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Artificial Neural Network (ANN) is applied to estimate the relative tray efficiency
of sieve distillation trays. The training database is obtained from the results of You et al.
(2001)." The feed-forward artificial neural network is adopted and trained by the
back-propagation algorithm. 150 sets of data is used to train and test the network. The re-
sults show that ANN model with one hidden layer gives a very close estimation of the

relative tray efficiency.
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Introduction

Artificial Neural Network (ANN) has been
widely applied in many science and engineering
fields in recent years. It is a highly simplified and ap-
proximated network for Biological Neural Network
(BNN) and furthermore, it can resemble the working
pattern of human brain. The main advantages of
ANN are economy, fast computing, easy realization,
and independence from physical model compared
with the traditional methods, such as experiment and
numerical simulation. McCulloch and Pitts first in-
troduced M-P model, which is considered as the ori-
gin of ANN, in 1943. After that, ANN underwent a
relatively slow-developing period due to the lack of
theory at first and efficient numerical algorithm later.
Since the introduction of back propagation (BP) al-
gorithm by Rumelhart et al.? in 1986, ANN has de-
veloped rapidly and its application has blossomed in
many fields of science and industry.

Distillation is a widely used method to separate
liquid mixtures into their components and has been
applied to the separation processes in petroleum,
petrochemical, chemical and related industries etc.
It is commonly acknowledged that distillation is a
very important process in today’s industry. With the
rapid development of computational fluid dynamics
(CFD), the selection of tray parameters is usually
depending on the theoretical analysis instead of ex-
perience or experiment. Several theoretical models
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were presented during last few years. Liu et al.’ and
Yu et al.* formulated two-dimensional models with
single-fluid (liquid) theory and two-fluid (liquid
and vapor) theory to describe the flow patterns on
tray, respectively. You et al.! simulated the
two-phase flow on trays by adopting a two-dimen-
sional mixed two-phase flow theory and, further-
more, they showed that the relative tray efficiency
can be increased as a result of improving the flow
pattern on a tray. Krishna et al.> and Baten and
Krishna® presented a three-dimensional CFD model,
and computed by using CFX software for simulat-
ing flow field on sieve trays. Even though the above
studies show lights on designing high performance
trays, the requirement of large computer resources
precludes CFD method from applying to a real dis-
tillation design, especially for the case of three-di-
mensional CFD simulation. With the concept of
ANN, it is natural to use the operational and geo-
metrical parameters of the tray as the input vari-
ables of ANN to predict the relative tray efficiency.
For applying ANN, a database that includes all nec-
essary information should be set up. The database
can be obtained by either experimental study or
CFD simulation. In this paper, the database is set up
by the CFD study of You et al.!. Therefore, the aim
of this paper is to develop an ANN model that can
be applied to predict the relative tray efficiency.

Some studies on the application of ANN to dis-
tillation process appeared in recent years. MacMurray
and Himmelblau” used ANN to model and control a
packed distillation column, where the column ex-
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hibits a change in the sign of the gain under various
operating conditions. They showed the performance
of the column could be modeled well by applying
ANN. Zamprogna et al.® developed a virtual sensor
to estimate the composition in a middle-vessel
batch distillation column. The sensor was based on
a recurrent artificial neural network and used the in-
formation available from secondary measurements
(such as temperature and flow rate). The results in-
dicated that the estimated compositions are in good
agreement with the actual values.

In this approach, an artificial neural network is
designed to predict the relative tray efficiency. The
network is trained by the database based on the
CFD results of You et al.! For the database based on
the other results, ANN model can be trained by the
same way.

Database generation

The results of You et al.! are used to establish
the database. 150 sets of data are adopted to train
and test the ANN model. In this study, the six quan-
tities, such as liquid flow rate Q,, outlet weir height
h,,, superficial gas velocity v,, free area rate of sieve
tray a,,, surface tension o, Raoult’s law constant H,
have effects on the relative tray efficiency and they
are used as the input parameters to predict the rela-
tive tray efficiency (the only output parameter).

ANN design and training

A feed-forward artificial neural network
trained by back-propagation algorithm, is widely
used. Based on the complexity of the problem and
the size of the database, the number of hidden lay-
ers and the neurons within each hidden layer, can be
varied. Figure 1 shows a 3-layer ANN structure
with six inputs, one hidden layer with 9 neurons,
and one output. The input layer that distributes the
inputs to the hidden layer does not have any activa-
tion function.

Mathematically the network computes; see the
ANN structure shown in Figure 1,

1. The output of the hidden layer (treating the
bias as another input, but being not counted as a
real input of our ANN structure)

h1(j) = Sum(wl(ij)*in(@), i = 1,7)
s() = fh1()
2. For the output layer calculation
h2(k) = Sum(w2(j,k)*s(j), j = 1,9)
O(k) = f(h2(k))

Hidden Layer

Fig. 1 — A Simple 6-9-1 neural network, the lines connect-
ing the neurons represent the weights

Where, in(i) is the network input, O(k) is the
network output, wl(i) represents the weight con-
necting neutron 7 in the input layer to neutron j in the
hidden layer, w2(i,j) represents the weight connect-
ing neutron j in the hidden layer to neutron £ in the
output layer, and f(x) is the neutron transfer func-
tion, for example a sigmoid f'(x)=1/(1+exp(—x)),
which is adopted in this study.

Training an ANN involves using a database of
examples, which has values for the input and output
of ANN. The ANN would learn by adjusting the
weights to minimize the error of the outputs.

Selection of the number of hidden layer

The hidden layer abstracts the characters of the
input information. Increasing the number of hidden
layers, the performance of the treatment ability of a
feed-forward artificial neural network will be pro-
moted. But it may cause the complexity of training
procedure, the increase of training samples and
training time. Generally speaking, we should start
with a system with one hidden layer and increase
the number of the hidden layer by requirement. For
a continuous output or even a discontinuous output
in some cases, a very close prediction can be ob-
tained via a feed-forward artificial neural network
with only two hidden layers. In most cases, even a
feed-forward artificial neural network with one hid-
den layer, can reach a considerable good prediction.

Selection of the number of hidden layer neuron

The selection of the number of hidden layer
neuron is very important and troublesome. If the
number of the hidden layer neuron is fewer, the
ANN cannot receive all necessary information of
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the modeling system and has less tolerance on
faults, so that it gives wrong outputs. On the con-
trary, the ANN may cause a phenomenon called
overfitting. The overfitting is that the ANN can
even recognize the noise during the training proce-
dure. Under this circumstance, the outputs of ANN
are ideal when the training samples are applied,
while the outputs are not satisfied when the test
samples are adopted. At the same time, ANN needs
a long time for training and running. In some cases,
it may even make it hard to determine the weights.
After studying the ANN model with one hidden
layer, Hecht-Nielsen pointed out that the number of
hidden layer neuron should be 2N + 1 to obtain rea-
sonable output for any inputs. Here N is the number
of input neuron. Even if there are some theories to
determine the optimal number of hidden layer neu-
ron, see Kung and Hwang® and Kung and Hu'® for
details, the selection of the number of hidden neu-
ron depends mostly on experience. In this paper, the
networks with different hidden layer neuron are
simulated. The optimal network is found according
to the RMS error and the ratio of eligible described
in next section.

Procedure of training ANN

After defining the structure of ANN model,
data are then collected and fed to the model. The
network is trained to recognize the relationship be-
tween the input and the output parameters. The in-
put layer distributes the inputs to the hidden layer.
The lines connecting the neurons represent the
weights. At the beginning of trainings, the weights
of the network are randomly chosen. For a fast con-
vergence, the initial weights are in the range of
(-1,1). As the training procedure starts, an algo-
rithm to minimize the difference between the net-
work-predicted and the desired output adjusts the
network parameters, such as the weights. The back
propagation algorithm is used for this purpose since
it is one of the most popular and extensively used
algorithms for network training. Back propagation
is a kind of a steepest descent method of optimiza-
tion. Although it has been successfully applied in
many fields, it suffers some shortcomings, such as
slow convergence in some cases. Some authors pre-
fer other optimization algorithms rather than back
propagation, for example Levenberg-Marquardt
method!" and Quasi-Newton learning method.'?
However, the back propagation works well for our
case and it is chosen to train our networks.

By using back propagation, the network learns
through an iterative procedure, involving two steps
performed many times. First, the examples of train-
ing data shown to the network are passed forward to
the output layer to compute the errors at the output.

The second step works backward through the net-
work. The errors at the output layer are propagated
backwards through the network and the weights allo-
cated to each neuron connection are adjusted to min-
imize the error in the output data. Using this tech-
nique it is possible for the network to become
trapped in a local minima. For this reason, a super-
vised training method was used. After the training
data have been presented to the network for a pre-de-
termined number of times, a test data set are pre-
sented. The results from the previous presentation of
the test dataset is compared, and, if there is an im-
provement, the training continues. The cycle of pre-
senting training and testing data continues until no
improvement has been noted with the test dataset for
30 consecutive attempts. At this point the training is
terminated. This prevents the network over-learning
the training data by checking the performance with
the test data and reduces the likelihood of the net-
work to a local minimum as opposed to the global
minimum by continuing training for 30 cycles after a
minimum error has been achieved.

Once the network has been trained, a further
validation set of data, which have not been used
during training, is presented to ANN and the output
compared with the known output in order to assess
the predictive capabilities of the network.

Evaluation of ANN performance

The objective function to evaluate the perfor-
mance of network is described as:

€]

N
where, Ep = E(tpj - Opj)z, Ly is the desired out-
j=1
put of neuron j for pattern p. O, is the ANN output
of neuron j for pattern p. If the target RMS error is
lower than an anticipated value, ANN training is
terminated.

Determination of ANN learning parameter

Automatically increase or decrease the learning
parameter according to the training progress. If the
RMS error is decreasing, the learning parameter is
increased, however if the RMS error is increasing,
the learning parameter is decreased. In our program,
the learning parameter is increased or decreased by
multiplying its value with a parameter cd. As a gen-
eral rule, the parameter cd should be a few percent
different from 1 and the decreasing percent of the
learning parameter should be larger than the in-
creasing percent of the learning parameter. Based
on this rule, the default values of parameter cd
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could be 1.02 and 0.96, which gives an increasing
of 2 % and decreasing of 4 % for the learning pa-
rameter, correspondingly. For Liu tray, the learning
parameter is 0.3153 for our well-trained ANN.

Our ANN models

In the model of You et al.!, six quantities (i.e.
liquid flow rate Q,, outlet weir height 4, superficial
gas velocity v, free area rate of sieve tray «,, sur-
face tension o, Raoult’s law constant /) are major
factors to determine the relative tray efficiency.
Thus, we choose the input neuron number as six.
The anticipated output is only the relative tray effi-
ciency. Then the output has one neuron.

Feed-forward artificial neural networks trained
by BP algorithm, are used in this study. Based on the
conclusion of Section 3, a feed-forward ANN model
with two hidden layers can well predict continuous
outputs and even discontinuous outputs correspond-
ing to their input parameters. Thus, two kinds of
ANN models are chosen to train and test here. One
model consists of an input layer of six neurons corre-
sponding to the six input parameters, one hidden
layer and an output layer of one neuron representing
the output parameter. Another model has the same
structure except having two hidden layers. By com-
paring the results of ANN models, which have dif-
ferent number of neurons in each hidden layer, the
optimal ANN structure can be obtained.

Results and discussions

ANN models, with either one hidden layer or
two hidden layers, are trained and tested to look for
an optimal ANN structure. In all studies, 120 and
30 sets of data are used to train and test ANN mod-
els, respectively. Each set of data had 7 parameters.

Determination of the optimal ANN structure

The following shows how to find the optimal
ANN on Liu Tray (the small diameter tray). The
geometric quantities for Liu tray are d = 1.2 m and
b/d = 0.645. d and b are diameter and the width of
the outlet weir, respectively. Table 1 shows the re-
sults of training and testing ANN model with one
hidden layer.

In Table 1, 6-i-1 represents the ANN model
with 6 input neurons, i neurons in the hidden layer
and 1 output neuron. The ratio of eligible represents
the rate of the number of samples with relative tar-
get error less than a presumed number (here 1 %)
with respect to that of all samples. It represents the
ratio of ANN output, which satisfies the anticipa-
tion. The results of Table 1 indicate the following
points:

Table 1 — The results of training and testing ANN model
with one hidden layer

Average training results Average testing

results
ANN lterations RMS Ra‘tic.) of | RMS Ra.ti(.) of
Structure Error | Eligible | Error | Eligible
6-2-1 3515 0.010878 75 % 0.007783 76.7 %
6-3-1 3590  0.005940 90 % 0.003671 93.3 %
6-4-1 5425 0.006089 90 % 0.003826 86.7 %
6-5-1 3145 0.004700 95 % 0.003386 100 %
6-6-1 5055 0.005630 88 % 0.003345 93.3 %
6-7-1 6160  0.003039 98 % 0.001782 100 %
6-8-1 4040 0.003692 98 % 0.002562 100 %
6-9-1* 2870  0.003231 98 % 0.002025 100 %
6-10-1 2545  0.003990 98 % 0.002083 96.7 %
6-11-1 3590  0.003961 98 %  0.002649 96.7 %

— Both, the RMS errors of training and testing,
decrease when the number of hidden layer neurons
changes from 2 to 9 or from 11 to 9.

— The ratio of eligible becomes nearly 100 %
for the structures whose number of hidden layer
neuron is larger than 6.

— The least iteration occurs at the ANN struc-
ture 6-10-1. But its ratio of eligible of testing is less
than that of structure 6-9-1.

RMS Error and the ratio of eligible are two ma-
jor factors to evaluate the performance of ANN
model. RMS should be small enough and the ratio
of eligible should be high enough. From Table 1, it
is concluded that ANN structure 6-9-1 is the opti-
mal one. Figure 1 shows the ANN structure 6-9-1.

Now we turn to study the performance of ANN
with two hidden layers. The results are presented in
Table 2.

In Table 2, 6-i-j-1 represents the ANN model
with 6 input neurons, i and j hidden layer neurons
respective for the first and second hidden layer and
1 output neuron. Table 2 indicates:

— Although, some networks with two hidden
layers converge fast comparing with the network
with one hidden layer, they cannot have the high ra-
tio of eligible.

— When the number of neuron in the first hid-
den layer is more than 8, the connecting weights are
more than 77. Thus ANN needs a much longer time
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Table 2 — The results of training and testing ANN model
with two hidden layers

Average training results Averfeggeiﬂttessting

ANN RMS lterations Ra.ti(.) of | RMS Ra‘tic.) of
Network | Error Eligible | Error | Eligible
6-3-2-1 0.006355 3450 87 % 0.003959 91.7 %
6-4-2-1 0.005765 3500 90 % 0.003825 100 %
6-4-3-1 0.006153 3100 87 %  0.003955 100 %
6-5-2-1 0.004175 4186 95 % 0.002584 100 %
6-5-3-1 0.004354 5790 97 %  0.002499 96.7 %
6-6-2-1 0.003764 3330  97.5 % 0.002129 100 %
6-7-2-1 0.005918 1715 91 % 0.003999 93.3 %

for training. It is not economic and will not be
adopted as optimal ANN structure here.

— Two hidden layer ANN network, which
spends comparable training time as the optimal one
hidden layer ANN 6-9-1, shows no improvements
comparing to that with one hidden layer.

After comparing Tables 1 and 2, ANN network
with structure of 6-9-1 is selected to simulate the
relative tray efficiency.

Further testing for optimal ANN

It is shown above that the well-chosen ANN
network can model the relative tray efficiency of
Liu tray. 12 typical samples are used to test further

the trained optimal network. The results are given
in Table 3. The RMS Error is required to be less
0.20 % and the ratio of eligible is 100 %, for the
target error is less 1 %.

The optimal ANN structure 6-9-1 for Liu tray
is also used for Porter tray. The geometric quantities
for Porter tray are diameter d = 2.44 m and b/d =
0.615. The Porter tray has a larger diameter and a
smaller b/d comparing to those of Liu tray. The
results of training are the iteration 3065, the RMS
error 0.007948, and the ratio of eligible 83 % for
the target error 0.01. It is found that the ratio of
eligible for Porter tray is only 83 %, which is much
lower than that for Liu tray. It is due to the different
diameters of trays. It is clearly shown in You et al.!
that the tray diameter has strong effects on the
flow pattern on the tray and, further, on the relative
tray efficiency. This suggests the diameter should
be an input parameter. This is a topic of further re-
search.

30 samples are further used to test the trained
network of Porter tray. The results of 12 typical
cases are given in Table 4. Here, the RMS Error is
required to be less than 0.20 %. The ratio of eligible
is 90 % for the target error is 1 %. It is found that
the largest target error is only 1.74 %. Thus, it is
quite reasonable to conclude that the results of opti-
mal ANN structure 6-9-1 for Porter tray are, also
acceptable. This conclusion also indicates that the
optimal ANN structure may not be sensitive to the
diameter of tray.

Conclusions

The aim of present research is to determine,
whether, ANN model can accurately predict the rel-

Table 3 - Test results of the optimal ANN structure 6-9-1 on Liu tray

No (08 hy, Vg a, o H ANN Output | Efficiency’ Error

01 0.012 0.02 1.5 0.1 0.1 2.0 1.276 1.287 -0.85 %
02 0.024 0.02 1.5 0.1 0.1 2.0 1.102 1.106 - 0.36 %
03 0.02 0.014 1.5 0.1 0.1 2.0 1.131 1.138 -0.62 %
04 0.02 0.031 1.5 0.1 0.1 2.0 1.178 1.177 + 0.08 %
05 0.02 0.02 0.75 0.1 0.1 2.0 1.057 1.060 -0.28 %
06 0.02 0.02 1.9 0.1 0.1 2.0 1.153 1.152 + 0.09 %
07 0.02 0.02 1.5 0.09 0.1 2.0 1.139 1.131 +0.71 %
08 0.02 0.02 1.5 0.19 0.1 2.0 1.132 1.131 + 0.09 %
09 0.02 0.02 1.5 0.1 0.018 2.0 1.641 1.630 + 0.67 %
10 0.02 0.02 1.5 0.1 0.11 2.0 1.128 1.120 +0.71 %
11 0.02 0.02 1.5 0.1 0.1 0.73 1.120 1.119 + 0.09 %
12 0.02 0.02 1.5 0.1 0.1 1.9 1.132 1.131 + 0.09 %
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Table 4 - Test results of the optimal ANN structure 6-9-1 on Porter tray

No (0N hy, Vg a, vy H ANN Output | Efficiency! Error

01 0.012 0.02 1.5 0.1 0.1 2.0 2.226 2217 +0.36 %
02 0.024 0.02 1.5 0.1 0.1 2.0 1.369 1.383 - 1.01 %
03 0.02 0.014 1.5 0.1 0.1 2.0 1.412 1.411 +0.07 %
04 0.02 0.033 1.5 0.1 0.1 2.0 1.666 1.658 +0.48 %
05 0.02 0.02 0.75 0.1 0.1 2.0 1.128 1.148 -1.74 %
06 0.02 0.02 1.9 0.1 0.1 2.0 1.683 1.672 + 0.66 %
07 0.02 0.02 1.5 0.084 0.1 2.0 1.576 1.552 +1.55 %
08 0.02 0.02 1.5 0.18 0.1 2.0 1.350 1.362 - 0.88 %
09 0.02 0.02 1.5 0.1 0.017 2.0 3.891 3.845 + 1.20 %
10 0.02 0.02 1.5 0.1 0.17 2.0 1.286 1.276 +0.78 %
11 0.02 0.02 1.5 0.1 0.1 0.72 1.375 1.391 -1.15%
12 0.02 0.02 1.5 0.1 0.1 1.6 1.448 1.454 - 041 %

ative tray efficiency for a wide range of geometri-
cal, physical and operating parameters. It has been
demonstrated that the optimal model is a network
with one hidden layer. The application of ANN to
the relative tray efficiency prediction indicates the
coming of a flexible tool for engineers. Further
work (experiment or CFD simulation) is required to
provide a more completed database to train the net-
work and validate its usefulness.
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Notation

d - tray diameter, m

H - constant put in Raoult's law

hy,, - outlet weir height, m

O, - liquid flow rate per unit width, m? s
v, - superficial gas velocity, m s7!

b — width of outlet weir, m

Greek symbols

a, - free area rate of sieve tray
n - relative tray efficiency
o - surface tension, N m!
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