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Homeostatic regulatory mechanisms are developed to study the recovering charac-
teristics of the cell components to their steady-states after being perturbed. Such simpli-
fied kinetic mechanisms mimic the balanced cell-growth via quasi-invariant cell-compo-
nent's levels, despite continuous volume growing diluting effects and perturbations in the
environment. Recently, Sewell et al.1 proposed nine kinetic schemes to regulate a generic
protein P, based on a limited number of reactions. Nominal steady-state (QSS) concentra-
tions of the protein and their encoding gene and maximum regulatory effectiveness con-
straints allowed ranking the kinetic schemes according to their stationary effectiveness.
Yang et al.2 extended this analysis by applying a maximum recovering rate objective
function to estimate the rate constants. In the present study, a sensitivity-stability-based
analysis of the QSS complete the previous investigations of regulatory models, by ac-
counting the QSS-response surface to stationary perturbations in the P synthesis/dilution
rate, characterisation of the QSS quality, sensitivity and local stability, and approaching a
multi-criteria ranking of regulatory mechanisms.
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Introduction

Living systems are evolutionary autocatalytic
structures capable of converting raw materials from
their environment into additional copies of them-
selves. To explain such a process at a cell level, an
impressive number of studies have been reported over
the last decades. Although an enormous amount of in-
formation on proteins and other molecules inside cells
is stored on computer databanks, no consensus exists
on how to analyse and model the genomes, the cell
metabolism, and inside regulatory functions.

To model the entire cell-system complexity be-
comes a very difficult computational task because
of the large number of inner cell species, successive
enzymatic / autocatalytic processes involving a large
number of enzymes of various activities, proteinic
oligomers, complex intermediates and regulatory
chains, cell signalling, motility, organelle transport,
gene transcription, morphogenesis and cellular dif-
ferentiation. Several approaches and a large number
of packages have been reported in literature over
the last years, several developments being oriented
toward area of commercial interest such as biotech-
nology, food and drug industry, and neurobiology.

One aspect of complex cell-metabolism is to in-
clude homeostatic regulatory mechanisms to return

most of the cell components to their steady-state (or
near steady-state) after being perturbed. Such regu-
latory kinetic mechanisms ensure a balanced
cell-growth via quasi-invariant cell-component's lev-
els despite continuous diluting effects and other per-
turbations in the environment (nutrient) levels. The
maintained metabolic functions achieve the end goal
of cell-division and replication. Regulatory mecha-
nisms are mainly dominated by negative feedback
elements that control transcriptional processes.3,4

The regulatory networks, implying a large
number of proteins, are poorly understood. They
appear to be organised hierarchically, consisting ei-
ther of a large number of strongly interacting com-
ponents or of smaller numbers of weakly interacting
groups of reactions or modules. Each regulatory
module can be analysed individually, and then com-
bined in a functional organized hierarchy, each one
completing a precise cell-function (for proteins, me-
tabolites, membrane processes). Interactions among
regulatory kinetic modules happens all-the-time due
to complex reactions in which proteins/genes from
different modules interact, thus producing mutual
perturbations. As the module presents a better regu-
latory effectiveness, their 'sensitivity' to internal/ex-
ternal perturbations is smaller. If the linkage rates
are slow, relative to the core rates of each module,
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the proteins in the linked system would remain reg-
ulated. To ensure that individual perturbations
would not combine to yield an overall perturbation
that exceeds the regulatory capacity of any individ-
ual module, the magnitude of each linking interac-
tion would have to decline as the number of con-
nections increased. As a higher level, the cell func-
tional hierarchy ensures the cell-self-replication and
their global auto-regulation.

Recently, Sewell et al.1 proposed nine ODE (or-
dinary differential equations) kinetic models to reg-
ulate a generic protein P, based on a limited number
of elementary reactions for protein synthesis and di-
lution. The constant volume assumption in the
model was corrected by adding a P 'decay' rate to
mimic the real cell-volume growth diluting effect.
Each proposed scheme is analysed for its capabili-
ties to maintain a nominal P concentration level
within a certain small interval of tolerance when
continuous perturbations arise. Nominal QSS con-
centrations have been imposed for the protein P and
their encoding gene G to symbolize transcriptional /
translational processes for an average protein in
Escherichia coli cell, allowing to determine average
rate constants for the P-synthesis and “consump-
tion” (e.g. dilution) rates. In the absence of system-
atic experimental kinetic data, supplementary con-
straints of maximum regulatory effectiveness of the
mechanism at QSS, have been used to set some of
the rate constants. Such a qualitative-quantitative
analysis allowed ranking the regulatory kinetic
schemes according to their stationary regulatory ef-
fectiveness vs. unsynchronised/synchronised 'step'
perturbations in P-synthesis and dilution. The anal-
ysis derived useful principles to design modular
cell-regulatory schemes, highlighting the role of:
cross-autocatalytic P/G synthesis, cell volume
growth, reaction invariants from QSS conditions,
external factors, response to stationary and dynamic
perturbations. Such an approach allows developing
whole-cell models by including linked modules,
which ensure the main cell-functions of interacti-
vity, regulation, growth, replication, and division.

Yang et al.2 extended the previous analysis of
regulatory modules by including new regulatory el-
ements according to previous elaborated principles.
In the absence of kinetic data, a maximum recover-
ing rate objective function has been applied to esti-
mate the rate constants for a nominal QSS. The for-
mulated ODE models have been used to rank the
mechanisms regulatory effectiveness and to study
particular role of reactions and components.

When no standard kinetic data are available,
construction of regulatory kinetic models, rate con-
stant estimation, and their analysis have to account
rather disparate qualitative/quantitative information
from databanks. This is why the rate constants can

be also derived by optimising non-conventional es-
timation criteria such as: faster recovering rate /
smallest recovering time after an 'impulse' / dy-
namic perturbation;2,5 smallest amplitude of the re-
covering path; smallest sensitivity of the QSS vs.
perturbations; maximum QSS stability; imposed pe-
riodicity to the reaction cycle;6 fulfilment of a nom-
inal QSS and some physical constraints; inflexibil-
ity to external condition changes (nutrient's levels);
imposed succession of metabolic events into the
cell, etc. Each of these criteria can lead to a signifi-
cant different estimate, which in turn can offer an-
other perspective for analysing the cell-regulatory
system. For a real cell simulation, it is probable that
a multi-objective criterion, with weights in accor-
dance with the main cell-functions, will offer a
more complete process characterisation.

Design of regulatory module, with a specific
function into the cell, represents an interesting and
promising modelling approach. These simple hypo-
thetical mechanical models can simulate homeo-
static regulation functions for one generic compo-
nent by lumping species and reactions in generic
groups. The advantage of this route devolves from
the possibility to generalise the simulation conclu-
sions, and to consider some whole-cell properties
without requiring currently unavailable details of all
the components and reactions of a real cell.

The scope of this paper is to follow this regula-
tory module design route, by completing the previ-
ous kinetic mechanism analysis with a sensitiv-
ity-stability-based investigation of cell behaviour
around a QSS. The applied procedure allows to esti-
mate the model rate constants, to characterise the
QSS response surface under various stationary
P-synthesis / dilution perturbations, to characterise
the QSS quality and local stability, and to rank the
protein regulatory schemes effectiveness.

Reviews of whole-cell and protein
regulatory models

While valuable databanks of individual cells have
been developed (such as WormBase, EcoCyc7), sev-
eral ambitious projects have been started with the
aim to simulate entire cells or part of cells at a mo-
lecular level: E-Cell (whole-cell simulation),
V-Cell (virtual cell modelling), M-Cell (a general
Monte Carlo simulator of cellular microphysio-
logy), A-Cell (construction of biochemical reaction
and electrical equivalent circuit models), etc.

The E-Cell software allows simulating reaction
pathways within a compartment-based cell model,
including: nucleotide, phospholipid, and amino acid
biosynthesis, energy metabolism, and gene expres-
sion.8 The package works with four predefined
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types of subspace: 'environment' corresponding to
the extra-cellular space, 'cell' corresponding to the
entire cell, 'cytoplasm' corresponding to a region in-
side the cell, and 'membrane' corresponding to a
boundary between any of the others. Simulation of
a pre-defined reaction pathway results in dynamic
species evolution.9 The software does not directly
account for the cell-volume growth and diffusion
effects, genome replication, and cell-division.
Tomita et al.10 used the E-Cell model linked with
the EcoCyc and KEGG databases to simulate the
dynamics of 127 genes/proteinic system for the M.
genitalium cell, and some improvements have been
recently reported.11

The V-Cell package,12 similarly to Cell
ML-package, builds-up a cell framework with com-
partments and membranes, each one including spe-
cies, reactions and membrane fluxes. The user en-
ters the steady/unsteady mass balance equations
into the program, being then solved and analysed
for sensitivity in parameters and automatic simplifi-
cations by using pseudo-steady-state assumptions.
The three package objects (models, geometry and
application) with including species diffusion terms
allow a spatial dynamic simulation of the concen-
tration field into the cell.

The M-Cell package13 allows simulating
high-level complex sub-cellular communications,
together with proteins and enzymes involved in
exo-/endo-cytosis, synaptic transmission, transport
and signal reception. The M-Cell simulator, posi-
tioned at a biological scale “above molecular dy-
namics but below whole cell and higher level stud-
ies”, includes several stochastic algorithms, as
Brownian random walk and Monte Carlo, to model
the diffusing ligands interactions with individual
3D binding sites. M-Cell simulator can thus pro-
vide accurate behaviour for the interacting mole-
cules present in the small amounts in a spatially
complex environment, and massive parallel compu-
tations to reproduce the 3D arrangements of diffu-
sion boundaries and molecules.

The A-Cell platform of Ichikawa14 allows con-
structing a biochemical reaction schema and electri-
cal models for a biological cell and a neuron, by us-
ing pre-defined cell-reaction-path, rate constants,
and an initial condition.

Several other modelling software and simula-
tors for biological systems have been reported in
the literature, including representation of cells, neu-
rons, bio-informatic sequences, bio-polymer se-
quences, complex molecular structures, gene ex-
pression, gene-finding.14–16 A special attention is
paid to the unified SBML language for biology
mark-up,16 which includes representative features
of most of the previous mentioned software. The
package, based on the XML language, attempts to
include the basic route of modelling cellular sys-

tems through ODE, DAE (differential-algebraic),
and stochastic simulators. A minimal SBML model
definition must include most of the following com-
ponents: compartments (finite well-mixed vol-
umes), species, reactions, model parameters, units,
and rules (constraints). Higher-level definitions will
add hierarchical sub-models, spatial geometry, and
array of components. Given the astronomical com-
plexity and unknown aspects of cell-systems, for-
mulating reliable models with predictive ability re-
mains still a dream. However, advances in geno-
mics and related areas provide hope that this dream
might be realized in the near future.

In this computational environment, conven-
tional continuous and mechanistic models can pro-
vide a convenient simulation of the cell systems
when molecular details are of little importance for
the analysis. Such models can be useful for analys-
ing regulatory cell-functions, both for stationary
and dynamic perturbations. When species spatial lo-
cation becomes important, other types of represen-
tation can be more successful, for instance the sto-
chastic models. The small number of molecules for
a certain species is more sensitive to stochasticity of
a reaction process than the species present in larger
amounts, and the use of stochastic models can in-
crease the simulation accuracy. In such models, the
species concentrations are replaced by individual
molecular species, and Monte Carlo methods are
used to predict their interactions. Rate equations are
replaced by individual reaction probabilities while
the model output is stochastic in nature.

One of the key points in elaborating a
whole-cell model is the design of regulatory kinetic
modules for adjusting cell-component concentra-
tions. A simple regulatory module for a generic pro-
tein includes the protein itself, their encoding gene,
external/internal 'raw-materials' for protein/gene
synthesis, intermediates, oligomers, and by-products.
To construct such modules, several alternatives
have been considered in the literature: (i) continu-
ous variable ODE models;17 (ii) discrete (Boolean)
variable models;18,19 iii) mixed continuous-discrete
variable models; (iv) stochastic variable mo-
dels.20–22 The mechanistic ODE models have been
proved to be effective in describing simple cell-sys-
tems, accurately predicting the continuous variable
evolution as well as continuous perturbations. The
Boolean approach, even less realistic, is more
computationally tractable for complex systems, in-
volving networks of genes that are either “on” or
“off” according to defined Boolean relationships.
The mixed models can realise a promising compro-
mise among continuous and discrete variables to
model complex systems. The stochastic models can
replace the 'average' ODE model solution by a more
detailed random-based simulator, but with the ex-
pense of a considerable computational effort.
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Homeostatic regulatory kinetic schemes

Sewell et al.1 proposed nine kinetic mecha-
nisms (denoted with RM1-RM9 in Table 1) to
homeostatically regulate an average generic protein
P in a prokaryote cell such as E. coli.23 In each
mechanism, the core cell includes: a) the environ-
mental (nutrients) influence through P synthesis re-
actions; b) a generic gene G and protein P related to
each other through autocatalysis; c) regulatory reac-
tions that facilitate internal homeostasis in a chang-
ing cell-volume and environment; and d) perturba-
tion reactions for P-synthesis and P-dilution (due to
the cell-growth). Additionally regulatory elements
were added allowing the influence of each element
to be assessed.

P symbolizes virtually all proteins in a real cell,
and has several functions: it is a permease that ca-
talyses the import of nutrients into the cell; a
metabolase that converts those nutrients into
intracellular metabolites; a polymerase that cataly-
ses the synthesis of G from metabolites. To simplify
the regulatory effectiveness analysis, these func-
tions have not been explicitly included in the
RM1-RM9 models, while the overall G-level (ac-
tive and inactive forms) was set constant. A limited
number of other species were incorporated: cata-
lytic inactive intermediates (GP, GPP, GPPPP), pro-
tein oligomers (PP), mRNA (called M) and their in-
active form (MP) involved in a cascade P-synthesis
process. The schemes were step-by-step built-up
starting from the simplest one and adding reactions
according to a certain principle and desired func-
tion. The same rule can be continued to develop
even more complex/effective regulatory mecha-
nisms2 but a trade-off between model complex-
ity/identifiability and their effectiveness has to be
realised.

The nine protein regulatory mechanisms in-
clude consecutive-parallel steps for the enzymatic
protein synthesis and consumption, as follows:

– RM1 (“unregulated mechanism”) includes
only a G-catalysed synthesis of P and their subse-
quent first-order decay by dilution; the mechanism
has no regulatory elements and is the control
scheme against which all others are compared;

– RM2 (“basic negative feedback”) adds to
RM1 a transcription control of P/G ratio through
their reversible transformation into a catalytically
inactive form GP; the equilibrium dissociation con-
stant for this reaction was set to the QSS concentra-
tion of protein (cP s, ) to achieve a maximum regula-
tion sensitivity;

– RM3 (“multiple binding feedback”) adds to
RM2 a more accurate description of the G-level
control through two successive reversible reactions

and inactive forms GP and GPP; prokaryotes com-
monly bind multiple copies of transcription factors
to improve regulatory effectiveness;

– RM4 (“Boolean negative feedback”) consid-
ers the RM2 regulatory mechanism with a discon-
tinuous evolution of G over three possible concen-
tration levels c cG G tot

= {0, 0.5, 1} according to the
P-level, as an idealised best-case sensitivity;

– RM5 (“dimerization”) considers an interme-
diate protein P dimerization to PP before the revers-
ible control of G via a reversible PP binding to an
inactive form GPP; most, if not all transcription fac-
tors, bind promoter sites as oligomers, and GPP
mimics this cell property;

– RM6 (“two-dimer binding”) adds to RM5 a
more accurate G level control and fast G/P ratio ad-
justment via two inactive enzymatic forms GPP and
GPPPP successively bind on the dimer PP;

– RM7 (“transcription/translation cascade”) in-
troduces a new enzyme (M) responsible for the pro-
tein P synthesis; the enzyme M (in fact the mRNA
acid) is synthesized from nucleotides under G catal-
ysis, while in a translation step, P is synthesized in
a reaction catalysed by M; the control of the G/P ra-
tio through the binding species GP is maintained;

– RM8 (“transcriptional and translational feed-
back”) improves the RM7 regulatory effectiveness
by adding, analogous to the RM2 scheme, a control
of the M level through an inactive form MP, to
stimulate its degradation;

– RM9 (“degradation negative feedback”) im-
proves the RM2 regulatory scheme by adding an ir-
reversible P-degradation reaction catalysed by the
intermediate GP derived from G.

ODE model formulation

To model the RM1-RM9 homeostatic P-regula-
tory mechanisms, the constant volume ODE model
hypotheses of Sewell et al.,1 have been adopted. In
such a continuous formulation, the cell-species con-
centrations are continuous variables with feasible
positive values between zero and large copynumbers.
The ODE model reflects in fact the average states
of the stochastic processes occurring during the cell
metabolism.5 As a consequence, fractional concen-
trations can occur during cell simulations with a
continuous ODE model. Because 1 nmol l–1 con-
centration corresponds to a copynumber, when
treated deterministically, for instance a gene con-
centration of cG = 0.5 nmol l–1 must be interpreted
either as a time-invariant average in a population of
cells (e.g. half of all cells contain 1 copynumber of
G) or as a time-dependent averages for a single cell
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(e.g. that cell contains 1 copynumber of G half of
the time).

Irrespectively how the reaction schema was
built-up, the ODE model consists of a differential
set including the stoichiometric matrix � defined
over all reactions and all species, with coefficients
�ij (j = 1,…, ns, number of species; i = 1,…, nr,
number of elementary reactions). Thus, a species j
reaction rate results as a sum of reactions (ri) in
which that species is involved, i.e.:

d d s

r

c t r j nj ij i

i

n

� � �
�

�� ; , , ,1

1

(1)

r k c k ci i j

j

n

i j

j

n

ij ij� � �
� �

� �� 	

1 1

s s

,

(cj = concentration of species j; ri = reaction rate i;
k = rate constants; �ij < 0 for reactants and �ij > 0 for
products). If the reactions are considered elemen-
tary, the partial orders of reaction � and 	 are identi-
cal with the corresponding stoichiometric coeffi-

cients. Table 1 displays the RM1-RM9 model rate
equations. The constant volume model formulation
implies the following hypotheses:

(i) The cell is considered an isotherm system,
with a uniform composition field (ideal mixed sys-
tem). The mass diffusional transport resistance into
the cell is neglected.

(ii) The diffusional resistance to the mass trans-
port of the external 'raw-materials' (not accounted
as distinct species) through the cell-membrane into
the cell is neglected.

(iii) The cell-system is considered an open sys-
tem. Even if the models does not include terms for
delivering by-products in the outer-cell space, fur-
ther developments can easily incorporate such
terms.

(iv) The external conditions are considered
constant over a simulated cell-cycle.

(v) The outside-cell space, to which the exter-
nal 'raw-materials' concentrations are referred, is
considered constant comparatively with the grow-
ing cell volume.
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T a b l e 1 � Reduced kinetic models for protein P synthesis and homeostatic control. Perturbation reactions are considered of the

simplified form: * * * * * *
k k

P3 4
 �

 
 �

 . The cGtot
denotes the total concentration of gene (active and inactive forms)

catalysing the synthesis of protein P.

Kinetic
model

Reaction schema Species rates (rj, j = 1,…,ns)
QSS mass balance equations

(index 's')
Observations

RM1
* * *� 
 �
 �G P G

k1

P
k2
 �

 * * *

r k c k c k k cP G P P� � � �1 2 3 4

c cG G tot
� .

c k c k k kP s G s, ,( ) ( );� � �1 3 2 4

c cG s G stot, , .�

species = [P,G];
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P
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 * * *
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k
� 
 �
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Kinetic
model

Reaction schema Species rates (rj, j = 1,…,ns)
QSS mass balance equations

(index 's')
Observations
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T a b l e 1 � (continued)



(vi) The external and internal 'raw-material'
concentrations for P and G synthesis are considered
constant, and included in the corresponding kinetic
rate constants.

(vii) Some of the reaction by-products are not
considered into the simulation.

(viii) The cell volume is considered constant,
the system being simulated in terms of concentra-
tions. However, to mimic the cell-volume growth, a
diluting rate of P concentration was included in the
model. The dilution rate is of first-order in P, of rate
constant k2, which corresponds to the cell-volume
average logarithmic growing rate24. In fact, such a
cell-content dilution should be considered, in a
more complete model, for every species into the
cell-system, and it acts as a continuous perturbation
of the system. The osmotic pressure into the cell is
also considered constant.

(ix) When separate evaluation of regulatory
modules is made, one ignores interactions among
modules, even if some of the involved species can
be shared in common by several metabolic pro-
cesses.

Continuous perturbations due to changes in ex-
ternal (nutrient) conditions or due to intracellular
processes were included through two P-perturbation
reactions, of rate constants k3 and k4 (Table 1). Inte-
grating the dynamical ODE model can simulate the
effect of an impulse perturbation of a certain spe-
cies of QSS concentration level, and determine their
recovering path. Due to fast reversible G/P 'buffer-
ing' reactions, the ODE model requires a stiff inte-
grator (a Matlab-package environment is usually
satisfactory).

If one writes the model (1) in a more general
vectorial form:

d dc t h c k t c t c� �( , , ); ( ) ,0 0 (2)

the steady-state mass-balances correspond to the set:

h c k( , ) ,s �0 (3)

(index ‘s’ denotes the steady-state value). By solv-
ing the nonlinear algebraic set (3), when nominal
QSS concentrations are known, one obtains an esti-

mate of the model kinetic parameters �k. Vice-versa,
if the rate constants are known, the set (3) can be
used to estimate the QSS concentrations of the sys-
tem when external conditions of continuous pertur-
bations are imposed (the so-called QSS trajecto-
ries).

Predictive, regulatory and model flexibility
characteristics can help in discriminating plausible
reaction schemes. The current study will consider
the following comparison aspects:

– model complexity, i.e. number of reactions
and species;

– stationary regulatory effectiveness to main-
tain a P-concentration level within a certain range
under unsynchrone / synchrone perturbations;

– predicted recovering trajectory shape and
amplitude after a certain dynamic perturbation;

– predicted QSS's sensitivity to stationary per-
turbations;

– predicted QSS domain limits for variate sta-
tionary perturbations;

– predicted QSS's local stability.

Stationary (step) and
dynamic (impulse) perturbations

Cells are such regulated that their components
are maintained at relatively invariant steady-state
concentrations despite the presence of perturbations
(homeostatic regulation). Protein synthesis involves
numerous components. However, in RM1-RM9
mechanisms, except for the gene G encoding P, M,
and few related components, all others are ignored
and assumed to be present at constant concentra-
tions. Perturbations were divided into step (station-
ary) and impulse (dynamic) categories accordingly
to the shape of perturbation function of time.

Steady-state regulatory effectiveness

Stationary perturbations are caused by environ-
mental processes that tend to increase or to decrease

P from their nominal steady-state level cP s,
* until it

reaches another steady-state cP s, . The system is
homeostatically regulated if the difference between
the two perturbed and unperturbed states is below
an accepted tolerance ��0, i.e.:

c cP s P s, ,
* ( ),� �1 � (4)

(where ��0 is usually set to 0.05–0.1). By includ-
ing the min/max cP s, values from (4) into the QSS
system mass-balance of Table 1, minimum and
maximum admissible values for the perturbation
variables can be thus determined for all the models,
and then used to rank the model stationary regula-
tory capability.

This analysis has been done by Sewell et al.1 by
introducing in the model the following stationary
perturbation reactions for P-species:

*** ***.
k k

P3 4
 �

 
 �

 (5)

Thus, for a nominal condition of a protein from

the E. coli cell (that is cP s,
* = 1000 nmol l–1, cG stot ,

* =
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1 nmol l–1, cG s,
* = 1/2 n mol l–1), Sewell et al.1 de-

rived a stationary regulatory effectiveness index for
P, i.e.: A k kunsync � �3 4,max ,max . As this index is lar-
ger the mechanism regulatory effectiveness is better.
Both unsynchronized (k k3 40 0� �, ; k k3 40 0� �, )
and synchronised (k k3 40 0� �, ) perturbations
have been considered. According to this regulatory
index, the models have been ranked in the follow-
ing decreasing effectiveness order:

RM4 > RM6 > RM8m > {RM3,RM5,RM9}
> {RM2,RM7} > RM1. (6)

(in the RM8m model, the k16 constant was ne-
glected). The system is better regulated when high
rates of P-synthesis/decay are present.

Even if stationary conditions are fulfilled, the
continuous cell-volume growth will induce a con-
tinuous perturbation by diluting the cell-content.
Such an effect is accounted in a 'constant' cell-vol-
ume model by adding a 'fictive' first-order decay re-
action for P, while the external factors influence is
included in the catalysed P-synthesis reaction:

*** ***.
k G k

P1 2
 �

 
 �

 (7)

In general, when a system variable or parame-
ter (let us denote it with xj) reaches another QSS
value, the other system components will be influ-
enced and will reach other QSS levels. The 'resis-
tance' (or the 'sensitivity') of each of the species i to
such variations can be numerically expressed as
their concentration derivative in respect to the per-
turbation variable, i.e. the so-called time-dependent
sensitivity function, [ ]( )� �c x ti j , or the correspond-
ing sensitivity coefficient at QSS [ ]� �c xi j s . The
way in which these functions are generated is ex-
tensively discussed in the Appendix A. The most
interesting for our study are the [ ]� �c kP s3 and
[ ]� �c kP s4 which will be further analysed.

Dynamic regulatory effectiveness

Homeostatic protein regulatory systems can
also be dynamically perturbed. Impulse perturba-
tions are instantaneous changes in the concentration
of one or more components of the cell-system, that
arise in an event, lasting an infinitesimal length of
time. After an impulse, stable systems return to
their unperturbed nominal state within a certain re-
covering time. If one divides the perturbation mag-
nitude by the recovering time, the average recover-
ing rate is thus obtained.2 A system is better dynam-
ically regulated when the recovering time is minim
and the recovering rate maxim.

The recovering time can be evaluated directly
from simulating the system recovering dynamics by
means of the ODE model until a certain species (i.e.

P) recovers to their nominal QSS with an accepted
tolerance. The recovering time can be defined for
every species, and depends on the initial perturba-
tion magnitude and the reached QSS. The same re-
covering time is also related to the solution of the
linearized dynamic model (3) around the QSS. Af-
ter applying a perturbation, the ODE set solution
consists of a steady-state term and a dynamic
term25, i.e. c t c c t( ) ~( )� �ns . The dynamic term
is function of the Jacobian's system eigenvalues
(Appendix C). The system recovering time is pro-
portional to the inverse of the absolute value of the
real part of the Jacobian's eigenvalue whose real
part is the least negative. For stable systems, the
real parts of all such eigenvalues must be negative
(possibly some being zero). This approach was used
to optimise and rank regulatory mechanisms from a
dynamic perspective.2

Dynamic indices are not approached explicitly
in the present study because the sensitivity analysis
vs. perturbations is mainly focussed on the cell
QSS-conditions. However, the recovering trajectory
shape and amplitudes after certain impulse pertur-
bations have been determined and used to compare
the RM1-RM9 mechanisms. Moreover, the below
estimation calculations account for dynamic proper-
ties of G-P fast binding reactions to fulfil the
QSS-constraints. As proved by Sewell et al.1, the
regulatory effectiveness is proportional to the slope
of the predicted {c cG G tot

vs. log ( )cP } curve at
QSS. Because G is the catalyst for the P-synthesis,
when only one reversible reaction of binding P to G
is present (leading to GP inactive species), the
curve slope is maximum at c cG s G stot, , = 1/2. Thus,
equal possibilities exist for G-species to increase or
to diminish in order to adjust the P/G ratio, thus bal-
ancing a P-perturbation. The fast P reversible bind-
ing reactions of this type are considered to fulfil the
equilibrium QSS condition:

G P GP K
c

c c

k

k
� 
 �



 


 �
5

6

; .
,

, ,
GP

GP s

P s G s

(8)

As the model includes more reversible binding
reactions to adjust P/G or M/P ratios, the system
is faster regulated vs. perturbations. The maximum
effectiveness condition c cG s G stot, , = 1/2 allowed
Sewell et al.1 to develop QSS-constraints to be used
for estimating the model parameters from regula-
tory objective functions.

Based on a stationary regulatory analysis,
Sewell et al.1 elaborated the main principles to be
followed when designing a new regulatory mecha-
nism. Thus, the idealistic RM4 model, with a
Boolean variation of G, presents the highest regu-
latory effectiveness and an infinite {c cG G tot

vs.
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log ( )cP } slope, while the RM1 schema without
feedback control, presents the lowest regulatory
effectiveness and a zero-slope. The models with
two P’s, or P-dimer binding G, present the same
regulatory effectiveness. Those with negative-feed-
back-controlled cascade are the most probable,
when the ultimate product P inhibits the first-level
enzyme G. The cascade regulatory structures can
amplify the rates of P synthesis and degradation,
thereby improving regulation. The feedback control
at each level of each cascade can also improve the
regulatory capabilities, as much as the equilibrium
points are closer to the point when half active cata-
lyst is bound. As remarked, the real regulatory cy-
cles can be even more complex, by including sev-
eral transcription/translation sequences with feed-
back at each level, and leading, to more sensitive
reaction schemes.

Rate constants estimation and
sensitivity-to-perturbation analysis

Sensitivity functions and coefficients

One essential characteristic of a dynamic sys-
tem is the magnitude, the sense and the route fol-
lowed by the state variables as a response to pertur-
bations. As revealed in the discussion below to (7),
the time-dependent sensitivity functions can be
evaluated over a transient path. When recovering
after a perturbation, the system asymptotically
evolves toward their QSS. The sensitivity functions
will also evolve toward the so-called sensitivity co-
efficients of QSS. The sensitivity functions and co-
efficients can be numerically evaluated according to
the rule described in Appendix A. For the current
analysis, of more interest are the relative sensitivi-
ties at QSS of cP s, vs. the perturbation parameters
k j , j = 3,4 (e.g. the P-synthesis and dilution pertur-
bation rate constants, Table 1):

S c c k kk

r c
i i j j kj

i,
,

*[ ] [ ] .*
s

s s� � � (9)

Integral averages of the relative sensitivity
functions over the recovering path allow defining

the average relative sensitivities S k
r c

j

i,
. Analogously,

the integral averages of the relative sensitivity func-
tions can be evaluated vs. the initial perturbation

�c

r c

j

i

,

,

0
. Because the sensitivity-to-perturbation func-

tions depend on the initial perturbation cj,0, the
QSS, the model structure and parameters, they can
be used under certain conditions to compare the
regulatory models.

Estimation of the model parameters based
on a sensitivity criteria

The classical way to estimate the parameters of
an ODE kinetic model is based on the product/inter-
mediate analysis, prior information, and (filtered,
reconcilied) experimental kinetic curves, i.e. on
lumped or individual species concentration evolu-
tion over the reaction time. A suitable estimation
criterion, minimising the residual differences be-
tween data and model predictions in terms of output
variables, leads to the estimate. Due to the noised
data, several estimates can be obtained under simi-
lar operating conditions. The identification problem
is formulated as a numerical nonlinear least squares
problem and is solved by using several techniques:
indirect methods (objective function iterative mini-
misation with repeatedly model evaluation), or di-
rect methods (based on model transformation and
approximate problem solution in one step.26 The es-
timation objective function is linked with the statis-
tical methods because the observed data are always
subjected to experimental errors, and several physi-
co-chemical constraints are imposed to the parame-
ters.

For the developed regulation models, at a cell
level, little standard information in the classical
sense is available. The construction of kinetic mod-
ules accounts rather disparate qualitative/quantita-
tive information from databanks, being linked to
describe the cell functions. This is why, the rate
constants are derived, rather, by optimising non-con-
ventional estimation criteria, such as: faster recov-
ering rate or smallest recovering time after an 'im-
pulse' / dynamic perturbation; smallest amplitude of
the recovering path; smallest sensitivity of the QSS
vs. perturbations; maximum QSS stability; imposed
periodicity to the reaction cycle; fulfilment of a
nominal QSS and some physical constraints; inflex-
ibility to external condition (nutrient's level)
changes; imposed succession of metabolic events
into the cell, etc. Each of these criteria can lead to a
significant different estimate, which offers another
perspective for the analysed cell-regulation system.
For a real cell simulation it is probable that a simul-
taneously multi-objective criterion can be used,
with weights in accordance with the main cell-func-
tions.

In the present study, to estimate the model
rate constants k, one started from the same nominal

QSS concentrations of Sewell et al.1, i.e. cP s,
* = 1000

nmol l–1, cG stot ,
* = 1 nmol l–1. To facilitate the further

QSS sensitivity analysis, the estimate has to be re-
lated with the sensitivity functions of the system
vs. perturbations. Thus, a minimum-sensitivity-to-
-perturbation criterion at nominal QSS was formu-

G. C. MARIA, Evaluation of Protein Regulatory Kinetics Schemes in Perturbed Cell …, ����� ���	���� 
��� � 17 (2) 99–117 (2003) 107



lated by summing the P-relative sensitivity coeffi-
cients in respect to k3 and k4:

� arg ( ),
, ,, ,k f S Sk

r c

k

r c
� � �Min obj

P s P s

3 4

subjected to the QSS constraints:

h c k k g c k( , �) ; � ; ( , �) .s s� � �0 0 0 (10)

QSS mass-law constraints in (10) are imposed
on the stationary point toward the perturbed system
evolves. To ensure also a maximum model regula-
tory effectiveness at the QSS, supplementary con-
straints (denoted with g, see Table 2) derived by
Sewell et al.1 for every model, have been consid-
ered, mainly concerning the P-G binding reaction
(see discussion on (8)). Bounding the search region

in the parameter space ensured the estimated �k posi-
tiveness. These constraints have been included in
the estimation objective function as penalty terms
with certain weights w:

f f w gj j

j

obj obj
* ;� ��

(11)

(adopted wj = 10; j = 1–3).

Small k3 = 1e-3 nmol L–1 min–1 and k4 = 1e-6
min–1 values have been assigned to derive the sensi-
tivities in respect to these parameters. The ODE set
(Appendix A) was numerically integrated from an
impulse-perturbed initial state over a large time in-
terval of 1000 min to reach the QSS with a satisfac-
tory tolerance. As minimisation method, the adap-
tive random search MMA of Maria27 was used, as
being very reliable for solving highly constrained
multimodal nonlinear problems (k1 and k2 have
been kept at the Sewell et al.1 values). The esti-
mated rate constants are presented for every model
in Table 3 together with the obtained equality con-
straint's fulfilment at the solution. The estimate is
close but not identical with those obtained by Yang
et al. 2 by applying a fast recovering rate estimation
criterion. The obtained rate constants will be used
to complete the model-to-perturbation sensitivity
analysis.

Model ranking based on the
QSS sensitivity characteristics

To compare the QSS sensitivity-to-perturbation
coefficients predicted by various models, the same
10 % initial impulse-perturbation in cP s, and cG s,
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T a b l e 2 � QSS mass-balance and maximum regulatory effectiveness constraints1 imposed to the parameter estimation criterion

Model Constraint g1 = 0 Constraints g2 = 0; g3 = 0
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have been applied to all models (Table 4). The sen-
sitivities in respect to k3 and k4 were derived by
considering stationary perturbations of k3 = 1e-1
(nmol L–1 min–1) and k4 = 1e-4 (min–1). The ob-
tained relative sensitivity coefficients for species P
of interest are presented in Table 4. Models RM1
and RM3 were not included in this comparison, be-
cause of their dynamic evolution to another QSS
with different characteristics. As the species P sen-
sitivity coefficients vs. k3 and k4 are smaller, the cP s,

is insensitive to the synthesis and decay stationary
perturbations. The predicted QSS sensitivities rank
the models in the following decreasing order:

{RM2,RM7} > {RM5,RM6,RM9} > RM8. (12)

The P average sensitivity coefficients in respect
to the perturbed initial states depend on the each
checked mechanism, perturbation size, and recover-
ing path. As these coefficients are smaller, the model
is more insensitive to initial state. The sum of aver-
age sensitivity coefficients of P vs. cP,0 and cG,0 from
Table 4 confirm the previous model ranking:

RM9 > {RM2,RM5,RM7} > RM6 > RM8. (13)

Finally, it is to observe, that due to the stochas-
tic character of perturbations, it can be more realis-
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T a b l e 3 � Estimated rate constants for RM1-RM9 models by using a sensitivity criterion under QSS constraints of Table 2 (�g1

and �g2 denote the error in fulfilling the constraints by the solution; �g3 = 0; the perturbation constants are null, i.e.
k3 = k4 = 0)

kj units RM1 RM2 RM3 RM5 RM6 RM7 RM8 RM9

k1(*) min–1 20 20 20 20 20 - - 20

k2(*) min–1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

k5 L nmol–1 min–1 - 1.9e-5 2.89393e-5 - - 6.80000e-3 1.89422e-1 2.90e-5

k6 min–1 - 1.9e-2 7.70002e+2 - - 6.80000 1.89422e+2 2.90e-2

k7 L nmol–1 min–1 - - 8.77976e+1 - - - - -

k8 min–1 - - 3.29985 - - - - -

k9 L nmol–1 min–1 - - - 1.20036e-9 1.80944e-1 - - -

k10 min–1 - - - 4.10e-3 8.15318e+6 - - -

k11 L nmol–1 min–1 - - - 9.69000e-2 9.99072 - - -

k12 min–1 - - - 2.85162e-2 2.21721e-1 - - -

k13 L nmol–1 min–1 - - - - 4.18779e+1 - - -

k14 min–1 - - - - 1.26076e+7 - - -

k15 min–1 - - - - - 9.99981e-1 7.25565e+1 -

k16 min–1 - - - - - 3.74980e-2 6.10e-3 -

k17 min–1 - - - - - 7.49975e-1 1.21278e+3 -

k18 L nmol–1 min–1 - - - - - - 5.91193e+1 -

k19 min–1 - - - - - - 8.16933e+1 -

k20 min–1 - - - - - - 6.56863 -

k21 min–1 - - - - - - - 2.00e-2

"g1 nmol L–1 0 0 5.08e-11 2.56e-3 -7.66e-6 -8.87e-13 5.38e-15 0

"g2 - - 0 3.82e-18 1.28e-3 -3.83e-6 8.69e-16 -6.50e-19 0

(*) average rate constants for P-synthesis and dilution rates in E. coli adopted by Sewell et al.
1



tic to consider a random distribution of the station-
ary perturbations in terms of parameters, but also in
initial concentrations, for instance of normal-type
with the variance V(*). In this case, the combined
random stationary perturbation effect on cP,s vari-
ance can be approximated with the error-propaga-
tion-formula of Park & Himmelblau:28

V S V S Vc

c
c

i

n

k

c

k k
i

n

i i i j
P

Ps

s

Ps

p

� �
� �

� �[ ] [ ] .
, ,

* *
0 0

2

1

2

1

(14)

The previous derived sensitivity functions of
the cell-system states (e.g. species concentrations)
vs. metabolic-cell perturbations ignore interactions
with other cell-regulatory modules. More complex
models, including linked modules, can offer the
possibility to account for a more complete represen-
tation of component sensitivities.

Recovering trajectory shapes

The effect of an impulse-perturbation can be
analysed from various point of views: system re-
covering rate, recovering time, and recovering path
amplitude and shape. In general, if a system pres-
ents multiple QSS (not the case here), simulation of
recovering path from various initial perturbed states
can be used to construct the ‘attraction’ domain
around each QSS. The way and rate of which the
cell-system components recover depends on the

model regulatory effectiveness, and have been used
to compare and rank various mechanisms.2 To be
consistent, such an analysis has to use estimated
rate constants from dynamic criteria.

Rapid and straight recovering paths, in terms of
species concentrations, can reveal a more effective
regulatory model. Figure 1 displays such recovering
trajectories for some state-impulse-perturbations.
While RM1 and RM4 models predict a Boolean be-
haviour for P-G species, the other models predict
nonlinear trajectories toward QSS. At a first glance,
following the recovering shapes, the models can be
grouped as follows:

{RM1, RM4}, {RM2, RM9}, {RM3},
{RM5}, {RM6, RM7, RM8}. (15)

Models RM6 and RM8 seem to be more effec-
tive in cell regulation, by predicting straighter re-
covering trajectories, which avoid large P transient
states. Such a conclusion is confirmed by the model
classification of Yang et al.2 from a more detailed
dynamic regulatory analysis.

QSS admissible region of stability
under stationary perturbations

If stationary 'step'-like perturbations occur into
the cell, the stationary levels of species concentra-
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T a b l e 4
� Species average relative sensitivities �c

r c

j

i

,

,

0
in respect to the initial perturbed state cj,0 (determined over 1000 min re-

covering interval*). Species P relative sensitivities Sk
r c

j

i, s at QSS in respect to the perturbation parameters k3 and k4.

Reference perturbation

(ci,0 or k perturbation)

Model

RM2 RM5 RM6 RM7 RM8 RM9

cP,0 7.11e-2 4.24e-2 5.59e-2 7.00e-2 4.76e-2 5.48e-2

cG,0 6.34e+2 6.96e+2 4.69e+2 6.05e+2 3.79e+2 8.47e+0

cGP,0 6.01e+2 - - 6.05e+2 3.79e+2 -2.49e+1

cGPP,0 - 4.56e+2 4.67e+2 - - -

cGPPPP,0 - - 4.67e+2 - - -

cM ,0 - - - 1.28 9.32e-3 -

cMP,0 - - - - 4.52e-2 -

cPP,0 - -2.24e+2 8.96e-2 - - -

k3 6.62e-3 4.95e-3 4.97e-3 6.62e-3 3.98e-3 4.97e-3

k4 -6.62e-3 -4.77e-3 -4.97e-3 -6.62e-3 -3.98e-3 -4.97e-3

(*) Initial impulse perturbation [ , , , , ], , , , ,c c c c cP G GP GPP GPPPP 00 0 0 0 was set to [1100,0.6,0.4,0,0](nmol L
–1

) for models RM2, RM7–9, [1100,0.6,0.2,0.2,0]
(nmol L

–1
) for model RM3, [1100,0.6,0,0.4,0](nmol L

–1
) for model RM5, and [1100,0.6,0,0.2,0.2](nmol L

–1
) for model RM6; cGtot

= 1 nmol L
–1

.



tions change also, evolving toward another QSS.
Such constant perturbations are generated by the
continuous cell-volume growth, but also by changes
in external nutrient levels. In the present paragraph,
one investigates the variations in the QSS generated
by stationary synchronised / unsynchronised pertur-
bations in k3 and k4 parameters, e.g. the P-synthesis
and dilution perturbation rate constants. The
QSS-trajectories for various k3 and k4 have been
traced by means of so-called 'continuation algo-
rithm' (Appendix B). Such a rule highlights the
QSS-domain limits tolerated by the cell-system and
the QSS-sensitivity to stationary perturbations. The
analysis is then extended with characterising the
QSS for stability. Finally, a model comparison ac-
cording to these predicted characteristics is pre-
sented.

Double continuation method to analyse
the system QSS

Starting from the model QSS mass balance (3)
and applying stationary perturbations k3 and k4 to
the system, different QSS-s can be obtained. If one
imposes fulfilment of cG stot , = 1 nmol L–1 constraint,

and a perturbation range of k3 � [0,4] (nmol L–1

min–1) and k4 � [0,4e-3] (min –1), repeated solutions
of mass balance (3) lead to QSS-trajectory plots for

all the model species (i.e. the double continuation
plots). In Figure 2 are presented the cP,s (nmol L–1)
trajectories, in logarithmic plots for the models
RM6 and RM8. The displayed admissible area cor-
responds to a variation of cP,s within a ± 5 % cP,s

range, as tolerated by the cell-system, without dis-
turbing their metabolic process.

While no multiple QSS-s, bifurcation, or turn-
ing point exist, the predicted cP,s value depends on
the model structure, parameters, and the stationary
perturbation size. The logarithmic plots lead to
evaluate the QSS-surface gradients (displayed in
Figure 2, the lower panels). The gradients represent
the cP,s sensitivities in respect to k3 and k4. It is to re-
mark that, sensitivity vs. k4 is ca. three times higher
than those in respect to k3. Such a result is expected
because the P-synthesis perturbation reaction (with
rate constant k3) is of zero-order, while the P-con-
sumption perturbation reaction (with rate constant
k4) is of first-order in P (with concentrations around
1000 nmol L–1). The logarithmic QSS-surface gra-
dients correspond in fact to the logarithmic relative
sensitivity QSS-coefficients (A2) in Appendix A.

By considering the same perturbation range

and nominal conditions of [c cP s G s,
*

,
*, ] = [1000,0.5]

(nmol L–1), the QSS-surface predicted by various
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F i g . 1 � Recovering paths for P, G, and M species after various 'impulse' perturbations in QSS concentrations, predicted by the
models RM1, RM5-RM9. Initial perturbations [ , , , , ], , , , ,c c c c cP G GP GPP GPPPP 00 0 0 0 of: [1100,0.6,0.4,0,0], [600,0.8,0.2,0,0], [1500,0.4,0.6,0,0]
(nmol L–1) for models RM7–9; [1100,1,0,0,0], [600,1,0,0,0], [1500,1,0,0,0] (nmol L–1) for models RM1; [1100,0.6,0,0.4,0],
[600,0.8,0,0.2,0], [1500,0.4,0,0.6,0] (nmol L–1) for model RM5; [1100,0.6,0,0.2,0.2], [600,0.8,0,0.1,0.1], [1500,0.4,0,0.3,0.3]
(nmol L–1) for model RM6. (The other species initial concentrations were set to zero).



models can be directly compared. As the surface
gradients are smaller the admissible area is larger
and the system is better regulated vs. stationary per-
turbations. For instance, Figure 2 reveals that
QSS-surface gradients for RM8 model are smaller
(and the admissible area larger) than those predicted
by the RM6 model. The predicted QSS-surface gra-
dients �lg(cP,s)/�k3 and �lg(cP,s)/�k4 on the same per-
turbation range, rank the models with an increasing
'resistance' to stationary perturbations as follows:

RM1 < {RM2, RM7}
< {RM3, RM5, RM6, RM9} < RM8.

(16)

This model classification matches with (6),
predicted by Sewell et al.1 when using another sta-
tionary regulatory index. The model RM8 predicts
the largest admissible QSS-region from all the mod-
els.

Stability checks of QSS

By analysing the protein QSS-levels under var-
ious stationary conditions, an important question
arises concerning their stability. The analysis is ex-

emplified for the nominal [c cP s G s,
*

,
*, ] (with k3 = k4 = 0),

but other QSS-s can be similarly approached.

The analysis starts with linearizing the nonlin-
ear QSS-set (3) near the stationary solution cs (see
Appendix C). The evaluated system Jacobian's ma-
trix hz and their eigenvalues are then analysed. If
the real parts are negative for all the eigenvalues

(eventually some being zero), it results that the QSS
is a stable point. Moreover, one can appreciate the
stability strength from how negative these values
are. The calculus is repeated for all the models. In
Figure 3 (left panels) are displayed, for model RM5
and RM6 cases, the real parts of the Jacobian's
eigenvalues corresponding to the P and G mass bal-
ance equations, traced over a stabilisation time-in-
terval of 50 min. Model RM6 predicts much smaller
hz's eigenvalues of real parts (1–5 order of magni-
tude smaller) than RM5 model, while the corre-
sponding stabilisation interval is much shorter. As a
direct conclusion, model RM6 predicts stronger sta-
ble QSS with a higher recovering potential.

All the investigated models predict non-zero
eigenvalues, thus no remnant periodic QSS solution
exists. The numerical rule based on the monodromy
matrix M eigenvalues (see Appendix C) can check
for stability of the periodic solutions. Exception is
made by the model RM2 (not displayed here) with a
null real part of the hz's eigenvalue, but not leading
to periodic instability due to the less than one M's
eigenvalue modulus. For all the models, the pre-
dicted M eigenvalue's modulus is less than one.
Then, the nominal QSS presents any periodic insta-
bility (or Hopf bifurcation points), and the recover-
ing trajectories will converge to the stable point.

Evaluation of M matrix's eigenvalues over a
time-interval of 50–100 min, allows to evaluate the
stability of a QSS against periodic oscillations. As
the eigenvalue's modulus is smaller and reached
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F i g . 2 � [upper panel] Decimal logarithmic plots for cP,s (in nmol L
–1) at QSS predicted by models RM6 (A), and RM8 (B). The

checked range is k3 � [0,4](nmol L–1 min–1), k4 � [0,4e-3](min–1). Within the marked perturbation area, the cP,s (nmol L
–1) can be

maintained within a ± 5 % cP,s admissible range.
[lower panel] The response surface gradients in decimal logarithmic plots, e.g. �lg(cP,s)/�k3, and �lg(cP,s)/�k4 (the reference origin of
k3 = 0, k4 = 0 corresponds to lg(cP,s) = 3).



faster, the QSS is more stable. In Figure 3 (right
panels) are displayed the eigenvalue's modulus for
models RM5 and RM6. The model RM6 predicts a
stronger stable QSS point due to a smaller M's
eigenvalue modulus, also reached faster.

By comparing the predicted 'degree of stability'
for the same nominal QSS, the models can be
ranked in the following increasing order:

{RM2,RM9} < {RM3,RM5,RM7}
< {RM6,RM8}. (17)

Conclusions

When designing a regulatory module for a cer-
tain species during a cell-cycle, it is difficult to in-
clude all the process complexity in a limited num-
ber of reactions. The construction is rather based on
disparate qualitative/quantitative information from

databanks describing a certain cell function. In the
absence of kinetic data, the model parameters are
estimated from non-conventional estimation crite-
ria. Each criterion can lead to a significant different
estimate, offering a certain perspective on the com-
plexity of the studied cell-system. Simultaneously
considering several identification criteria with vari-
ous weights would lead to more detailed conclu-
sions, with the expense of a considerable computa-
tion effort.

The use of simplified kinetic models to mimic
proteinic regulatory functions allows a quick evalu-
ation of mechanism effectiveness and highlights
contributions of parts of the kinetic schema. When
evaluating a regulatory mechanism, several aspects
have to be considered: model complexity, rate con-
stant estimability, dynamic and stationary regula-
tory capability, predicted QSS's stability, QSS sen-
sitivity to perturbations, recovering path after per-
turbations, QSS multiplicity, QSS-vs.-perturbation
surface limits.

The present study completes the Sewell et al.1

and Yang et al.2 stationary and dynamic analyses of
variate regulatory mechanisms with including sup-
plementary characterisation aspects. By formulating
a minimum-sensitivity-to-perturbation estimation
criterion for a nominal QSS, rate constants were ob-
tained and a complex sensitivity-stability analysis
was performed. This analysis pointed out differ-
ences in regulatory effectiveness, as follows:

(i) model groups presenting similar recovering
trajectory shapes after a perturbation:

{RM1,RM4}, {RM2,RM9}, {RM3},
{RM5}, {RM6,RM7,RM8};

(ii) decreasing stationary regulatory
effectiveness1:

RM4 > RM6 > RM8m > {RM3,RM5,RM9}
> {RM2,RM7} > RM1

(iii) decreasing QSS sensitivity to perturbation
reactions:

{RM2,RM7} > {RM5,RM6,RM9} > RM8

(iv) decreasing QSS sensitivity to perturbed
initial P/G states:

RM9 > {RM2,RM5,RM7} > RM6 > RM8

(v) [QSS-perturbation] surface gradients / in-
creasing 'resistance' to perturbations:

RM1 < {RM2, RM7}
< {RM3, RM5, RM6, RM9} < RM8
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F i g . 3 � Stability characteristics of QSS predicted by mod-

els RM5 (A) and RM6 (B) for [c cP s G s,
*

,
*, ] = [1000,0.5] (nmol

L–1), and k3 = k4 = 0.

[A,B-left side] Evolution of the real parts of the hz matrix

eigenvalues (corresponding to P and G species).

[A,B-right side] Evolution of the eigenvalue modulus of the

monodromy matrix M (corresponding to P and G species).



(vi) QSS decreasing strength of stability:

{RM6, RM8} > {RM3, RM5, RM7}
> {RM2, RM9}

As a conclusion, models RM8 and RM6
proved the best low sensitivity-to-perturbations and
best stationary regulatory characteristics for all the
indices (if we do not include the 'artificial' Boolean
model RM4 in this discussion). Yang et al.2 have
found the same models very effective for dynamic
regulation of the protein levels.

Based on these conclusions, it was possible to
highlight the contribution of certain reactions and
species to the regulation mechanism and to elabo-
rate general principles for designing new protein
regulatory models: (i) use rapid rates for P synthesis
and degradation, even if energetically is costly; (ii)
use a cascade reaction structure to amplify the syn-
thesis rate of P; (iii) apply feedback relationships
(i.e. 'buffer' G/P reaction type) wherever is possible
at each level of each cascade; (iv) allow multiple
copies of P (or a related transcription factor) to bind
sequentially, thus quickly controlling the P/G ratio.

However, a more complete multi-objective
analysis, including dynamic recovering effective-
ness with a more detailed variable cell-volume
model, and possible linked-modules, can confirm
such conclusions. A complete analysis of the model
regulatory effectiveness lead to adopting the most
plausible and simple kinetic scheme to be used
when an extended regulation chain is designed. Be-
cause the module's inter-connections are expected
to be slower than the inner-module reactions, the
separated estimated parameters for each module are
expected to not vary much when modules are
linked. This suggests that such a modular design
analysis may be a feasible route to be followed.
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N o m e n c l a t u r e

A; A – area; matrices defined in eqn. (A4) or (C3)

B – matrix defined in eqn. (A4)

c – species concentration [ns] vector

fobj – objective function

g – equality constraint functions (Table 2)

h – kinetic model QSS mass balance set

hz – h-matrix derivatives vs. vector C (e.g. the
Jacobian matrix)

I – identity matrix

k – (reaction rate) kinetic constants

M – monodromy matrix M (Appendix C)

np – number of kinetic parameters

nr – number of elementary reactions

ns – number of species

N – augmented mass balance set (Appendix B)

r – reaction rate vector

s – supplementary parameter defined in eqn. (B3)

S S S, ,� – absolute, relative, and average sensitivity func-
tions vs. parameters (Appendix A)

t – time

T – solution period (Appendix C)

V(*) – variance of (*)

w – weights for penalty function during estimation

G r e e k s

� – partial orders of direct reactions; hz matrix's
eigenvalues

� – fractional coefficient defining the protein pertur-
bation magnitude

� � �, ,r – absolute, relative, and average sensitivity
functions vs. initial conditions (Appendix A)

	 – matrix of partial orders of reverse reactions

� – stoichiometric coefficient [ns × nr] matrix

I n d e x

o – initial

s – (quasi-)steady-state

tot – total

A b b r e v i a t i o n s

det(*) – determinant of the matrix (*)

rank(*) – rank of the matrix (*)

real(*) – real part of (*)

trace(*) – trace of the matrix (*)
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Appendix A

Sensitivity functions

For a kinetic system modelled by means of the differential
set (2), the direct sensitivity analysis determines the influence
of small perturbations of the initial conditions (c0) and parame-
ters (k) on the system concentrations (c) over a certain time in-
terval, i.e. on a concentration trajectory converging to a QSS29.
Vice-versa, the inverse sensitivity analysis determines the per-
turbation magnitude of the initial conditions and parameters,
which is responsible for a certain perturbation on the system
states. Both analyses are based on the sensitivity functions de-
fined in respect to the initial conditions (matrix �n ns s� ) and pa-
rameters (matrix Sn ns p� ) respectively:
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As proved by Vajda et al.30, it is more convenient to ex-
press the absolute sensitivities in relative terms referring to cs
and k* nominal values:
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due to the possibility of a direct comparison of sensitivities and
of determining eventually relationships among parameters. An
integral average of the relative sensitivities can also be evalu-
ated over a dynamic recovering path after an 'impulse' perturba-
tion:
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These sensitivity functions are numerically evaluated over
the integration time by means of so-called sensitivity equa-
tions, until the QSS is reached with a certain tolerance at final
tf:
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(I denotes the identity matrix). At QSS, the sensitivity
function's values represent the steady-state sensitivity coeffi-
cients.

Appendix B

Continuation rule to construct
QSS-trajectories

The steady-state mass balance of a regulatory kinetic
schema corresponds to a ns-dimensional nonlinear algebraic set
(3) (index ‘s’ denotes the steady-state value). By varying some
of the k-values, one can generate cs(k) curves in the [ns × np]
space. By inspecting the shape of these curves one can deter-
mine the ‘boundary’ or ‘limit’ or even ‘bifurcation’ points con-
trolling the number and type of the QSS-s. This QSS-trajectory

generation represents the so-called ‘system continuation prob-

lem’.32–34

Depending on the k-values, the set (3) can present no solu-

tion, single solution or multiple QSS solutions, leading to parti-

tioning the (c,k) space in several sub-domains. The domain

bounds can point-out ‘limits’ (because of certain physical con-

straints), ‘turning’ points (where solution multiplicity change), or

‘bifurcation’ points (where c(k) solution branches intersect each

other or all together). At the so-called turning points (c*,k*) sev-

eral conditions hold:
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Supplementary conditions can also be used to check

switching branches bifurcation points.32 In order to numeri-

cally determine all the singular (bifurcation) points, when the

set functions and derivatives tend to zero, the problem (3) is re-

placed with solving a normalised one by introducing a new pa-

rameter ‘s’, such that c(s) and k(s) are dependent on s and the

following set holds for a certain proposed function N:

h c k N c k s( , ) ; ( , , ) .s s� �0 0 (B3)

The advantage of such a re-parameterisation is that, for a

fixed value of s*, the derivative matrix becomes non-singular

near the singularities points of the initial matrix, i.e.:
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The continuation procedure applied to k can equally be

applied to s, thus bypassing difficulties encountered near the

singularity points when applying the solver algorithms to trace

branches c ks( ). From the large number of parameterisation

methods reported in the literature, those proposed by Rhein-

boldt & Burkardt35 were adopted in the present study. This al-

ternative considers one of the system variable xm as being s

and receiving successive increasing values, that is:

N c k s x s x c k( , , ): ; : [ , ];s m� � � (B5)

m n n� � �1, ,( ).s p

All of the [ , ]c k vector components can be chose as being

xm (respectively s) parameter. However, Rheinboldt36 sug-

gested using that parameter presenting the larger derivatives

� �h xm, i.e. the larger sensitivities into the model. The continu-

ation conditions being fulfilled, successive solution of (B3, B5)

for various increasingly xm-values lead to tracing the QSS sin-

gle branch. The QSS solutions for one parameter can be re-

peated when varying two (or more) parameters, thus leading to

double (or multiple) bifurcation branch tracing.37
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Appendix C

Steady-state stability and check for periodic
solutions

To investigate the stability of a QSS point cs, the model
equations (3) have to be locally linearized via evaluation of the
Jacobian matrix hz:

d d s z s sc t h c k h c k h c k c c� * � �( , ) ( , ) ( , )( ); (C1)

h h c k cz s� [ ( , ) ] .� �

By inspecting the matrix hz's eigenvalues (�j, j = 1,…,ns),
simple stability conditions can be derived.38 For real �j, a
‘nodal’ steady-state solution is stable if �j < 0 (for all j), and
unstable if �j > 0 (for only some j). For complex �j, the system
presents amortised oscillations toward a stable solution for
Re (�j) < 0 (for all j), remnant oscillations for some Re (�j) = 0,
and un-amortised divergent oscillations for some Re (�j) > 0. In
the case of only two-variables, the stability is guaranteed if
both following inequalities are satisfied:

Trace h Det h( ) ; ( ) .z z� �0 0 (C2)

At a bifurcation or limit point in a QSS-trace representa-
tion, several types of loss of stability might arise when the real
part of an eigenvalue is zero. Of special interest is the case of
the Hopf bifurcation points, where periodic solutions emerge.

To check a QSS for Hopf periodic solutions when a per-
turbation occurs, one method is to determine periodic trajecto-
ries starting from a stationary point cs and integrating over a
period-interval [0,T] the set:39
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(C3a/b)

Equation (C3b) is integrated on a periodic orbit c(t) de-
fined by (C3a), with the period T and parameters k. The
[ns × ns] matrix I denotes the identity matrix. The eigenvalues
of thus obtained M = A(T), the so-called Floquet multipliers of
the monodromy matrix M, determine the type of stability of the
analysed stationary solution.40 If they are all inside the unit cir-
cle of the complex plane, then the periodic orbit c(t) is stable.
The stability is lost when one pair of multipliers crosses the
unit circle (Hopf bifurcation point).
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