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A further study of the neural network application for predicting appropriate meth-
ods of phase equilibrium on the basis of known physical properties is presented.
Kohonen neural networks are used to classify objects into none, one or more possible
classes. The classes in the study represent possible methods of phase equilibrium. The
trained neural network estimates the reliability of its predictions – the adequacy of indi-
vidual methods of phase equilibrium for further efficient chemical process design and
simulation. The analysis of the preliminary, less accurate results confirms the hypothesis
to use Kohonen networks for classification of the classes as a correct one. Therefore, the
Kohonen network architecture yielding the best separation of clusters was chosen for fur-
ther analysis. It has been adapted and the training continued until the conflicting situa-
tions were resolved. Out of the several Kohonen networks trained the best one was ana-
lyzed. The maps of individual physical properties and the probability maps were ob-
tained for each specific phase equilibrium. The correlation among maps is shown.
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Introduction

A further study of a neural network application
for classification and prediction of appropriate
methods of physical equlibrium on the basis of
known physical properties is presented. Many pa-
pers presenting tools to help an engineer in choos-
ing a suitable phase equilibrium method have been
published. In the article by Baòares-Alcantara and
Westerberg1 the steps followed to develop a proto-
type expert system CONPHYDE are described.
Using the framework of the existing expert system
PROSPECTOR, CONPHYDE is designed to aid
engineers in the selection of an appropriate
vapour-liquid equilibrium method. Similar is the
hybrid system of Kelly, Holste and Hall2 but it han-
dles much broader set of properties and applica-
tions. Another knowledge based system for the se-
lection of thermodynamic models, TMS,3,4 has sim-
ilar objectives but has an alternative structural
methodology. All the systems mentioned need in-
ference networks to be previously built up. An ex-
ception is the expert system PHYP by Oreski and
Glavic,5 which has the same purpose but uses rules
automatically generated by its shell instead of the
inference networks.

In the field of phase equilibria, several applica-
tions of neural networks exist. We shall mention
only some of them. Artificial neural networks are
used as a part of/or a complete predictive tool for
vapour-liquid equilibrium. For example, Petersen,
Fredenslund and Rasmussen6 used artificial neural
network as a new group contribution method. Habi-
ballah, Startzman and Barrufet7 used it for predic-
tion of vapour-liquid equilibrium K-values. The
possibility of applying neural networks for vapour-
-liquid equilibrium data prediction/estimation of
methane-ethane and ammonia-water systems has
been explored using the back propagation algorithm
by Sharma, Singhal, Ghosh and Dwivedi.8 Neural
networks were used as a part of predictive tool by
Alvarez, Riverol, Correa and Navaza,9 where a
combined mixing rule for the prediction of vapour-
-liquid equilibrium was designed using neural net-
works. There are some applications of neural net-
works for prediction of liquid-liquid equilibrium.
An article by Bogdan, Gosak and Vasic-Racki10 can
be mentioned where mathematical modeling of liq-
uid-liquid equilibrium using neural network is rep-
resented. Some applications in solid-liquid equilib-
rium predictions exist.11,12 Buenz, Braun and Ja-
nowsky13 involved neural networks in correlating
and predicting physical properties of pure compo-
nents and mixtures from molecular structure. Appli-
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cations of neural networks to predict melting points
exist, too.14,15 It can be resumed that in the field of
phase equilibrium the neural networks have been
used for prediction only and not for classification so
far.

Previous work

The basic idea to apply a neural network for
classification in the field of phase equlibrium was
first introduced in the previous article16. There, a
neural network is used to classify and predict ap-
propriate methods of phase equlibrium on the basis
of known physical properties. Four main character-
istics were exposed for the application:

– A large number of data exists regarding dif-
ferent combinations of physical properties with an
appropriate method of phase equilibrium attached.

– The available data do not describe all the
possibilities – the domain is not covered by all the
possible combinations of chemical components,
concentrations, working temperatures, pressures,
etc. (some of these combinations are not yet known,
some of them are not possible).

– The classification is to be made by the neural
networks – they must be able to attach none, one or
more possible phase equilibrium methods to the
data known.

– Neural networks must also be able to esti-
mate the reliability of the phase equilibrium meth-
ods proposed.

The number of data are to be correlated with
the number of neurons needed and the time for
training. Supervised training is not appropriate ow-
ing to the large number of data. An incomplete do-
main requires the unsupervised approach because
all the responses are not available. The classifica-
tion can be carried out in a supervised or an unsu-
pervised manner if the number of objects is not too
large. But for the classification of a large number of
objects, unsupervised learning strategy is more effi-
cient. According to the nature of the problem we
were trying to solve, the Kohonen neural network
was employed among several different neural net-
works as one with the most appropriate architecture
and learning strategy.

In the previous article,16 several smaller Ko-
honen neural networks of a size appropriate for the
given number of objects were trained at different
learning steps (epochs) after the data preprocessing
procedure. Each object was associated with a
multi-dimensional target whose components repre-
sented classes of phase equlibria. When increasing
the number of epochs in the training the number of
activated neurons increased, while errors of learn-

ing and the number of conflicting situations were
reduced. Regardless of the prolongation of the
training time the number of conflicts in any neural
network could not be diminished below 16 %. This
is due to very similar representations of objects that
“excite” the same neuron, i.e., those objects that
cause the conflicts. Anyway, a few conclusions
could be made:

– After training, the final weights of the ‘win-
ning’ neuron in the Kohonen neural network were
proportional to the probabilities of the correspond-
ing classes to which the unknown object should be-
long.

– The trained Kohonen neural network is able
to classify objects into none, one or more possible
classes where the classes represent possible meth-
ods of phase equilibrium.

– The trained neural network can estimate the
reliability of the predictions, indicating the ade-
quacy of individual methods of phase equilibrium.

Kohonen network architecture
and learning algorithm

Analysis of the preliminary, less accurate re-
sults, confirmed that our hypothesis to use Kohonen
networks for separation of the classes was correct.
Therefore, the network architecture yielding the
best separation of clusters was chosen for further
analysis. In the previous article the Kohonen net-
work architecture and the learning algorithm were
represented in detail16. Therefore, only a brief de-
scription of the architecture and learning strategy
chosen for the given problem is presented here.17

The Kohonen network is based on a single layer
of neurons arranged in a two-dimensional plane.
Two different visual presentations of Kohonen net-
works are possible. Figure 1 shows both presenta-
tions. We have chosen the matrix one. The neigh-
bourhood of a neuron is arranged in squares. In the
Kohonen conception of neural networks, the signal
similarity is related to the topological relations
among the neurons in the network. Therefore, each
neuron has four nearest neighbours (Figure 2).
From the practical point, each neuron in the net is
ensured with the same number of first-, second-,
etc. neighbours (Figure 3). The Kohonen learning
tries to map the input so that similar signals excite
neurons that are very close together – the aim is to
map similar signals to similar neuron positions. In a
Kohonen network there are two layers: inactive in-
put and active output one. The latter is arranged as a
two-dimensional grid (Figure 1b). All the neurons
in the active layer receive the same multidimen-
sional input. However, the output of each neuron is
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not connected to all other neurons in the plane, but
only to a small number of them, those being topo-
logically close to it. The local feedback of possible
corrections makes the topologically close neurons
behave similarly when inputting similar signals.

The Kohonen learning procedure is unsuper-
vised learning. It is called a competitive learning or
the “winner takes all” method. In summary, the al-
gorithm for one cycle of Kohonen learning for the
problem given is as follows:

– an m-dimensional object Xs enters the net-
work;

– the responses of all neurons (each having m
weights) are calculated;

– the position c is found for the neuron whose
output is the most similar to the input:

c x wsi ji
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�
�

�
�
�	


min ( )2

1

, j = 1, 2,…, n (1)

(The index j refers to a particular neuron, n is the
number of neurons; m is the number of weights
per neuron; s identifies a particular input.)

– the weights of the neuron c are corrected to
improve its response for the same input X in the
next cycle;

– the weights of all the neurons in the neigh-
bourhood of the c-th neuron are corrected by a frac-
tion that decreases with increasing topological dis-
tance from c:

w w t a d x wji

new

ji

old

c j si ji
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(Here, xi is a component of the input Xs; the
central neuron is designated by c, and the one being
corrected by j; a particular weight of the neuron j
(and a particular input) is designated by i; t is (re-
lated to) the iteration cycle in question.)

– The next m-variate object Xs is input and the
process repeated.

In the Equation 2, the corresponding scaling
function a d c j( )� is a topology dependent function,
where d c j� is the topological distance between the
central neuron c and the current neuron j, and has a
triangular form (Figure 4). Corrections are decreas-
ing with each iteration step what is represented with
another monotonically decreasing function �(t). In

S. OREŠKI et al., Artificial Neural Network Classification of Phase Equilibrium Methods, Chem. Biochem. Eng. Q. 16 (2) 41–57 (2002) 43

F i g . 1 � Two-dimensional layout of a Kohonen neural net-
work can be represented a) in a “flow-chart” manner or b) in a
matrix manner. The matrix description for the Kohonen net-
work is much more convenient because it shows the relation be-
tween the input data X

s
(xs1,xs2…xsm) and the planes of weights

very clear.

F i g . 2 � Square layout of neighbours

F i g . 3 � The square neighbourhood having 8, 16, 24, etc.
neighbours in concentric neighbourhoods



this function, t is the number of objects entered into
the training process; t can be associated with time as
well, since the time used for training is proportional
to the number of objects entering the network.

Training of larger neural networks
with the original database

In the previous article16 the database consisted
of 3780 objects Xs arranged in 41-dimensional vec-
tors appropriate for training neural networks. The
first twenty-six dimensions are representing nine
original physical properties of samples (objects),
describing chemical bonds, structure of the compo-
nents, working conditions, further calculations de-
sired, accuracy of the methods, simplicity and speed
of calculations, and data availability. The last fif-
teen dimensions of the vector Xs are representing a

target vector Y of the fifteen phase equilibrium
methods, most often used in practice. Six of them:
Soave-Redlich-Kwong18 and Peng-Robinson19 cubic
equations, Benedict-Webb-Rubin,20 Starling21–23 and
Lee-Kesler24 multi-parametric equations and theo-
retical Virial25 equation belong to the equations of
state. The remaining nine: Margules-1 and 2 meth-
ods,26,28 slightly more complex van Laar27,28 and
complex Wilson,29,30 NRTL,31 UNIQUAC,32 ASOG33

and original UNIFAC34,35 methods as well as the
Regular Solution Theory36 belong to the activity co-
efficient methods. Besides the original papers and
books about the methods of phase equilibria en-
coded into the bank of objects, some useful rewiews
can be found in Oellrich et al.,37 Prausnitz et al.,38

Reid et al.,39 Malanovski and Anderko,40 etc.

Several square Kohonen networks of dimen-
sions from 50×50 (space for 2500 neurons) to 70×70
(space for 4900 neurons) with 41 weights in each
neuron were trained at different learning steps (epochs)
according to the criterion that the winner c is the
neuron having the weight vector Wj(wj1, wj2…wjm)
most similar to the input signal Xs(xs1, xs2…xsm) (Eq.
1). During the training, the weights of all the neu-
rons in the neighbourhood of the c-th neuron were
corrected according to the correction function for
the criterion with the output signal most similar to
the input one, Xs (Eq. 2). The learning rate term �(t)
was decreasing linearly from 0,5 at the beginning of
the training to 0,01 at the end of it. The triangular
neighbourhood function a d c j( )� was used for scal-
ing corrections on neighbours’ weights (Fig. 4).

The results are collected in Figure 5. The num-
ber of activated neurons is increasing with the ris-
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F i g . 4 � A triangular function for scaling corrections on
neighbourweights

Network’s
configuration

No. of
epochs

No. of
neurons

No. of
active neur.

Total RMS RMS/neuron RMS/weight
No. of

conflicts

50x50 200 2500 929 56,603 0,921 0,144 630

50x50 500 2500 1075 52,567 0,855 0,134 563

50x50 900 2500 1164 47,961 0,780 0,122 701

50x50 1500 2500 1253 47,863 0,778 0,122 602

60x60 200 3600 1069 56,837 0,924 0,144 583

60x60 500 3600 1389 48,656 0,791 0,124 651

60x60 900 3600 1485 45,656 0,743 0,116 636

60x60 1500 3600 1601 43,805 0,712 0,111 553

60x60 2000 3600 1547 42,348 0,689 0,108 573

65x65 500 4225 1420 49,038 0,798 0,125 650

70x70 900 4900 1609 43,016 0,700 0,105 562

70x70 2000 4900 1966 36,771 0,598 0,093 653

F i g . 5 � Results of training Kohonen neural networks on the base of original object.



ing number of epochs at the neural networks of the
same dimensions. The number of the activated neu-
rons is also increasing when neural networks of big-
ger dimensions are trained. The more neurons are
activated the less objects activate the same neuron.
It is also evident that the sum of errors in one epoch
(total RMS value), the average error at one object
(RMS value/neuron), and the average error at one
weight (RMS/weight) can be reduced by increasing
the number of epochs when neural networks of the
same dimensions are trained. Also, all the three
kinds of errors are diminishing with increasing
dimensionality of neural networks trained in the
same number of epochs. For instance, when training
the 50x50 Kohonen network with 200 epochs the
sum of errors in one epoch is 56,603, the average
error at one object is 0,921 and the average error at
one weight is 0,144. Training the Kohonen network
with 2000 epochs the values 36,771, 0,598 and
0,093 are obtained, respectively. On the other hand
no specific rule for conflicting situations could be
deduced. The number of conflicting situations (the
situations where expected and unexpected objects
activate the same neuron) vary between 553 in the
60x60 Kohonen neural network trained with 1500
epochs and 701 in the 50x50 Kohonen network
trained with 900 epochs. The fraction of conflicting
situations could not be diminished below 14,63 %.

The results were more precisely analyzed for
the 70x70 Kohonen neural network trained with
900 epochs. It had 562 conflicting situations, what
means that a certain number of activated neurons
were “excited” with non-conflicting objects and one
or more conflicting ones (alto-
gether there are 562 conflicting
objects). Distribution of conflict-
ing objects among classes is
shown in Figure 6. From the fig-
ure it can be seen that equations
of state participated 42 times and
activity coefficient methods 773 times, the latter
having 95,34 % of conflicting objects. Five neurons
activated with non-conflicting and conflicting ob-
jects have been chosen randomly for illustration.

• First example is the neuron in position (1,1)
of the network:

The label (Kohonen) is determinated by the
Kohonen neural network. The label (origin.) is set

by the user. When the original label is not the same
as the Kohonen label the learning object is the
conflicting one. The neuron(1,1) is activated by
six learning objects. Objects 737, 745 and 749 are
conflicting objects while objects 753, 761 and
765 are non-conflicting ones. The learning objects
are:

The first column contains the object number,
the following nine columns represent the nine phys-
ical properties, and the last fifteen ones indicate the
methods of phase equilibrium.

• Second example is the neuron(1,17):

which is activated by eight learning objects:
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Class No. of conflicting objects

SRK 1

PR 19

BWR 2

STARLING 10

LKP 10

VIRIAL 0

MARGULES-1 6

MARGULES-2 18

VAN LAAR 26

WILSON 18

UNIQUAC 400

NRTL 43

ASOG 20

UNIFAC 240

REGULAR SOLUTION 2

F i g . 6 � A distribution of conflicting objects among classes



• Third example is the neuron (5,70):

activated by four learning objects:

• Fourth example is the neuron (7,18):

also activated by four learning objects:

• And the last example is the neuron (14,1):

which is agitated by two learning objects:

The examples illustrate that the conflicting object
differs from the non-conflicting one only in the fourth
dimension x4 of the Xs vector representing the temper-
ature. When inspecting several other conflicting neu-
rons it was found out that they were activated by the
objects Xs, differing mutually only in values of the
'no-binary' variable x4 (the temperature) again. The
difference in the value of one variable (temperature)
only is obviously not informative enough to enable
the Kohonen neural networks to be more precise.

A conclusion can be made that some success was
achieved when larger Kohonen neural networks with
more epochs were trained with the original objects.
But a gain on increasing the number of activated neu-
rons and decreasing learning errors has too little effect

regarding the time needed for
training. The training time in-
creases proportionally when in-
creasing the number of epochs, but
increases exponentially when in-
creasing the dimensions of the
neural networks trained. Con-

flicting neurons remain the unsolved problem. Better
success can be achieved with interventions in the bank
of objects to improve their information content or in-
crease the selectivity of the representation.

Information content improvements and
preprocessing of data

When analyzing the conflict-
ing neurons it was found out that
almost all of them were located in
saturated vapour-liquid regions
and associated with the activity

coefficient methods. Usually, the Kohonen learning
proposes a liquid phase when a two-phase
vapour-liquid region was expected. Because the ac-
tivity coefficient methods are applicable to the liq-
uid part of the two-phase region (the vapour phase
is ideal or it is simulated with an appropriate equa-
tion of state), these conflicting neurons were not

considered as being very contro-
versial. Opposite to the activity
coefficient methods, the equa-
tions of states are useful in both
phases of saturated regions,
vapour and liquid.

This additional knowledge is added to the orig-
inal vectors X (y,x1…x9) using two new dimensions,
x10 and x11. The corrected vectors X (y,x1…x9,x10,
x11,) include a precise information about applicabil-
ity of all the methods of phase equilibrium in satu-

rated regions. Now, the variables
xi of vector X (y,x1…x9,x10,x11,)
are representing physical proper-

ties of samples (objects), and the dimension y is one
appropriate method of phase equilibrium out of the
fifteen possible attached. The same methods of
phase equilibrium as in the original bank of objects
were retained as possible classes. Similar prepro-
cessing procedure as in the previous article,16 in-
cluding ‘bubble’ and ‘quick’ sort techniques, detec-
tion and elimination of identical objects, and simple
object classification, was to be executed again. In
the same manner the refined and improved user-
-friendly objects were transformed into the objects
suitable for training Kohonen neural networks. The
transformation itself is explained in details in the
previous article. After the transformation each ob-
ject was represented as a multidimensional vector
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X
s

(xs1 … xs31, y1 = xs32 … y15 = xs46). Altogether, the
final representation consisted of 46 variables xsi (31
plus 15 representing 11 different variables xi and a
target vector Y, respectively). Finally, in the data-
base of objects 4228 objects Xs arranged in the
46-dimensional vectors appropriate for training
neural networks, were obtained. In Figure 7, a
structure of the improved bank of objects is repre-
sented in dimensions of vectors X, X

s
and target

vector Y.

Training of neural networks
with improved objects

According to the number of objects, several
Kohonen neural networks, having sizes from 50x50
to 70x70 with 46 weights in each neuron, were esti-
mated to be appropriate for training. The neural net-
works were trained at different epochs using com-
petitive learning according to the criterion that
weight vector Wj(wj1, wj2…wjm) was the most simi-
lar to the input signal Xs(xs1, xs2…xsm) (Eq. 1). A
corresponding correction function was used for cor-
recting weights (Eq.2). Again, the triangular neigh-
bourhood function a(dc–j) was used for scaling cor-
rections on weights of neighbours (see Figure 4)
and the learning rate term �(t) was decreasing lin-
early between 0,5 and 0,1. Besides, the labels “V”
for representing homogeneous vapour regions, “S”
for representing heterogeneous vapour-liquid, and
“L” for homogeneous liquid phase regions, a new
label “l” was introduced to locate heterogeneous
liquid-liquid regions on the Kohonen map. When
analysing the results it is found out that in global
the errors of training are decreasing by increasing
the size of networks and the number of epochs used
for training. The errors are in the limits typical for
Kohonen type of neural networks. No conflicting
neurons are detected.

Results for a typical trained Kohonen
neural network

Explanation of maps

In Figure 8 the Kohonen map is containing
four different (coloured in the computer output) la-
bels “V”, “S”, “L”, “l”, and no label is represented.
The map is a result of the 70x70 Kohonen neural
network trained with 4228 46-dimensional objects
after 900 epochs. In the map labels represent active
neurons activated by one or more objects. It can be
seen that active neurons are distributed rather
evenly through the whole Kohonen map. Labels
“V”, “S”, “L”, and “l” are grouped in separate clus-
ters representing regions of homogeneous vapour
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Phase equilibrium method X Xs Y

SRK x1 xs32 y1

PR x 2 xs 33 y2

BWR x 3 xs 34 y3

STARLING x 4 xs 35 y4

LKPKP x 5 xs 36 y5

VIRIAL x 6 xs 37 y6

MARGULES-1 x 7 xs 38 y7

MARGULES-2 x 8 xs 39 y8

VAN LAAR x 9 xs 40 y9

WILSON x 10 xs 41 y10

UNIQUAC x 11 xs 42 y11

NRTL x 12 xs 43 y12

ASOG x 13 xs 44 y13

UNIFAC x 14 xs 45 y14

REGULAR SOLUTION x 15 xs 46 y15

Physical property X Xs

CHEMICAL BOND x1 xs 1 xs 2 xs 3

NonPolar 1 1 0 0

Slightly Polar 2 2 0 0

Polar 3 3 0 0

Electrolyte 4 0 1 0

Polymer 5 0 0 1

.

.

.

.

.

.

.

.

.

PRESSURE x3 xs 9 xs 10

Low 1 1 0

Medium 2 2 0

High 3 3 0

pc 4 0 1

0<pr<10 5 0 2

TEMPERATURE x4 xs 11

T<Tb 1 1

Tb<T<Td 2 2

Td<T<Tc 3 3

T=Tc 4 4

Tc<T<4Tc 5 5

.

.

.

.

.

.

.

.

.

F i g . 7 � Structure of improved bank of objects, expressed
by X, X

s
and target vector Y



phase, heterogeneous vapour-liquid phase, homoge-
neous liquid phase and heterogeneous liquid-liquid
phase, respectively. Every labeled neuron carries in-
formation about the adequacy of at least one phase
equilibrium method for specific combination of
physical properties. Neurons not excited by any of
the 4228 objects are represented by vacancies.

In the Kohonen neural network the weights af-
fected by each variable are lying on a single and
well-defined level of weights. There are as many
weight levels as there are input variables describing
the objects for which the network is designed. Each
level of weights can be represented as a map. In our
case Kohonen neural networks were trained with
46-dimensional input objects. 46 maps can be ob-
tained for each input variable separately: the first 31
two-dimensional maps for weights wj1 to wj31 are

representing physical properties, the last 15 two-di-
mensional maps for weights wj32 to wj46 are proba-
bility maps representing the 15 methods of phase
equilibrium.

Maps of physical properties

There are two kinds of maps representing phys-
ical properties. If there is no need for binary substi-
tution, all the possible values of the physical prop-
erty attributes are represented in one map. Such an
example is the physical property temperature with
five possible attributes (see Figure 9). The attributes
indicate the increase of temperature from T<Tb to
Tc<T<4Tc, hence they could be coded in one vari-
able with values 1, 2, 3, 4, and 5, respectively. Bi-
nary substitution was needed when attributes of cer-
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tain physical property or some of them were not
correlated mutually or with the others.

For example the physical property chemical
bond has attributes of both types. The first three at-
tributes indicate the increase of polarity from
non-polar to polar. Hence, they were coded in one
variable with values 1, 2, and 3 and represented in
one map. The last two attributes (mixture with the
presence of an electrolyte, and mixture with the
presence of a polymer, respectively) are not corre-
lated neither among themselves nor with the first
three ones. Therefore, they were transformed binary
and are represented on two separate maps with val-
ues 1. In Figure 10 a separate map for a mixture
with the presence of a polymer is represented. Alto-

gether, the physical property chemical bond is rep-
resented with three separate maps for dimensions
wj1, wj2, and wj3 of the vector Wj.

Another example is the physical property com-
position with attributes representing systems con-
sisting of normal fluids (rare gases, N2, O2, CO2,
hydrocarbons), systems containing mixtures with
wide boiling temperatures, systems containing H2

(causing deviations from the real behaviour with
some phase equilibrium methods), systems consist-
ing of a large range of components (for example:
hydrocarbons, ketones, esters, water, amines, alco-
hols, nitriles, etc.), and systems consisting of other
organic components. The attributes are not corre-
lated mutually. Composition is represented with five
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F i g . 9 � Map representing physical property temperature.



separate maps for dimensions wj4, wj5, wj6, wj7, and
wj8 of the vector Wj.

Probability maps

The trained weights in probability maps carry
original values between 0,0 and 1,0. The original
values of weights are scaled in the interval (1–9) for
easier physical presentation of maps (one digit of
adequate power on one neuron). The outlook of the
main Kohonen map and the corresponding proba-
bility maps is different from the maps of the
trained, less accurate Kohonen neural network rep-
resented in the previous article16. Despite the dis-
similarity, inspecting all the probability maps the
former observations can be confirmed:

– When overlapping a separate probability map
with the Kohonen map it can be seen in which re-
gion (vapour, vapour-liquid, liquid or liquid-liquid)
the neurons are activated for the phase equilibrium
method defined.

– Equations of state appear in regions “V”,
“S”, and “L” (an exception is Virial equation, the
use of which is limited only to vapour phase).

– The activity coefficient methods appear in re-
gions “S”, “L” and “l”.

– The applicability of a phase equilibrium
method is increasing by rising the number of acti-
vated neurons on one probability map and vice versa.

– Specific clusters on a probability map indi-
cate specific use of a phase equilibrium method.
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F i g . 1 0 � Separate map representing one of the attributes of physical property – chemical bond in polymer



– When having similar phase equilibrium
methods similar neurons on the probability maps
are activated.

– Equations of state and activity coefficient
methods can involve the same activated neurons,
when they are appropriate for the same objects.

– The same neurons can be activated in differ-
ent probability maps with the same or different
strengths. In that way information about appropriate
methods of phase equilibrium and their reliability is
obtained.

Examples

As examples of the probability maps, two maps
for the two phase equilibrium methods frequently

used in practice are represented, the Soave-Red-
lich-Kwong method and the UNIFAC method.

1. SRK method

The probability map for the Soave-Redlich-
-Kwong method, one of the equation of state is rep-
resented in Figure 11. When overlapping the proba-
bility map with the main Kohonen map it can be
seen that this equation of state method appears in
regions “V”, “S”, and “L”. Comparing the probabil-
ity map with maps of physical properties, more de-
tailed information about correlation between phase
equilibrium method and physical properties, can
be obtained. When components are non-polar or
slightly polar, the method is applicable to systems
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consisting of normal fluids and systems containing
mixtures with wide range of boiling temperature.
Working pressure can have all the values of attrib-
utes except the last one 0<pr<10. Working tempera-
tures can be in regions T<Tb, Tb
T
Td, Td<T<Tc,
T=Tc, and Tc<T<4Tc.

The method is applicable in homogeneous re-
gions of vapour and liquid phases. It can be used for
calculations of K-values, vapour pressures, partial
molar properties, and vapour-liquid equilibrium. It
is not very accurate when calculating liquid densi-
ties. The accuracy of the method depends from the
other values of physical properties and varies from
accurate to less accurate. The neural network identi-
fies the method as a fast one compared to the other

equations of state of the van der Waals type. Data
for all components and interaction coefficients are
expected for good simulation. The maps also indi-
cate that the Soave-Redlich-Kwong equation of state
is applicable in vapour and in liquid phase of satu-
rated regions. To illustrate correlation between the
method and the physical property temperature,
maps from Figures 9 and 11 must be overlapped.
The correlation between the method and the polar-
ity of the system is obtained by overlapping maps
from Figures 11 and 12.

2. UNIFAC method

The probability map for the UNIFAC method
as a representative of activity coefficient methods is
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represented in Figure 13. When overlapping the
probability map of the UNIFAC method with the
main Kohonen map it can be seen that the method
appears in regions “L”, “l”, and “S”. Further inspec-
tion of the UNIFAC probability map and the maps
of physical properties show correlation between
them. The method is applicable to systems consist-
ing of a large range of components and other or-
ganic components when components are non-polar,
slightly polar, or polar. Working pressure can be
low or medium. Working temperatures can take val-
ues in regions T<Tb and Tb
T
Td.

The method is applicable to one-phase regions
and also to phase splitting. It is capable of predict-
ing azeotropes. It is useful for non-ideal mixtures
and operating conditions in the diluted region with

respect to alcohol. It can be used for calculations of
vapour-liquid, vapour-liquid-liquid or liquid-liquid
equilibrium and excess enthalpies. The method is
accurate for calculating equilibria and less accurate
when estimating excess enthalpies. The neural net-
work indetifies the method as slower because of the
complex UNIFAC model. It can be used for predict-
ing phase equilibria in systems for which no experi-
mental data are available. The maps also indicate
more precisely that the UNIFAC method is applica-
ble in regions of liquid, liquid-liquid phase, and in
liquid part of the vapour-liquid phase of saturated
regions. For illustration, the correlation between the
UNIFAC method and the physical property temper-
ature can be found when comparing Figures 9 and
13. Figures 12 and 13 demonstrate the correlation
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between the polarity and the UNIFAC method. Fig-
ures 13 and 14 show the correlation between the
UNIFAC method indicating the presence of azeo-
tropes in a mixture.

Presentation of some randomly chosen
column-like neurons

If we visualize Kohonen neural network as a
block composed of overlapped maps, the neurons
have a form of columns, and the entire network is
represented as a block of matrices. With column-
-like neurons a clear presentation of the weights in
individual neurons, and their interconnection in the
network when handling the same input variable, are
obtained. In Figure 15 some randomly chosen col-
umn-like neurons are represented: neuron(31,42),

neuron(33,28), neuron(49,52), neuron(51,62), neu-
ron(56,6) and neuron(66,38).

The neuron(31,42) has the label “S” on the
main Kohonen map. The label represents a satu-
rated region. The neuron was activated for slightly
polar organic components at medium working pres-
sure in temperature range Tb
T
Td. No phase
splitting is expected. In this particular neuron the
weight wj16 is affected by the signal xs16 represent-
ing K-values. Methods of phase equilibrium can be
less accurate and fast with all the necessary coeffi-
cients. The liquid phase of a saturated region must
be simulated with them. The neural network has
found four methods of phase equilibrium,
Peng-Robinson, Margules-1, Margules-2 and van
Laar one with the corresponding weights of 7, 1, 8
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and 8. The weights indicate that Margules-2 and
van Laar methods are the most appropriate to solve
the problem given. Somewhat less appropriate is
the Peng-Robinson method, much less appropriate
is the Margules-1 method.

The Kohonen label for the neuron(33,28) is “V”,
representing a vapour region. The neuron was acti-
vated for non-polar mixtures of normal fluids at low

working pressures and temperature range Td<T<Tc in
one phase region. Methods of phase equilibrium can
be less accurate and fast with all the necessary coef-
ficients. Neural networks are proposing Soave-Red-
lich-Kwong, Peng-Robinson and Virial methods of
phase equilibrium with equal weights of 9.

The neuron(49,52) has the label “S” on the
main Kohonen map. It covers polar mixtures of or-
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ganic components at medium working pressures
and working temperatures between Tb and Td. No
phase splitting is supposed to appear in liquid phase
of saturated region. The methods of phase equilib-
rium are expected to be accurate with all the coeffi-
cients necessary. The methods can be slow and
must be appropriate for liquid phase of vapour-liq-
uid saturated region. The neural network has found
four methods of phase equilibrium as appropriate:
UNIFAC, NRTL, UNIQUAC and Wilson. Their
trained weights are 9, 8, 8 and 7, respectively.

The neuron(51,62) has the label “l” on the
main Kohonen map. The label indicates the liq-
uid-liquid region. The neuron is active for polar or-
ganic components at low working pressure and tem-
peratures lower then Tb. Phase splitting is expected
in liquid region. The methods must be accurate but
slow, appropriate to simulate liquid-liquid equilib-
rium. The neural network has found UNIQUAC,
UNIFAC and NRTL methods with the correspond-
ing trained weights 8, 8 and 7 as the most appropri-
ate ones.

The neuron(56,6) was activated for mixtures of
non-polar normal fluids having working pressure in
the range 0<pr<10 and working temperature in the
range Tb
T
Td. No phase splitting can occur in
liquid phase of the saturated region, marked with
the label “S” on the main Kohonen map. The meth-
ods of phase equilibrium are expected to be accu-
rate and fast. Vapour-liquid equilibrium should be
simulated with them. For such a combination of
physical properties, the neural network recom-
mends the Soave-Redlich-Kwong or Peng-Robinson
equations of state far more then the Starling or
Lee-Kesler-Plocker equations with the trained
weights 7, 7, 2 and 2, respectively.

The neuron(66,38) has the label “L” on the
main Kohonen map. It was activated for slightly po-
lar organic mixtures at low working pressures and
temperatures below Tb. No phase splitting should
appear in liquid region. The methods of phase equi-
librium are expected to be accurate, they can be
slow. The neural network proposes Starling, Lee-
-Kesler-Plocker, Wilson, UNIQUAC, NRTL and
UNIFAC rather then ASOG and far more then
Peng-Robinson, Margules-2 and van Laar methods
of phase equilibrium. The corresponding trained
weights are 8 for the first six methods of phase
equilibrium, 4 for the ASOG method, and 1 for the
last three ones.

Conclusions

Preliminary, less precise results for smaller
Kohonen neural network were improved in two at-
tempts. The first one was the increase of the dimen-

sions of Kohonen neural networks and the number
of epochs for training. According to the fact that
training time is increasing proportionally with the
size of the neural network and exponentially with
epochs, a compromise has to be found. As a result a
higher number of active neurons was obtained and
training errors decreased. On the other hand, no spe-
cific rule for resolving conflicting situations could
be obtained. The second attempt was an interven-
tion in the bank of objects to improve their informa-
tion content. With two new dimensions of vectors
Xs representing objects, more precise definition of
phase equilibrium methods applicability in satu-
rated region was added to the objects. Conflicting
situations were resolved. Using labels “V”, “S”,
“L” and “l” Kohonen neural networks were able to
cluster vapour, saturated, liquid and liquid-liquid re-
gions respectively. Besides the main Kohonen map
indicating different phase regions, separate maps of
physical properties and probability maps of phase
equilibrium methods, were obtained. Maps show
transparent correlation between physical properties
and methods of phase equilibrium. Presenting neu-
rons in a form of columns, the values of trained
weights were obtained at individual neurons, show-
ing how weights handling the same input variable
were connected together in the network. In separate
columns, the scaled values of weights from proba-
bility maps represent the certainty of each phase
equilibrium method for specific combination of
physical properties. In that way the neural networks
estimates the applicability of the phase equilibrium
methods, their adequacy for efficient chemical pro-
cess design, and simulation.

S y m b o l s

a – topology dependent scaling function or neigh-
bourhood function, –

c – central neuron, –
dc–j – topological distance between central neuron c

and neuron j, –
j – current neuron, –
m – number of weights, –
n – number of neurons, –
s – particular input, –
t – number of objects which can be associated with

time, –
Wj – weight vector, –
wji – weight of neuron j on level i, –
wci – weight of central neuron c on level i, –
X – user's object, –
xi – physical property i, –
Xs – input signal to the Kohonen neural network, –
Y – target vector, –
yi – phase equilibrium method i, –
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T – working temperature, K

Tb – boiling point of mixture, K

Td – dew point of mixture, K

Tc – critical temperature, K

p – working pressure, bar

pc – critical pressure, bar

pr – reduced pressure, 1

G r e e k s y m b o l s

�(r) – learning rate term, dependent on t, –

A b b r e v i a t i o n s

RMS – the root-mean-square of a variate or the square
root of the mean squared value

SRK – Soave-Redlich-Kwong equation of state

PR – Peng-Robinson equation of state

BWR – Benedict-Webb-Rubin equation of state

LKP – Lee-Kesler-Plocker equation of state
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