an efficient and successfull localization of the
global minimum, a good starting simplex is re-
quired, together with restart of search by using
different initial simplexes.

Simulated annealing

Simulated annealing (SA) is inspired from
thermodynamic principles on energy distribution in
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multicomponent systems.” The name of the algo-
rithm derives from the analogy between simulation
of the annealing process of solids. Starting from an
initial state (initial value of the model parameters),
the system is perturbed at random to a new state in
the neighbourhood of the original one, for which a
change of AE in the objective function is evaluated.
In a minimization process if the change AE is nega-
tive then the new state (model parameters) are ac-
cepted. Following the statistical thermodynamics, a
probability p to find a system in a state with energy
E at temperature 7 is given by the Boltzman law:

p(E,T)ce T (14)

where k is the Boltzman constant. The value of an
objective function f (sum of squares of the model
residuals) is associated with the energy £ of a sys-
tem. Energy of a system state is calculated starting
from an initial set of randomly picked points and an
initial system temperature. A new state, reachable
from the current state, is randomly selected and its
energy is evaluated. If this energy is lower, the new
state is always adopted. But if it is higher, the new
state is accepted based on a fluctuation probability
of size exp(—AE/kT), which must be smaller than
with an uniformly distributed random number from
the interval [0,1]. Successively, “temperature” of
the system is lowered and smaller energy fluctua-
tions become more statistically significant. Theoret-
ically, as 7' — 0, the system energy approaches its
global minimum. However, in practice, the search is
stopped when a maximum number of iterations ex-
ceed a predefined limit. Restarting the procedure
with a new set of initial points increases a chance to
reach the global minimum.

Differential evolution

The differential evolution (DE) method is a
variant of the genetic algorithm (GA). It starts with
a population of n random vectors x,, Xx,, x, of real
numbers of N-dimension, called “genes”. The initial
vector population should be chosen randomly and
should cover the entire search space (range of val-
ues of the model parameters). Compared to Nelder
and Mead method, the initial population for DE
should provide a better chance for the method to
converge to global optima. In every iteration, for
each x; are chosen random integers a,, a,, and a; by
which is constructed a corresponding mate

X = Xa + Y (va - xa3) (15)

where v is fixed and predetermined scaling factor.
Then x; is mated with y, according to the given
crossover probability. Gene exchange is performed
by exchange of vector components. In addition, a
point mutation randomly occurs at randomly se-

lected component. The result of a mutation is a
child vector z;, which competes in terms of by fit-
ness function with its parent x; for a place in the
new search population.

The DE-GA method is very robust, but to in-
crease the convergence toward the global minimum,
iterations must be restarted from several initial pop-
ulations.

Results and discussion

The kinetic model (2) estimation results are
presented in Fig. 2-3. The objective function (8)
minimization has been performed by using the all
three mentioned optimization methods, but the re-
sults by DE are accepted as the most probable. Ini-
tial guess points are randomly selected by the algo-
rithms provided by Wolfram Research “Mathema-
tica°. In Fig. 4 are depicted experimental values
and the model predictions for concentrations of the
metabolite. Results of the dynamic flux analysis
around the branching points of the reaction network
are graphically presented in Fig. 5a-e.

Parameter estimation

A typical example of the search trajectory dur-
ing the objective function minimization by the three
methods is given in Fig. 2. The “landscape” of the
objective surface (in the parameter space) depends
on the selected model, but also on the level of
“noise” present in experimental data. Due to numer-
ous parameters, it is expected that the surface will
present many local minima which would make
minimisation by a gradient based method ineffec-
tive, i.e. it would have to been restarted many times
in order to reach an acceptable minima. In contrast,
when the initial points are randomly selected, and
since the random search procedures do not depend

10

Sum of squares

0.1

[teration

Fig. 2 — Minimization of the sum of squares of residuals by
Nelder-Mead (NM), differential evaluation (DE),
and simulated annealing (SA) algorithms
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on the gradient, there is a better chance to reach the
“global” minimum. The results, presented in Fig. 2
for NM and DE-GA, show that the two methods
reach almost the same value of minima of the ob-
jective function, of approximately the same rate of
convergence. The simulated annealing (SA) does
not approach the minimum in a monotonic fashion,
and consequently is less effective. Although NM
and DE methods indicate almost the same
minimization results, when they are compared in
the parameter space some differences can be ob-
served. In Fig. 3a—b are given the projections of the
search movements on the plane of maximum veloc-
ity v,z and saturation constant with respect to glu-
cose K, iprs 1N the PTS model. The optimal param-
eter values are different, and parameter search tra-
jectories are also different. The MN method ini-
tially presents a high convergence rate and large
downhill steps, but its convergence becomes very
slow near the minimum. In this study, the DE
method presents better search properties since it
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Fig. 3b Tracking of phosphotransferase parameters during
minimization by the differential evolution algorithm. The initial
point is denoted with B and the final point with @

“covers” a wider area in the parameter space, and
its convergence rate does not slow down near the
minimum. The fact that the parameters do not con-
verge to the same values can be explained by the
well known difficulties to distinguish among sepa-
rate effects of the maximum rate and the saturation
constant in the Michaelis-Menten kinetic rate ex-
pressions.’ Statistically, for a given confidence
level, the joint confidence region of these two pa-
rameters looks like an elongated ellipse. From prac-
tical reasons, the inability to do precisely with accu-
racy such high correlated parameters is not crucial
since in this work the modelling objective is to
obtain flux (adequate reaction rate) predictions
which are less sensitive to parameter variations
inside the joint confidence interval.

Metabolite responses

Quality of the model predictions vs. the experi-
mental data, by using the estimated parameters from
Table 1, can be observed in Fig. 4. The “steady
state” data prior to the introduction of the impulse
are not modelled due to inability to apply steady
state flux analysis without reliable experimental
data for glucose influx determined by its consump-
tion within the reactor. In general, the model pre-
dictions of the metabolite concentrations under the
transient conditions are in a good agreement with
the experimental data, standard deviations between
the model and experiments being given in Table 2.
The average standard deviation is of 0.4 mmol L™,
with a maximum value of 0.71 for DHAP and a
minimum of 0.1 mmol L' for G6P. Most of the
data points seem to be randomly distributed around

Table 1 — Parameter estimates obtained from various start-
ing vales.® The saturation constants are given in mmol L™ and
the reaction rates in mmol L™ s7.

Vepts 1.336 Kigeconpan ~ 1.95689
Kincreps 1.09438 npdh 1.60881
Kupepps  0.006718 Vispdh 2.095
KiGeppis 0.43089 Vipadh 8.56
npts 3.7678 K ogpean 10.5
Vitim 4.636677 Viikata 0.01134
Kopiapim 492799 Vipk 0.0616
Vptim 3.69274 nrppkl 0.1477
Kogapim  4.06253 Kycspmppe 2346
Vigly 1.32615 Koapprpe 0.14891
Vipdh 6.3344 nrppk2 4.526

K pyRpdn 1.64019 Vidahps 0.04
Konappan  0.104662 0.7

prepck
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Table 2 — Standard deviations between the measured intra-
cellular concentrations and the model predictions under impulse
induced transient conditions

o / (mmol L)

Go6P
F6pP
FBP
GAP
DHAP

G3P
PEP
PYR
6PG
C5P

0.11
0.21
0.19
0.60
0.71
0.25
0.31
0.31
0.83
0.55

the model predictions (see G6P, F6P, PYR, PEP).
For FBP, the model correctly predicts the decrease
of the initial concentration, but outliers in experi-
mental data seems to be present. In the case of C5P,
it is to note a phase shifting between data and
model, but the trend is correctly predicted. It is dif-
ficult to estimate the “true” model error due to the
lack of an estimate for the measurement error under
the working conditions. The analytical error under
transient conditions should account for nonlinear
interference of all metabolites and enzymes in the
analysed sample with examined analyte. This error
is assumed to be significantly higher compared to
the analytical error in samples containing standard
purified metabolites/compounds.

The main improvement in model predictions,
comparatively to the previously published results of
Degenring et. al.,’” is better approximation of the
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model response in the case of PEP, PYR and C5P.
The main discrepancy between experimental data
and the Degenring model predictions is present in
the case of PEP concentration, that is a complete
depletion of PEP, which is in opposition to the ex-
perimental results. Such a model prediction implies
that PEP exercises dominant effect in PTS regula-
tion, which is not supported by the experimental
data. The wrong behaviour has been corrected by
adding the PEPCK reactions for immediate replen-
ishment of PEP by TCA reactions, and by intro-
duction of the inhibitory effect of G6P on PTS.

This model correction is particularly important
for predictions of PYR, due to its dominant position
in the main flux distribution throughout the reaction
network. In the work of Degenring et. al.,’ their
model predicts the first inflow followed by efflux of
the pool, but fails to predict the secondary wave. In
contrast, the modified model predicts oscillatory re-
sponse in PYR pool, and also corrects the prediction
of the oscillatory response of the C5 pool.

Dynamic flux analysis

The dynamic fluxes over the pathway are cal-
culated around the following branching nodes (me-
tabolites): G6P, 6PG, GAP, PYR, and PEP (see Fig.
5.a-e). Analysis of the flux dynamics can reveal in-
sights into regulation kinetics. In Fig. 5a are shown
the positive inlet flux rprg and the negative efflux of
¥pG1» ToLp, and 7geppy. The intensive influx of glucose
is followed by an immediate response, leading to an
increase of efflux by glucose-6-phosphate isomer-
ase rpg to FOP pool. There are no immediate re-
sponses that can indicate an increase in the synthe-
sis of polysaccharides and toward pentose phos-
phate pathway, these keeping at relatively low lev-
els. However, the increase in the activity of iso-
merase can not compensate PTS and the unbal-
anced results suggested by the significant accumu-
lation of GO6P. This observation indicates a strong
inhibitory effect of the accumulated G6P on PTS.
An apparent steady state is established for about 10
s after the impulse perturbation, when the inlet PTS
flux is balanced by the sum of the efflux flows.

In Fig. 5b. are displayed the fluxes around the
6PG pool. The overall dynamics is relatively slower
when compared to the G6P pool. The inlet flux
reerpy SIOWly increases after the glucose impulse,
but the efflux flux through Entner-Doudoroff rpg;y
and rpgpy pentose phosphate pathways increase
unproportionally, diminishing and disappearing in
about 15 s, while the flow through PP pathway de-
creases and reaches a constant vale. As the net re-
sult of the differences, a constant decrease in 6PG
pool concentration is observed, as confirmed by the
experimental data.

In Fig. 5c the fluxes around GAP after the glu-
cose impulse are presented. The inlet flux r,;,,
from FBP presents positive values, with an initial
slow decrease, but then (after 10 s) presenting a sig-
nificant increase. The flux r,, between DAHAP
and GAP presents an alternating behaviour: firstly
it flows toward DAHP, but after 10 s it reverses to-
ward GAP. The efflux r;,ppgp to PEP is apparently
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Fig. 5Sa— Simulation of the fluxes around GG6P after the
glucose impulse. The inlet flux rppg (A-black) has positive val-
ues, and the efflux flow rpg; (B-red), rgp(C-blue), rgsppy
(D-green) have negative values.
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Fig. 5b— Simulation of the fluxes around 6PG after the
glucose impulse. The inlet flux rgsppy (A-green) has positive
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negative values.
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constant throughout the whole period, while the
fluxes toward serine synthesis 7y, and backflow
rrxars to FOP are relatively negligible.

Dynamic distribution of the fluxes around the
key metabolite PYR is displayed in Fig. 5d. Initially,
the high influx rprg to pyruvate by PTS is closely
followed by the activation of the pyruvate kinase,
rpi- However, the flow from PEP to PYR quickly de-
creases to zero (during the first second), as PEP de-
creases due to a backward reverse of the PTS activ-
ity. The contribution to pyruvate via Entner-Doudo-
roff pathway is relatively negligible. Efflux rppy to
AcCoA is irreversible but the activity of pyruvate
dehidrogenase is time varying due to the cofactor
NAD. The flux from pyruvate to biomass 7pyggy 1S
relatively negligible compared to the main fluxes.

The balance of PEP is tied to the PTS mecha-
nism and, through PEPCK reactions, to the TCA
cycle, thus exemplifying during the short transient
conditions the “collective” and concentrated type of
regulation of the primary PTS mechanism. The sim-
ulations of the balance dynamics are presented in
Fig. Se, while the experimental data for oxaloacete
in Fig. 6. Consumption of PEP is compensated by
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Fig. 5d— Simulation of the fluxes around pyruvate after the
glucose impulse. The inlet fluxes rppg (A purple) and rpgy;
(E-green) have positive values, and the efflux flow rppy (D—
blue) and rpyggy (E-black) have negative values, while rpy
(B-red) has alternating values (directions).
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Fig. 5e— Simulation of the fluxes around phosphoenol-
pyruvate after the glucose impulse. The efflux flow are rprs (A

black), v, ( B gray ), rpgppu(C green), and rpyps ( D purple),
while the influxes are v ppgp ( E blue), and rpppcy (F red ).
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Fig. 6 — Experimentally observed response of oxaloacetate
concentration to glucose impulse

the influxes from GAP, rgspprp, and from OxAc by
rpepck- Lhe results show that the flux from OxAc is
dominant from the very moment of the glucose im-
pulse. At the same time, the flux from PEP to PYR
stops and, even if temporarily, it reverses. The
effluxes from PEP to DHAPS and biomass are rela-
tively negligible in comparison with the main
fluxes. The regulation of PEP is dynamically tied to
the balance of OxAc by the TCA activity, being in-
ferred from the experimental concentration of
oxaloacetat shown in Fig. 6. Due to the consump-
tion of PEP in PTS, with a time delay of 2.5 s after
the glucose impulse, the concentration of OxAc
presents a sharply increase in order to replenish the
loss of PEP.

In Fig. 7. are presented the carbon integral
mass flows in the E. coli cell (in mmol C, L"), dur-
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Fig. 7 — Integral mass balances of C, (mmol L™!) evaluated

during the 17 s under transient conditions upon
glucose impulse
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ing the first 17 s after the glucose impulse. The
flows are calculated by numerical integrating the
reaction rates, and by using interpolated values of
concentrations. Since time profiles of the reaction
rates change drastically during the transient period,
the calculated values are far from an equilibrium
flux distribution. Also, due to the unsteady state of
species concentrations, the balances do not sum
up to zero. Hence, the differences are accounted by
an increase or a decrease of the metabolite pools.
The overall carbon balance is positive for (8.4
mmol L™ C), being balanced by the CO, evolution
and change in the pool concentration.

Conclusions

The main contributions of this work are related
to testing the efficiency of three global optimisation
algorithms for parameter estimation in complex ki-
netic models, and the essential improvements of the
E. coli metabolic model with respect to regulation
of PTS and to prediction of the oscillatory response
of the C5 pool.

Modelling of complex enzymatic reactions sys-
tems is a difficult task. One of sources of the diffi-
culty is related to the numerical optimization algo-
rithms low efficiency to fit the data by minimizing
the errors between model predictions and experi-
mental measurements. In the present study, the
non-gradient methods of Nelder-Mead, dynamic
evolution and simulated annealing have been tested.
These methods are considered as potentially global
optimisation algorithms, by avoiding convergence
toward local minima, usually present in the
multi-variable/multi-parameter models. Nelder-Mead
and DE-GA gave approximately similar conver-
gence rates, but the DE could be recommended as
being most suitable method due to its extensive ran-
dom search in the parameter space. However, the
efficiency of these methods is dependent on the se-
lection of the initial parameter values, and of a
number of “tune-up” factors, all making that the
performance to be case dependent.

Application of the very accurate and stable in-
tegration of stiff ordinary differential kinetic equa-
tions, provided by software Mathematica," essen-
tially contributes to the quality and reliability of the
model predictions.

As a result of the kinetic model modifications
and of the efficient parameter estimation, a signifi-
cant improvement in the overall prediction of the
metabolite transients is reported. The obtained aver-
age standard deviation between the model and exper-
imental data, of 0.4 mmol L', is satisfactory. The
model predicts a strong inhibition of the glucose
transfer system by the accumulated G6P, oppositely

to the effect of PEP depletion, as proposed by
Degenring et al.® Most important, the model dynami-
cally interrelates the balances of the glycolytic pool
of PEP and PYR with the PTS and TCA. The result
strong coupling of the mass balances of several path-
ways is an indication of a global concerted regula-
tion of the whole sub-system. This sub-system repre-
sents in fact the main “traffic” controller of the cata-
bolic cell processes and it possibly contains the main
targets for genetic manipulations.

The model predictions of the oscillatory re-
sponse in C5 pool are in agreement with other ex-
perimental observations, being a characteristic fea-
ture of two genotypes of E. coli.!?

Based on the model simulations, dynamic flux
balances around branching network metabolites are
analysed. Mass distribution of carbon, i.e. C, equiv-
alent metabolite, is determined by numerical inte-
gration of the model reaction rates. The overall mass
balance does not tend to zero due to a significant
change of concentration pools under the high dras-
tic transient conditions imposed by the glucose im-
pulse. The observed dynamic balances in the short
time window of observations are basically related
to the enzyme effects. However, the enzyme con-
centrations are a consequence of the physiological
state of cells prior to the change in the environment.

The importance of the experimental method and
the theoretical analysis of the dynamic metabolite
balances has been proved by a successful application
in the case of to anabolic pathways for aromatic syn-
thesis.!? As a general conclusion, modelling complex
kinetics can be supported by a complementary appli-
cation of the numerical flux control techniques and
statistical estimation methods.'?

In order to design further experimental and
modelling investigations,'* interpretation of dy-
namic metabolic balances is proved to be an essen-
tial aspect of the analysis. Such a metabolic flux
balance analysis can be improved by using an im-
pulse response technique applied to a synchronized
cell population under a predefined and controlled
metabolic state achievable in a chemostat.
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Nomenclature
Metabolites

AcCoA - acetyl-coenzyme A
ADP - adenosindiphosphate

ATP - adenosintriphosphate
BPG - glycerate-1,3-bisphosphate
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CIT - citrate

C5P - lumped pentose phosphate pool

DAHAP - 7-phospho-2-dehydro-3-deoxy-p-arabinoh-

-eptonate

DHAP glycerine phosphate

ED - Entner-Doudoroff pathway

E4P - p-erythrose-4-phosphate

FBP — -p-fructose-1,6-bisphosphate

F6P — B-b-fructose-6-phosphate

GAP - glyceraldehydes-3-phosphate

GTP - guanosine triphosphate

G3P - glycerol-3-phosphate

G6P - a-p-glucose-6-phosphate

NAD- diphosphopyridindinucleotide (oxidized)

NADH - diphosphopyridindinucleotide-phosphate
(oxidized)

MUR - mureine

OxAc - oxaloacetat

PEP - phosphoenolpyruvate

PP - phospho-pentose pathway

2PG - glycerate-2-phosphate

3PG - glycerate-3-phosphate

6PG - 6-phospho-p-gluconate

PTS - phosphatransferase system

PYR - pyruvate

R5P - p-ribose-5-phosphate

Ri5P — p-ribulose-5-phosphate

S7P - p-sedoheptulose-7-phosphate

X5P - p-xylulose-5-phosphate

Enzymes

aldo - aldolase

dahps - dahp synthase

eno - enolase

gapdh - glyceraldehydes-3-phoshate dehydrogenase
g3pdh - glycerol-3-phoshate dehydrogenase
gbpdh - glycerol-6-phoshate dehydrogenase
pdh — pyruvate dehydrogenase

pepck — phosphoenolpyruavate carboxykinase
pfk - phosphofructokinase

pgdh — 6-phosphogluconate dehydrogenase
pgi - glucose-6-phosphate isomerase

pk - pyruvate kinase
pts — phosphotransferase system
ta - transaldolaze

tim - triose phosphate isomerase
tka - transketolase A
tkb - transketolase B

Variables

c — concentration, mol L™
E - energy, J

— enzyme saturation constant, mmol L'

— Boltzman constant

— dimension

— probability

— intracellular concentration rate (flux), mol L' s~!
— sum of squares of residuals

— temperature, K

— time, s

— maximum reaction rate, mol L' s
— reaction rate, mol L' s!

— variable

— variable

MRS TN ! YT =R N

Greek

B - kinetic parameter
y - scaling factor

Subscripts

a — random number

b — backward reaction
f - forward reaction

i — index

s Michaelis-Menten saturation constant
m  — measured data
u - input
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