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Design of a controller by synthesis method for an unstable bioreactor with a domi-
nant unstable zero gives a PI controller. For such dominant unstable zero, it is shown that
the integral time is negative. The stability analysis of such controlled system, is given.
When the measurement delay is considered, the method requires a PI controller with
negative integral time and a first order unstable filter. Theoretical analysis on the condi-
tion at which the system can be stabilized, is also given. Simulation results are given for
the robust performance of the controller for perturbation in the controller settings. A set
point weighting is proposed for the controller to reduce the initial jump in the response
and also the undershoot.
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Introduction

The performance of a controller is limited by the
presence of unstable pole and zero. Methods of de-
signing PI controller for such unstable systems with-
out any zero, are available.1–6 The response shows a
large overshoot when compared to that of stable sys-
tems. Methods of designing PI/PID controllers for sta-
ble systems with an unstable zero, are available.7–11

The closed loop response of such a system shows a
large initial inverse response. One of the simple meth-
ods of designing PI/PID controller is the synthesis
method.12–13 For unstable systems, the synthesis
method is reported for systems without zero and with-
out delay.13 Presence of an unstable zero, particularly
dominant zero, the unstable zero is nearer to the imag-
inary axis (in the S-plane) than that of the unstable
pole, it poses difficulty in designing a controller. Such
a transfer function model occurs in the modeling of an
isothermal continuous stirred tank reactor for carrying
out an enzymatic reaction14. Due to the measurement
delay, a time delay occurs in the transfer function
model. Method of designing controllers for such sys-
tem is not available. In the present work, controllers
for the system kp (1-ps)/(�s-1) without and with time
delay, are designed by the synthesis method. A set
point weighted controller is proposed to reduce the
initial jump and the undershoot in the response.

Model equation for bioreactor

A schematic diagram of the reactor is shown in
Fig 1. We consider an isothermal, continuously

stirred tank reactor for carrying out an enzymatic
reaction with the reaction rate given by –k1 c/(1 +
k2c)2. This particular rate form has been extensively
studied and its applicability to enzyme catalyzed re-
actions has been demonstrated15–16. The non ideal
mixing is described by Cholette’s model17. In Fig.1,
n is the fraction of the reactant feed that enters the
zone of the perfect mixing and m is the fraction of
the total volume of the reactor where the reaction
occurs [i.e., (1-m) fraction of the volume is dead
zone]. The transient equation of the reactor14 is
given by

dc/dt = [nq/(mV)] (cf –c) – [k1c/(1+k2c)2] (1)

at t = 0, c = c0 (2)

Here c (concentration in the well mixed zone)
and ce (reactor exit concentration) are related by:
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F i g . 1 � Schematic representation of the Cholette’s model
of a continuously mixed enzymatic reactor
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nc = (1-n) cf + ce (3)

The following values for the parameters are as-
sumed:

n = 0.75, m = 0.75, k1V/q = 300,

k1 = 10 s–1; k2 = 1 dm3 kmol –1; (4)

V = 1 dm3

The steady state analysis of the reactor model
equation shows that the reactor exhibits three input
and three output multiplicities.17,14 For example, to
obtain ce = 1.8 kmol m–3, cf can take any of the
three values: 7.024, 6.484 and 3.288 kmol m–3. For
designing a controller, the manipulated variable
considered here is cf and the output variable is ce.
By linearizing the nonlinear model equation, it is
observed14 that the transfer function model at cf =
7.024 is stable. The transfer function model14 relat-
ing the deviation in the output variable (ce) and that
in the manipulated variable (cf) at the operating
condition ce = 1.8 and cf = 6.484 is of the form kp

(1-ps)/(�s-1) with p > � and p = 4.473 and � = 3.1
and kp = –0.1727. As stated earlier, the design and
analysis of controllers for such systems are not
available.

Controller Design for system
without delay

Let us first consider the reactor without any
measurement delay. The transfer function model
considered here is of the form

Gp = y/u = kp (1–ps)/(�s–1) (5)

The closed loop transfer function for a servo
problem is given by

y/yr = Gc Gp /[1+Gc Gp] (6)

Here y is the deviation variable in ce from its
nominal value and u is the deviation variable in cf

from its nominal value. Here yr is the set point value
for y. The transfer function of the controller is ob-
tained from Eq(6) as:

Gc = (y/yr)/[{1 – (y/yr)}Gp] (7)

Let us assume the closed loop transfer function as

y/yr = (1 – ps) (1 + �s)/[(1 + �1s)(1 + �2s)] (8)

It is easier to specify the desired closed loop
time constants �1 and �2 based on the knowledge of
the open loop time constant (�). Method of obtain-
ing expression for � will be given later. Substituting
Eq(8) and Eq(5) in Eq(7) gives

Gc = (�s – 1)(1 + �s)/

[{(�1s + 1)(�2s + 1) – (1 – ps)(1 + �s)}kp]. (9)

The denominator (denoted by D1) of Eq(9) is
rewritten as:

D1 = s(b – �) kp [1 + s{(�1�2 + �p)/(b – �)}] (10)

where

b = �1 + �2 + p (11)

Let

(�1�2 + �p)/(b – �) = –� (12)

Then from Eq(10) and the denominator of
Eq(9) one gets:

(1 + �1s) (1 + �2s) – (1 – ps)(1 + �s) =

– s(b – �)(�s – 1) (13)

Hence, on substituting the expression in the
right side of Eq(13) for the corresponding denomi-
nator term in Eq(9), we get a PI controller:

Gc = kc [1 + (1/�Is)] (14)

where

kc = �/[(–b + �)kp] (15)

�I = � (16)

From Eq(13), we get the expression for � as

� = [�1�2 + (�1 + �2) � + �p]/(� – p) (17)

Controller design for the system
with delay

Let the process transfer function be given by

Gp = kp (1 – ps) exp (–Ls)/(�s – 1) (18)

In the synthesis method, the desired closed
loop transfer function is to be specified. Since the
process transfer function has a positive zero and
time delay, they will appear in the closed loop
transfer function. Usually the closed loop system
has two dominant poles. Therefore the closed loop
transfer function is selected as:

y/yr = (1– ps)(1+ �s) exp(–Ls)/[(1+ �1s)(1+ �2s)] (19)

Hence, the transfer function of the controller is
obtained as:

Gc = (�s – 1)(1 + �s) exp(–Ls)/

[{(�1s +1)(�2s +1) – (�s +1)(1 – ps) exp(–Ls)}kp] (20)
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Using the approximation exp(–Ls) = 1 – Ls, we
can write the denominator (denoted by D2) of
Eq(20) as:

D2 = –a3 s(Q1s
2 + Q2s – 1) kp (21)

where

a3 = (h1 – �) (22)

h1 = (�1 + �2 + p + L) (23)

Q1 = pL �/a3 (24)

Q2 = –[�1 �2 + (p + L) � – pL]/a3 (25)

Let

D2 = –kp a3 s(�s + 1) (�s – 1) (26)

Then Eq(20) becomes

Gc = [1/(�s + 1)] kc [1 + (1/�Is)] (27)

where

kc = –�/(a3kp) (28)

�I = � (29)

The controller is a PI control with a first order
filter.

The expression for � and � are obtained by
equating Eq(21) and Eq(26) as:

� = �(�1�2–pL+h1�) / [�2+pL–(p+L)�] (30)

� = pL� / [(h1 – �) �] (31)

Set point weighted PI controller

Systems with an unstable pole give a large over-
shoot.1 For stable systems, the use of set point
weighting parameter is suggested to reduce the over-
shoot.18,19,20 Stable system with an unstable zero
gives a large initial inverse response.9 In the present
work, a method for calculating the set point weight-
ing parameter for an unstable system with an unsta-
ble zero is proposed by extending the method sug-
gested by Chidambaram.19,20 The PI controller law
with the set point weighting parameter is given by

u(t) = kc [(�yr – y) + (1/�Is) e td� ] (32)

where u is the controller output and � is the set point
weighting parameter. For systems without any zero,
Chidambaram19 has derived the equation for � as

��I = �e� (33)

where � is the damping coefficient and �e is the re-
ciprocal of the natural frequency of the closed loop

system. For the system without any zero, the nu-
merator of the closed loop system contains only the
term (��Is + 1). Whereas for system with a zero,
the numerator of the closed loop system becomes
(��Is + 1)(1 – ps). The two terms can be combined
as [(��I – p)s + 1]. It can be easily shown from the
work of Chidambaram19 that the following equation
holds good:

(��I – p) = �e� (33)

Hence, the value of the set point weighting pa-
rameter is calculated as:

� = (p + �e�) / �I (34)

For the calculation of �, we need to calculate
the closed loop � and �e. Since, for the synthesis
method, we specify the closed loop transfer func-
tion by Eq(19), we get � = (�1 + �2)/2�e and �e =
(�1 �2)

0.5. Hence, it is easier to calculate the value
for � by Eq(34).

Simulation results

Let us first consider the unstable system given
by Eq(5) without any time delay. For the transfer
function model quantities (p = 4.473 , � = 3.1 and kp

= –0.1727), we get the controller settings as: kc =
–4.8615 and �I = –128.08. The values of �1 = �2 = 10
are assumed. The PI controller has a negative value
for the integral time. It should be noted that in case
the system has a positive non-dominant zero (i.e.,
when compared to the zero location, the pole should
be nearer to the imaginary axis), the method then
leads to a conventional PID controller with a stable
first order filter. The performance of the controller
is evaluated on the nonlinear model equations with
the nominal operating conditions: cf = 6.484 and
ce = 1.8. The response in ce for a step change (0.1)
in the set point is evaluated and the response is
shown in Fig 2. The manipulated variable behav-
iour is shown in Fig 3. The response shows a larger
jump in the response[ce (at t = 0) = 2.364]. The re-
sponse reaches the desired value of 1.9 after an un-
dershoot of 0.267. The effect of �1 (= �2) is also
studied for three values of �1 as 10, 15 & 20. Fig. 2
shows the response for �1 = 10 is preferred. Since
the integral time is obtained as negative, let us
check whether the closed loop is stable for pertur-
bation in the integral time. The value of the integral
time is varied by + 10 % of the actual value
and separately by –10 % of the actual value. Fig 4
shows that the system is stabilized. Appendix-A
gives the details on the proof that the system is sta-
bilized for perturbation in the gain, the time con-
stant(kp, p and �) of the system. The regulatory re-
sponse is evaluated for a step change in the distur-
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bance variable (q) from 0.03666 x 10–3 to 03666 ×
10–3 m3 s–1. The response is shown in Fig. 5. The
system is stabilized.

Since the initial jump in the response is large,
the set point weighted PI controller can be consid-
ered. From Eq(34), we get the value of � as –0.113.
The value of � is obtained as negative value. The
use of � = 0 , eliminates zero in the closed loop re-

sponse. Fig 6 shows the set point weighted PI con-
troller performance. Fig 6 shows that the initial
jump is significantly reduced. Fig. 6 shows that � =
0 makes the response sluggish. Hence, the derived
optimal value for � is to be used.

Let us consider the stabilization of the system
with a measurement delay of 0.1 s. The synthesis
method gives (for assumed value of �1 = �2 = 30) a
PI controller with a first order filter. kc = –5.3713
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F i g . 3 � Manipulated variable versus time behaviour
�1 = �2 = 10

F i g . 5 � Regulatory response of the reactor for a step
change in q from 0.03333 × 10–3 m3 s–1 to 0.03666
× 10–3 m3 s–1

F i g . 2 � The servo response for a step change of 0.1
solid: �1 = �2 = 10; dot = �1 = �2 = 15; dash =
�1 = �2 = 20

F i g . 4 � The effect of perturbation in integral time on the
servo response
solid: �I = –128.08, dot: �I = –149.89 (+ 10 %
perturbation), dash: �I = –115.27 (–10 % pertur-
bation)



and �I = –827.6068 and � = –0.1339. Here for the
dominant zero unstable system, both the integral
controller time and the filter time constant are nega-
tive. That is, the controller is an unstable one. Thus,
the presence of measurement delay poses restriction
on the design of controllers. Appendix-B gives the
condition under which the system could be stabi-
lized. Fig. 7 shows the servo response of the system
for a step change in the set point. The performance
of the reactor without and with set point weighting

parameter, is also shown in Fig. 7. The set point
weighting drastically reduce the initial jump (from
2.46 to 1.77) and the undershoot (from 0.27 to 0.0).
Fig. 8 shows the servo responses for the two set
point weighting quantities � = 0 and � = – 0.0417.
The response is faster for � = – 0.0417. The regula-
tory response for a step change in q = 0.03333x10–3

to 0.03666x10–3 m3 s–1 is shown in Fig 9. The reac-
tor is stabilized. In Appendix-B, the stability condi-
tion is derived (for dominant unstable zero condi-
tion) as [-(L/p) + (L/�)] < 0.62. It has to be noted
that when the transfer function has an unstable pole
and non dominant unstable zero, it is found that the
synthesis method gives positive values for �I and �.
That is, the controller is a stable one. Since the open
loop system is unstable, it has to be always kept in

R. P. SREE and M. CHIDAMBARAM, Control of Unstable Bioreactor With Dominant …, Chem. Biochem. Eng. Q. 17 (2) 139–145 (2003) 143

F i g . 6 � Effect of set point weighting parameter on the
servo response
dot: � = 1, dash: � = 0, solid: � = –0.113

F i g . 7 � The servo response of the reactor system with
measurement delay
dot: � = 1, dash: � = 0, solid: � = –0.0417

F i g . 8 � Comparison of the servo response for � = 0 and
� = –0.0417

F i g . 9 � Regulatory response for the reactor with delay



closed loop with a controller to stabilize the system.
It has to be noted that when the operating condition
for the bioreactor is at cf = 3.288, then the transfer
function has an unstable pole and a stable zero:
kp = 2.2078, � = 98.32 , p = –11.133. The synthesis
method (with �1 = �2 = 50) gives the controller set-
tings as kc = 1.5456, �I = 153.99 and � = 7.728. The
controller is a stable one. Fig. 10 shows the servo
response of the reactor.

Conclusions

For stabilizing the bioreactor for carrying out an
enzymatic reaction, controllers are designed by the
synthesis method. Since, the transfer function model
has an unstable pole and a dominant unstable zero,
the synthesis method gives a PI controller with a
negative integral time. When a measurement delay is
introduced, the controller is found to be a PI control-
ler with an unstable first order filter. Stability analy-
sis for the controller requires the condition [(L/�)
–(L/p)] < 0.62. Simulation results on the nonlinear
model equations are evaluated for both the servo and
regulatory responses. The proposed controller stabi-
lizes the nonlinear reactor. The proposed set point
weighting reduces significantly the initial jump and
the undershoot of the servo response.
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Appendix – A:

Robustness of PI controller with negative
integral time

Let the controller is designed for the process kp, � and p
whereas the system is simulated on the process with parameters
kp’, �‘ and p’. Hence the characteristic equation is given by

a1 s2 + a2 s + kp’ = 0 (A.1)

where

a1 = [�1�2(kp�‘ – kp’p’) + b(kp�‘p – kp’�p’)]/(�–p) (A.2)

a2 = [�1�2(kp’– kp) + b(kp’� – pkp) – kp’p’(�–p)]/(�–p) (A.3)

We have to show that a1 and a2, both, should be positive
for perturbation in the model parameters kp, � and L.

Let us consider that there is positive change in p in the
process (i..e., p’ > p). It can be easily checked that both a1 and
a2 are positive. It should be noted that b can be selected by in-
creased values of closed loop time constants. Similarly, we can
also show that both a1 and a2 are positive for positive perturba-
tion in kp. It is also verified by simulation study that for, both,
the increased and decreased perturbations of the model parame-
ters (+ 10 % or –10 %) that all the coefficients (a1 and a2) are
found to be positive.
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F i g . 1 0 � The servo response for the operating condition
cf =3.288 kmole/m3



Appendix-B:

Assessment of the stabilizing controller

In this section, a condition is derived for stabilization of
an unstable system with dominant unstable zero. Ho and Xu21

have proposed a method to assess the control system for an un-
stable system. They have considered unstable systems without
any zero. In this section, their work is extended to systems with
an unstable zero.

The open loop transfer function of the system with a PI
controller and a filter is given by

kG = kckp(1–ps)[(�Is–1)/(�Is)] exp(–Ls)/[(1–�s)(�s–1)] (B.1)

The gain margin conditions are given by

0.5�+tan–1(��p) – tan–1(�I�p) – tan–1(p�p) +

tan–1(��p) –L�p = 0 (B.2)

Amkckp = �p�I {[(1 + �2 �p
2)(1 + �2 �p

2)]/

[(1 + �I
2 �p

2)(1 + p2 �p
2)]}0.5 (B.3)

where Am is the gain margin.

Similarly the phase margin criteria is given by

0.5� + tan–1(��g) – tan–1(�I �g) – tan–1 (p�g)

+ tan–1(��) – L�p = 	m (B.4)

kckp = �g �I {[(1 + �2 �g
2)(1 + �2 �g

2)/

[(1 + �I
2 �g

2)(1 + p2 �g
2)]}0.5 (B.5)

where 	m is the phase margin.

Since the argument in tan–1(.) is always found to be
greater than 1, then we can use the approximation:

tan–1(x) = 0.5� – (1/x) for x > 1 (B.6)

Under the conditions of larger argument for tan(.),
Eqs (B.3) and (B.5) become

Am kckp = �p � �/p (B.7)

kckp = �g ��/p (B.8)

Hence we get,
Am = �p/�g (B.9)

Using Eq(B.6) in Eq(B.2) & (B.4) we get

0.5� + (1/�p) [(1/�I) + (1/p) –(1/�) –(1/�)] – L�p = 0 (B.10)

	m = 0.5� + (1/�g) [(1/�I) + (1/p) – (1/�) – (1/�)] – L�g (B.11)

From Eqs (B.10), (B.9) and B(11), we get

[	m Am + 0.5� Am(Am-1) ]/[(Am
2-1)L] = �p (B.12)

From Eq(B.10) alone we get

[(1/�) – (1/�I) ] = (1/p) + (1/�) – 0.5� �p + L �p
2 (B.13)

The first condition to be imposed is kc kp > 0. This from
Eq(B.7) leads to the condition

�p > 0 (B.14)

Hence Eq(B.12) becomes

[	m Am + 0.5� Am(Am – 1) ]/[Am
2 – 1)L] > 0 (B.15)

Imposing the second condition that the left side of Eq
(B.13) should be greater than zero (because the filter time con-
stant is less than that of the integral time):

�p > h2/L (B.16)

where

h2 = 0.25 � + 0.5 {(0.25 �2 + 4 [(–L/p) + (L/�)]}0.5 (B.17)

From Eq(B.12) and Eq(B.16) we get

	m = [h2 (Am
2 – 1)/Am] – [0.5�(Am – 1)] (B.18)

To maximize the phase margin, we need d	m/dAm = 0 (B.19)

For Eq (B.18), this condition leads to

	m, max = –2 {[(–L/p) + (L/�)]}0.5 + 0.5� (B.20)

By imposing the condition, this maximum value of phase
margin should be greater than zero, we get the condition under
which the system can be stabilized:

[–(L/p) + (L/�)] < 0.62

N o m e n c l a t u r e

Am – amplitude ratio

a1, a2 – defined by Eq(A.1) and Eq(A.2)

a3 – defined by Eq(22)

b – defined by Eq(11)

c – concentration in the well mixed zone, k mol–3

ce – exit concentration of the reactor, k mol–3

cf – reactant concentration in the feed, k mol–3

D1, D2 – defined by Eq(10) and Eq(21) respectively

e – error defined by (yr –y)

Gp, Gc – transfer function of the process and the control-
ler respectively

h1 – defined by Eq(23)

h2 – defined by Eq(B.17)

k1 – reaction rate constant, s–1

k2 – inhibition constant, k mol–3

kp, kc– gain of the process and the controller respectively

L – measurement delay, s

m – fraction of total volume of reactor where the re-
action occurs

n – fraction of the feed entering the reaction zone

p – time constant of the numerator dynamics

q – volume flow rate to the reactor, m3 s–1

Q1, Q2 – defined by Eq(24) and Eq(25) respectively

u – manipulated variable

V – volume of the reactor, m3

y – output variable to be controlled

yr – set point value for y

� – filter time constant of the controller defined by
Eq (31), s

� – set-point weighting parameter

�1,�2 – closed loop time constants, s

� – process time constant, s

�e – effective time constant of the closed loop system, s

�I – integral time, s

� – damping coefficient

	m – phase margin

	m,max – maximum phase margin

�p, �g – phase cross over frequency and gain cross over
frequency respectively

� – defined by Eq(17) & Eq(30) respectively for sys-
tem without & with delay
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