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A variable-volume modelling framework has been used to build-up modular struc-
tures that can reproduce complex protein syntheses inside cells. Methodology is based on
a modular kinetic representation of the homeostatic regulatory network that control the
metabolic processes, and on a globally efficient module-linking rule that optimise the
chain performance indices. The paper exemplifies, at a generic level, how this methodol-
ogy can be applied to: i) characterize the module efficiency, species connectivity, system
stability, based on proposed regulatory indices vs. dynamic and stationary environmental
perturbations; ii) build-up modular regulatory chains of various complexity; iii) prove
feasibility of the cooperative vs. uncooperative construction that ensures gene expres-
sion, system homeostasis, proteic functions, and an equilibrated cell growth during the
cell cycle. The more realistic variable-cell-volume dynamic modelling allows an accurate
evaluation of individual effector/unit efficiency and perturbation propagation inside a
cell, pointing out the influence of module type and enzyme activity allosteric control on
regulatory indices.
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Introduction

Living cells are evolutionary, auto-catalytic,
self-adjustable structures able to convert raw mate-
rials from environment into additional copies of
themselves. During the cell growth, protein func-
tions are ensured by internal regulatory networks
that adjust the metabolic synthesis to maintain ho-
meostasis, i.e. quasi-invariance of key species con-
centrations (enzymes, proteins, metabolites), de-
spite of external perturbations (in nutrients and me-
tabolites) or internal cell changes. Due to the highly
complex and partly unknown aspects of the meta-
bolic process, the detailed modelling of the
whole-cell remains still an unsettled issue, even if
recent trials have been reported based on massive
databanks and advances in bioinformatics, genomics,
transciptomics, proteomics, and metabolomics (e.g.
cell simulation platforms).1,2

During cell content replication, it was
pointed-out that proteins (enzymes) present interac-
tions leading to multi-enzyme complexes that pro-
mote a catalytically efficient sequence of reactions
over the so-called ‘channelling intermediate metab-
olites’.3,4 Proteic complexes also act as regulation
nodes that provide a balanced response to perturba-
tions, avoiding dysfunctional responses in branched
pathways. The regulatory information is transmitted
via short-circuits that bypass the cause-effect se-
quence of intervening reactions. To understand and
simulate such a complex mutual-assistance related

to the individual proteic functions, various repre-
sentations of the homeostatic regulatory network
have been proposed. The modular approach seems
to be preferred, being based on coupled semi-auton-
omous regulatory groups, linked to efficiently cope
with cell perturbations and to ensure an equilibrated
cell growth during the cell cycle.4,5 Because of a
limited number of types, individual regulatory mod-
ules can be separately analysed and checked for ef-
ficiency in conditions that mimic the stationary and
perturbed cell growth. Then, they are linked accord-
ingly to certain rules in a hierarchical structure that
ensures the overall network efficiency, system
homeostasis, and protein functions.

The scope of this paper is to exemplify, at a ge-
neric level, the modelling principle of assembling
regulatory modules for gene expression, in order to
build-up metabolic regulatory networks of protein
synthesis. Methodology is based on the modular ki-
netic representation of the homeostatic regulation
during metabolic synthesis. Various types of regula-
tory modules can be thus proposed and character-
ized by means of proposed “efficiency indices”
(P.I.), which evaluate the species connectivity, sys-
tem stability, and recovery effectiveness of a steady
state after stationary and dynamic perturbations, re-
spectively. Modules are then linked to ensure a
globally efficient regulatory network that ensures
gene expression, system homeostasis, proteic func-
tions, and an equilibrated cell growth during the
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cell cycle. The paper exemplifies how such a meth-
odology should be used to step-by-step build-up
a regulatory chain, and how the feasibility and ef-
fectiveness of the (cooperatively-linked) modular
construction can be checked in every modelling
step by means of P.I.-s.

The modelling framework uses continu-
ous-variable ordinary differential (ODE) kinetic
models to check the synthesis regulatory efficiency,
by explicitly accounting for cell-volume variation
during the cell cycle, protein interactions and regu-
latory loops under stationary and dynamic environ-
mental perturbations. The more realistic modelling
approach allows an accurate evaluation of the indi-
vidual effector/unit relative importance, perturba-
tion propagation inside a cell, and the influence of
module type and enzyme activity allosteric control
on its regulatory P.I.-s. Once the methodology elab-
orated, such a cell modelling platform can be de-
tailed and used to simulate complex protein / spe-
cies interactions, cooperative regulation of the
metabolic synthesis, and other processes during the
cell growth.

Modelling metabolic regulation –
A short review

Protein synthesis by gene expression is a
highly regulated process which ensure a balanced
and flexible cell growth under an indefinitely
variate environmental conditions. How this very
complex process occurs is partially understood, but
a multi-cascade control with negative feedback
loops seems to be the key element.6–9 Enzymes
catalysing the synthesis are allosterically regulated
by means of positive or negative effector mole-
cules, while cooperative binding and structured cas-
cade regulation amplify the effect of a change in a
signal. Gene expression is also highly regulated to
flexibly respond to the environmental stress, in a
scheme looking like a ‘genetic circuit’.10 While the
effect of changes in system parameters on the sys-
tem states (variables) is approached by the meta-
bolic control analysis, the metabolic regulator fea-
tures are determined by its ability to efficiently vary
species flows and concentrations under changing
environmental conditions so, that a stationary state
of the key metabolite concentrations can be main-
tained inside the cell.

To model such a complex metabolic regulatory
mechanisms at a molecular level, two main ap-
proaches have been developed over decades: struc-
ture-oriented analysis, and dynamic (kinetic) mod-
els.11 Each theory presents strengths and shortcom-
ings in providing an integrated predictive descrip-
tion of the cellular regulatory network.

Structure-oriented analyses ignore some mech-
anistic details and the process kinetics, and use the
only network topology to quantitatively character-
ize to what extent the metabolic reactions determine
the fluxes and metabolic concentrations.12 The
so-called ‘metabolic control analysis’ (MCA) is fo-
cus on using various types of sensitivity coeffi-
cients (the so-called ‘response coefficients’), which
are quantitative measures of how much a perturba-
tion (influential variable xj) affects the cell-system
states yi (e.g. r = reaction rates, J = fluxes, c = con-
centrations) around the steady-state (QSS, of index
‘s’), i.e.� �( / )/( / ) .� �y y x xi i j js s s

The systemic re-

sponse of fluxes or concentrations to perturbation
parameters (i.e. the ‘control coefficients’), or of re-
action rates to perturbations (i.e. the ‘elasticity co-
efficients’) have to fulfil the ‘summation theorems’,
which reflect the network structural properties, and
the ‘connectivity theorems’ related to the properties
of single enzymes vs. the system behaviour.

Originally, MCA has been introduced by
Kacser & Burns,13 Heinrich & Rapoport,14 and
Burns et al.15 to quantify the rate limitation in com-
plex enzymatic systems. MCA have been followed
by a large number of improvements, mainly dealing
with the control analysis of the stationary states, by
pointing-out the role of particular reactions and cell
components in determining certain metabolic be-
haviour. Successive extensions of such definitions
allow: to study any limit set for non-steady/time-de-
pendent conditions;16,17 the flux balance analysis
and optimization (FBA);11,12,18–22 elementary mode
analysis (EMA);11,18,19 dynamic flux balance analy-
sis (DFBA);23 extreme pathway analysis (ExPA);18,19

constrained based modelling of metabolic network
(CBM).24

MCA methods are able to efficiently character-
ize the metabolic network robustness and function-
ality, linked with the cell phenotype and gene regu-
lation. MCA allows a rapid evaluation of the system
response to perturbations (especially of the enzy-
matic activity), possibilities of control and self-reg-
ulation for the whole path or some subunits. Func-
tional subunits are metabolic subsystems, called
‘modules’, such as amino acid or protein synthesis,
protein degradation, mitochondria metabolic path,
etc.25 Because the living cells are self-evolutive sys-
tems, new reactions recruited by cells together with
enzyme adaptations, can lead to an increase in the
cell biological organisation and to optimal perfor-
mance indices. When constructing methods to opti-
mize evolutive metabolic systems, MCA concepts
and appropriate performance criteria have been
used to: maximize reaction rates and steady-state
fluxes; minimize metabolic intermediate concentra-
tions; minimize transient times; optimise the reac-
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tion stoichiometry (network topology); maximize
thermodynamic efficiency. All these objectives are
subjected to various mass balance, thermodynamic,
and biological constraints.12 However, by not ac-
counting for the system dynamics, and grounding
the analysis on the linear system theory, topological
methods present inherent limitations (see for in-
stance some violations of stoichiometric constraints
discussed by Atauri et al.,26 or the modified control
coefficients of Szedlacsek et al.27,28).

Classical approach to develop dynamic models
is based on an hypothetical reaction mechanism, ki-
netic equations, and known stoichiometry. This route
meets difficulties when the analysis is expanded to
large-scale metabolic networks, because the neces-
sary mechanistic details and standard kinetic data to
derive the rate constants are difficult to be obtained.
However, advances in genomics, transcriptomics,
proteomics, and metabolomics, lead to a continuous
expansion of bioinformatic databases, while ad-
vanced numerical techniques, non-conventional esti-
mation procedures, and massive software platforms
reported progresses in formulating reliable cell mod-
els. Valuable structured dynamic models, based on
cell biochemical mechanisms, have been developed
for simulating various (sub)systems, such as:

– entire cell: ‘whole-cell’ models, as E-Cell,
V-Cell, M-Cell, A-Cell, etc.;1

– single cell growth: Escherichia coli;29–31

Haemophilus influenzae;18,19 Mycoplasma genita-
lium;32–34 yeast;35,36

– various (oscillatory) metabolic paths: metab-
olism of human red blood cells;36,37 glycolysis, cit-
ric acid cycle, oxidative phosphorylation12,38–40; iron
metabolism;41 amino acid synthesis;20

– regulatory networks for: gene expression via
Boolean ‘biocircuit’ models (Escherichia coli;42,43

prokaryotes;44,45 protein synthesis1,5,9);
– cell cycles and oscillatory systems in yeast

and eukaryotes: limit-cycle oscillator models;46–48

cell size control, oscillation properties and hyster-
esis effects;49 key ingredients inducing oscilla-
tions;49–55 whole-cell framework for cell cycle sim-
ulation;56

– cellular communications, intracellular signal-
ling, neuronal transmission, networks of nerve
cells;57–59

– analysis of “logical essence” of life, and the
life fundamental requirements.60

To model in detail the cell process complexity
is a challenging and difficult task. The large num-
ber of inner cell species, complex regulatory chains,
cell signalling, motility, organelle transport, gene
transcription, morphogenesis and cellular differenti-
ation cannot easily be accommodated into existing
computer frameworks. Inherently, any model repre-

sents a simplification of the real phenomenon,
while relevant model parameters are estimated
based on the how close the model behaviour is to
the real cell behaviour. A large number of software
packages have been elaborated allowing the kinetic
performance of enzyme pathways to be represented
and evaluated quantitatively.61 Oriented and unified
programming languages have been developed
(CellML;62 SBML61) to include the bio-system or-
ganization and complexity in integrated platforms
for cellular system simulation (E-Cell;32,33 V-Cell;63,64

M-Cell;58 A-Cell59). Such integrated simulation
platforms tend to use a large variety of biological
databanks including enzymes, proteins and genes
characteristics together with metabolic reactions
(CRGM-database;65 NIH-database66).

From the mathematical point of view, various
structured (mechanism-based) dynamic models
have been proposed to simulate the metabolic regu-
lation, accounting for continuous, discrete, and/or
stochastic variables, in a modular construction, ‘cir-
cuit-like’ network, or compartmented simulation
platforms.1,2,67 Such models can include:

– Boolean (discrete) variables;10,44,68–70

– continuous variable models;9,12,68,71

– stochastic variable models;45,57,72,73

– mixed variable models.68

In the Boolean approach, variables can take
only discrete values. Even if less realistic, such an
approach is computationally tractable, involving
networks of genes that are either “on” or “off” (e.g.
a gene is either fully expressed or not expressed at
all) according to simple Boolean relationships, in a
finite space. Such a coarse representation is used to
obtain a first model for a complex biosystem in-
cluding a large number of components, until more
detailed data on process dynamics become avail-
able. ‘Electronic circuits’ structures have been ex-
tensively used to understand intermediate levels of
regulation, but they cannot reproduce in detail mo-
lecular interactions with slow and continuous
responses to perturbations.

Even if regulation mechanisms are not fully
understood, metabolic regulation at a low-level is
generally better clarified. Based on that, conven-
tional dynamic models (ODE kinetics), with a
mechanistic description of reactions taking place
among individual species (proteins, mRNA, inter-
mediates, etc.) have been proved to be a convenient
route to analyse continuous metabolic/regulatory
processes and perturbations. When systems are too
large or poorly understood, coarser and more
phenomenological kinetic models may be postu-
lated (e.g. protein complexes, metabolite channel-
ling, etc.). In dynamic models, only essential reac-
tions are retained, the model complexity depending
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on measurable variables and available information.
An important problem to be considered is the dis-
tinction between the qualitative and quantitative
process knowledge, stability and instability of in-
volved species, the dominant fast and slow modes
of process dynamics, reaction time constants, mac-
roscopic and microscopic observable elements of
the state vector. Such kinetic models can be useful
to analyse the regulatory cell-functions, both for
stationary and dynamic perturbations, to model cell
cycles and oscillatory metabolic paths,56 and to re-
flect the species interconnectivity or perturbation
effects on cell growth.74 Mixtures of ODE kinetics
with discrete states (i.e. ‘continuous logical’ mod-
els), and of continuous ODE kinetics with stochas-
tic terms, can lead to promising mixed models able
to simulate, both, deterministic and non-deterministic
cell processes.68

Stochastic models replace the 'average' solution
of continuous-variable ODE kinetics (e.g. species
concentrations) by a detailed random-based simula-
tor accounting for the exact number of molecules
present in the system. Because the small number of
molecules for a certain species is more sensitive to
stochasticity of a metabolic process than the species
present in larger amounts, simulation via continuous
models lacks of accuracy for random process repre-
sentation (as cell signalling, gene mutation, etc.).
Monte Carlo simulators are used to predict individ-
ual species molecular interactions, while rate equa-
tions are replaced by individual reaction probabili-
ties, and the model output is stochastic in nature.
Even if the required computational effort is very high,
stochastic representation is useful to simulate the cell
system dynamics by accounting for a large number
of species of which spatial location is important.

By applying various modelling routes, success-
ful structured models have been elaborated to simu-
late various regulatory mechanisms.10,43,44,49,69,75–79,92

In fact, as mentioned by Crampin & Schnell,67 a
precondition for a reliable modelling is the correct
identification of both topological and kinetic prop-
erties. As few (kinetic) data are present in a stan-
dard form, non-conventional estimation methods
have been developed by accounting for various
types of information (even incomplete) and global
cell (regulatory) properties.2,67

Modular structures for protein
synthesis regulation

Lumped representation

Living cells are organized, self-replicating,
evolvable, and responsive to environmental bio-
logycal systems. The structural and functional cell

organization, including components and reactions,
is very complex. Relationships between structure,
function and regulation in complex cellular net-
works, are better understood at a low (component)
level rather than at the highest-level.11 Cell regula-
tory and adaptive properties are based on homeo-
static mechanisms, which maintain quasi-constant
key-species concentrations and output levels, by ad-
justing the synthesis rates, by switching between al-
ternative substrates, or development pathways. Cell
regulatory mechanisms include allosteric enzymatic
interactions and feedback in gene transcription net-
works, metabolic pathways, signal transduction,
and other species interactions.67 In particular, pro-
tein synthesis homeostatic regulation includes a
multi-cascade control with negative feedback loops
and allosteric adjustment of the enzymatic activity.8,9

A convenient way to model metabolic pro-
cesses and regulatory networks is the modular ap-
proach. Spatial and functional compartments to-
gether with functional modules have been defined
when developing complex cell simulation plat-
forms.9,12,32,61,67,93 This increasing trend is based on
the observations of Kholodenko et al.,90 that meta-
bolic networks can be decomposed in functional
sub-units called modules. Grouping enzymes and
other species into “modules”, according to exis-
tence of functional units (i.e. particular pathways
but also spatial structures), leads to a “modular” ap-
proach applied, both, for a structure-oriented analy-
sis and for deriving dynamic models.12 Sauro &
Kholodenko91 provide examples of biological sys-
tems that have evolved in a modular fashion and, in
different contexts, perform the same basic func-
tions. Each module, grouping several cell compo-
nents and reactions, generates an identifiable func-
tion (e.g. synthesis regulation for a certain compo-
nent, regulation of a certain reaction, etc.). More
complex functions, as regulatory networks, synthe-
sis networks, or metabolic cycles can be built-up
from basic building blocks. The modular approach
is also computationally tractable, allowing elabora-
tion of complex simulation platforms accounting
for separate cell sub-units, metabolic functional
sub-units (synthesis, degradation, etc.), or certain
component metabolism.1,2 Modular approach can
also be useful in simulating the hierarchical
organization of cell regulatory networks.

Concerning the protein synthesis, this process
is presumably regulated by a complex homeostatic
mechanism that controls the expression of the en-
coding genes. On the other hand, cells contain a
large number of proteins of well-defined functions,
but strongly interrelated to ensure an efficient me-
tabolism and cell growth under certain environmen-
tal conditions. Proteins interact during the synthesis
and, as a consequence, the homeostatic systems
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perturb and are perturbed by each other.9 To under-
stand and simulate such a complex regulatory pro-
cess, the modular approach is preferred, being
based on coupled semi-autonomous regulatory
groups (of reactions and species), linked to effi-
ciently cope with cell perturbations, to ensure sys-
tem homeostasis, and an equilibrated cell growth.9

Various types of kinetic modules can be analysed
individually as mechanism, reaction path, regula-
tory characteristics, and effectiveness. As a limited
number of regulatory module types govern the pro-
tein synthesis, it is computationally convenient to
step-by-step build-up the modular regulatory net-
work by applying certain principles and rules, and
then adjusting the network global properties. Ac-
cordingly, it is desirable to focus the metabolic reg-
ulation and control analysis on the regulatory/con-
trol features of functional subunits than to limit the
analysis to only kinetic properties of individual
enzymes acting over the synthesis path.

The modular approach assumes that the reac-
tion mechanism and stoichiometry of the kinetic
module are known, while the involved species are
completely observable and measurable. Such a hy-
pothesis is rarely fulfilled due to the inherent diffi-
culties in generating reliable experimental (kinetic)
data for each individual metabolic subunit. How-
ever, incomplete kinetic information can be incor-
porated by performing a suitable model lumping,2

or by exploiting the cell and module global proper-
ties during identification steps.1,5 The regulatory
modules can be constructed relatively independent
to each other, but the linking procedure has to con-
sider common input/output components, common
linking reactions, or even common species. Rate
constants can be identified separately for each mod-
ule, and then extrapolated when simulating the
whole regulatory network, by assuming that linking
reactions are relatively slow comparatively with the
individual module core reactions.9 In such a man-
ner, linked modules are able to respond to changes
in common environment and components such, that
each module remains fully regulated.

When elaborating a protein synthesis regula-
tory module, different degrees of simplification of
the process complexity can be followed. For in-
stance, the gene expression (see schema of Fig. 1)
can be translated into a modular structure of reac-
tions, more or less extended, accounting for indi-
vidual or lumped species. At a generic level, in the
simplest representation (Fig. 1, right), the protein
(P) synthesis rate can be adjusted by the ‘catalytic’
action of the encoding gene (G). The catalyst activ-
ity is in turn allosterically regulated by means of
‘effector’ molecules (O or P), reversibly binding the
catalyst via fast and reversible reactions (the
so-called ‘buffering’ reactions). This simplest regu-
lation schema can be further detailed in order to
better reproduce the real process, with the expense
of a supplementary effort to identify the module ki-
netic parameters. For instance, a two-step cascade
control of P-synthesis includes the M = mRNA
transcript encoding P (Fig. 1). The effector (O), of
which synthesis is controlled by the target protein P,
can allosterically adjust the activity of G and M, i.e.
the catalysts for the transcription and translation
steps of the gene expression. In such a cascade
schema, the rate of the ultimate reaction is ampli-
fied, depending on the number of cascade levels
and catalysis rates. More complex regulatory mod-
ules can be elaborated following a similar route to
‘translate’ from the ‘language’ of molecular biology
to that of mechanistic chemistry, by preserving the
structural hierarchy and component functions. Once
elaborated, such a modular structure can be
modelled by using one of the previously described
alternatives, and then analysed as functional
efficiency by means of some defined performance
indices.

Recently, Sewell et al.9 and Yang et al.5 studied
various types of hypothetical modules designed to
ensure homeostatic regulation of a generic pro-
tein-gene (P/G) pair synthesis, with exemplifica-
tions from E. coli (some of them are displayed in
Fig. 2). Simplified representations include the es-
sential nutrient lumps (NutP, NutG), metabolites
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arrows indicate catalytic actions; absence of a substrate or product indicate an assumed concentration invariance of
these species; G= gene encoding P; M= mRNA; O= allosteric effectors).



(MetP, MetG), and intermediates involved in the re-
actions, controlling the transcriptional and transla-
tion steps of the P synthesis. The module nomencla-
ture, proposed by Yang et al.,5 of type [L1(O1)n1; …;
Li(Oi)ni] includes the assembled regulatory units
Li(Oi)ni. One unit i is formed by the component Li

(e.g. enzymes or even genes G, P, M, etc.) at which
regulatory element acts, and ni = 0,1,2,… number
of species Oi (i.e. ‘effectors’ P, PP, PPPP, etc.) bind-
ing the ‘catalyst’ L. For instance, a G(P)5 unit in-
cludes five successive binding steps of G with the
product P, all intermediate species GP, GPP, GPP,
GPPP, GPPPP, GPPPPP being inactive catalytically,
while the mass conservation law is all time ful-

filled, i.e. [ ( )]G Pi

i�

�
0

5

= constant. Such a representa-

tion accounts for the protein concentration dimin-
ishment due to the cell-growth dilution effect, but
could also include protein degradation by proteoly-
sis.

The G(P)n type of units, even less realistic,
represent the simplest regulatory module used as
control mechanism against which all others are
compared. In a G(P)0 module (see also Fig. 3),
there are only two main synthesis chains. P is a
permease that catalyses the import of NutG and
NutP from the environment, and a metabolase that
converts them into cellular metabolites MetG and

MetP. P is also a polymerase that catalyses the syn-
thesis of G from MetG. Gene G, symbolizing the
genome of the cell, functions as catalyst for the
synthesis of P from MetP. The result is that G and P
syntheses are mutually autocatalytic. In G(P)0 there
are no regulatory elements. In G(P)1, the negative
feedback control of transcription is realised by P it-
self (as effector), via a rapid buffering reaction,
G + P <==> GP, leading to the catalytically in-
active GP. As proved, the maximum regulatory effi-
ciency at steady-state (index ‘s’) corresponds to
[G]s/[G]total = 1/2, when the maximum regulation
sensitivity vs. perturbations in [P]s is reached.9 Fur-
ther allosteric control of G activity, leading to inac-
tive species [GPn], amplifies the regulatory effi-
ciency of the module. As an example, prokaryotes
commonly bind multiple copies of transcription
factors as a means of promoting cooperative effects
and thus improving regulatory effectiveness.5 For
instance, DnaA is an autoregulated protein and at
least five copies can bind to dnaA gene in E.
coli.5,80

The G(PP)n units reflect better the regulatory
loops in which multiple copies of effectors (pro-
teins and transcription factors) bind to promoter
sites on the DNA that control expression of gene G
encoding P (see exemplifications from E. coli by
Yang et al.5). The control is better realised by in-
cluding a supplementary P dimerization step before
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the buffering reactions. This explains why most of
transcription factors bind as oligomers (typically
dimers or tetramers) and why they typically bind in
multiple copies.5 For instance, in E. coli the
monomeric �35.0 protein of plasmid R6K forms
dimers that bind to the operator of the pir gene that
encodes the protein, and represses its own synthe-
sis.5,89 The � repressor transcription factor is a
dimer, three copies of which bind the operator re-
gion of the gene that it regulates.5,81

Module [G(P)n; M(P)n�] tries to reproduce
more accurately the transcription/translation cas-
cade of reactions during the gene expression, by in-
cluding an allosteric control at two levels of cataly-
sis: on G (i.e. DNA) and on M (i.e. mRNA). M is
synthesized from nucleotides under G catalysis, and
then, in a translation step, P is synthesized in a reac-
tion catalysed by M. Such a supplementary control
of mRNA activity is proved to be a more effective
means of regulating protein synthesis.5,82

Module efficiency indices

To evaluate and compare the regulatory effi-
ciency of various kinetic modules, when maintain-
ing cell homeostasis, two categories of indices have
been used, defined under stationary (‘step’ like) or
dynamic (‘impulse’ like) continuous perturbations
of species stationary concentrations. Random per-
turbations, due to interactions of P-synthesis mod-
ule with other metabolic processes, or due to envi-
ronmental changes, lead to a module response that
tends to maintain the key-component functions.
Module efficiency depends on the regulatory struc-
ture, species inter-connectivity, QSS-characteristics,
cell size, and perturbation magnitude.

Stationary perturbations refers to permanent
modifications of nutrient/metabolite levels, leading
to new stationary concentrations inside the cell. Re-
ferring to the target protein P, the regulatory module
tends to diminish the deviation [P]s – [P]ns between
the ‘nominal’ QSS (unperturbed set-point, of index
‘n’) and the new QSS reached after perturbation.
Equivalently, the P-synthesis regulatory module
will tend to maintain [P]ns within certain limits,
[P]min 	 [P]ns 	 [P]max (a relative RSS = ± 10 %
maximum deviation has been proposed by Sewell et
al.9). A measure of steady-state (cis) ‘resistance’ to
various perturbations (in rate coefficients, kj, or in
nutrient concentrations, c

jNUT ) is given by the
magnitude of relative sensitivity coefficients at
QSS, i.e. S k

c

j

i and S
j

ic

Nut , respectively [where S perturb
state

= �(State)/�(Perturbation) are the state sensitivities
vs. perturbations1]. A regulatory index, Aunsync�
k ksyn 
 decline , has been introduced to illustrate the
maximum levels of (unsynchronised) stationary
perturbations in synthesis or consumption rates of a
key-species tolerated by the cell within defined lim-
its.9

Dynamic perturbations are instantaneous
changes in the concentration of one or more com-
ponents that arise from a process lasting an infini-
tesimal time (impulse-perturbation). After perturba-
tion, the system recovers and returns to their stable
nominal QSS. The recovering time and rate can be
approximated from the solution of the liniarized
system model:12
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F i g . 3 – Constructing the G(P)1 regulatory module (2) by adding a
buffering reaction to the G(P)0 module (1). Cell components recover
after a –10 % impulse perturbation in [P]s = 1000 nmol L–1 at t = 0
(down).



dc / dt = h(c, k); c(0) = cs;

c c( ) exp( ),t d b ti i i

i

n

� �
�

�s

s

�
1

(1)

(where: c = concentration vector; �i = eigenvalues of
the system Jacobian matrix at QSS, Jc =
(�h(c, k)/�c)s; b di i, = constants, depending on the

system characteristics at stationary conditions; t =
time). If the real parts of eigenvalues are all negative,
then the stationary state cs is stable. The recovering
rate index RD of Yang et al.5 reflects the recovering
properties of the regulated P-synthesis system. The
species j recovering time �j ~ 1/RD is necessary to the
system to return to the stationary cjs concentration,
with a certain tolerance and for a defined perturba-
tion magnitude (see below the proposed 1 % toler-
ance for a ±10 % cjs impulse perturbation).

Steady-state cs stability strength is related to
the system characteristics. As Max(Re(�i)) < 0 is
smaller, the QSS is more stable. When analysing
the predicted QSS and regulatory characteristics of
a P-synthesis module, the stability strength can also
be related to an index against periodic oscillations.
This can be evaluated from the liniarized form of
the system model, by calculating the monodormy
matrix A(T) after a checked period T of time:1

dc / dt = h(c, k); c(0) = cs;

dA / dt = Jc A; A(0) = I. (2)

For a stable QSS, i.e. | |� Ai
< 1, as | |� Ai

are
smaller, the system stability strength is higher [� Ai

are the eigenvalues of the A(T) matrix].
Species interconnectivity in a modular regula-

tory schema of reactions can be viewed as a degree
of which they assist each other during the system
recovering. Cell species connections appear due to
common reactions, or common intermediates par-
ticipating to chain reactions, or from the common
cell volume to which all species contribute (under
constant osmotic pressure, see below). Vance et al.83

reviewed and proposed several quick experimental
– computational rules to check a reaction schema
via species inter-connectivities. By inducing experi-
mental perturbations to a (bio)chemical system, by
means of tracers, or by fluctuating the inputs of the
system, one can measure the perturbation propaga-
tion through the consecutive/parallel reaction path.
Then, various techniques can determine the “dis-
tance” among observed species, and rules to include
this information in elaborating a reaction schema.
In the present study, one proposes a similar approx-
imate measure of species interconnectivity related
to the species recovering-times after a dynamic per-
turbation, that is: AVG(�j) and STD(�j), i.e. the av-

erage and standard deviation of �j. As AVG and
STD are larger, as the cell dynamic regulatory ef-
fectiveness is lower, species less interconnected,
and components recover more disparately (scat-
tered). As the number of effectors and buffering re-
actions is higher, these dynamic regulatory indices
of the module are smaller.

By summarizing, the regulatory efficiency in-
dices, proposed to evaluate a module or a modular
chain behaviour vs. perturbations, are the following
(in parenthesis are mentioned the suitable Min/Max
objectives):

– stationary regulation: (Min)Rss = ([P]s – [P]ns)/
[P]ns; (Max) Aunsync = ksyn × kdecline; (Min) S

j

i
NutP =

[(�ci/cis)/(�cNutj/cNutjs]s; (Min) S k
i

j
= [(�ci/cis)/(�kj/kj)]s;

– dynamic regulation: (Min) RD = Max(Re(�i)),
Re(�i) < 0; (Min) �j;

– regulatory robustness: (Min) (�RD/�k)

– species interconnectivity: (Min) AVG(�j) =
average (�j); (Min) STD(�j)= st.dev.(�j);

– QSS stability strength: (Min) Max(Re(�i)),
Re(�i) < 0; (Min) | | .�Ai

1

To evaluate the module regulatory indices and
to simulate the system dynamic evolution after a per-
turbation, rate constants (k vector) and stationary
states (species concentrations cs) for a certain cell
system are necessary to be known. In the absence of
standard kinetic data,2 rate constants have been esti-
mated from system invariants and from some cell
properties. Assuming that most of stationary cs are
known under an equilibrated cell growth (from ex-
periments or databanks), the time-invariant condition
imposed to eq. (1) lead to a (non)linear algebraic set
to be used for estimating k-s. If the size of k-vector
together with unobservable cs is higher than the ob-
servable cs vector size, the unknowns have been esti-
mated by imposing some properties to the system
(under some physical constraints), such as: maxi-
mum recovering rate after a perturbation (RD of Yang
et al.5), smallest sensitivity of steady-states vs. per-
turbations,1 stability strength of QSS,1 oscillatory
properties, system flexibility, etc.1,2 This is the case,
for instance, of estimating the [PP]s level in modules
G(PP)n, or of [M]s level in modules G(P)n;M(P)n’,
by minimizing a performance index, such as AVG(�j)
or �j for a key-species (see below).

The modular representation of protein synthe-
sis allows an easier and quantitative analysis of in-
dividual regulatory modules, by comparing various
mechanisms and effectors (as number and nature)
from the efficiency point of view. Several conclu-
sions can be derived:5,74

– Performance indices (P.I.) depend on the type
of the regulatory module used by the protein syn-
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thesis. The increasing regulatory effectiveness fol-
lows the following order: G(P)n < G(PP)n <
G(P)n;M(P)n’. Modules reporting high station-
ary-regulation P.I.-s also report high dynamic-re-
gulation P.I.-s.

– The catalyst activity control at a single en-
zyme level appears to be of lowest efficiency.

– Multiple copies of effector molecules, which
reversibly and sequentially (allosterically) bind the
catalyst (G, M) in negative feedbacks, improve the
regulation effectiveness.

– A structured cascade control of several en-
zyme activities, with negative feedback loops at
each level, improves regulation and amplifies the
effect of a change in a signal. The rate of the ulti-
mate reaction is amplified, depending on the num-
ber of cascade levels and catalysis rates. As an ex-
ample, placing regulatory elements at the level of
mRNA is highly effective (i.e. species M in the
module G(P)n; M(P)n’).

– For the same module, each added regulatory
element linearly improves the regulatory index, by
an approximate relationship:5

P I. . ,� ��a a ni ii0 (3)

(where P.I. = regulatory performance index, such as
RD, AVG(�j), STD(�j); ni = number of effectors (P,
PP, O) acting in the i-th allosteric unit Li(Oi)ni; a0,
ai = constants related to the P.I. and module type).

– P.I. improves ca. 1.3–2 times (or even more)
for every added regulatory unit to the module. Mul-
tiple regulatory units lead to average recovering
times AVG(�j), much lower than the cell cycle pe-
riod tc, under constant logarithmic volume growing
rate, D t� ln( )/ .2 c

– Combinations of regulatory schemes and
units (with different effectors) improve the regula-
tory P.I.-s.

– Certain regulatory modules reported an in-
creased flexibility, due to ‘adjustable’ intermediate
species levels. This is the case, for instance, of ad-
justing [M]s in module G(P)n; M(P)n’ and of [PP]s
in module G(PP)n. Optimal levels of these species
can be set accordingly to various optimization cri-
teria, rendering complex regulatory modules to be
more flexible in reproducing certain desired
cell-synthesis regulatory properties.

Modelling cooperative linking
of regulatory modules

Model hypotheses

To study the protein synthesis regulation, a
continuous-variable ODE model of a classical for-

mulation has been adopted for the cell system, ac-
counting for variable-volume and osmotic pressure,
but neglecting the inner-cell gradients:84,85
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(where: cj = cell-species j concentration; V = cell
volume; nj = amount of species j; rj = j-th reaction
rate; D = cell-content dilution rate, i.e. cell-volume
logarithmic growing rate; � = osmotic pressure; T =
temperature; R = universal gas constant; ns = num-
ber of species inside the cell; t = time). Volume dy-
namics have been linked to molecular species dy-
namics and to (constant) osmotic pressure by means
of the Pfeffer’s law in diluted solutions.86 Such a
variable-volume formulation is suitable to accu-
rately model the cell growth,56 the response to per-
turbations, cell-‘ballast’ and ‘inertial’ effects vs.
continuous changes in cell and environment. As ca.
80 % of the cycle period is the growing phase,56

and assuming a quasi-constant osmotic pressure and
a constant volume growing logarithmic rate, model
(4) can be considered satisfactory to study the regu-
latory network effectiveness. The constant osmotic
pressure assumption leads to fulfilment of the fol-
lowing invariance relationship:

RT V

n c cj

j

n

j

j

n

j

j

n�
� � � �

� � �

� � �
1 1

0
1

1 1
s s s

constant. (5)

By summarizing, the used continuous-variable
model (4) has been based on the following hypothe-
ses:

(i) The cell is an isotherm open system with an
uniform content (well-mixed reactor case); species
behave ideally, and present uniform concentrations
within cell.

(ii) The open environment interacts with the
cell through a semi-permeable membrane.

(iii) The membrane, of negligible volume,
presents a negligible resistance to nutrient diffu-
sion; membrane dynamics is neglected in the mo-
del, being assumed to follow the cell growing
dynamics.

(iv) When studying an individual P-synthesis
regulatory module, other cell species are lumped
together.
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(v) The inner osmotic pressure is constant, and
all the time equal with the environmental pressure, thus
ensuring the membrane integrity (� �cyt env� �
constant). As a consequence, the isotonic osmola-
rity under isothermal conditions leads to the equal-
ity RT RT/ / ,� �cyt env� which indicates that the
sum of cell species concentrations must equal those

of the environment, i.e. c cj

j

j

j

all

cyt

all

env

� �
�

�

�
�

�

�

�
� �

�

�

�
�

�

�

�
� .

Even if in a real cell such an equality is approxi-
mately fulfilled due to perturbations and transport
gradients, and in spite of migrating nutrients from
environment into the cell, the overall environment
concentration is considered to remain unchanged.
On the other hand, species inside the cell transform
the nutrients into metabolites and react to make
more cell components. In turn, increasing amounts
of polymerases are used to import increasing
amounts of nutrients. The net result is an exponen-
tial increase of cellular components in time, which
translates, through isotonic osmolarity assumption,
into an exponential increase in volume with time.56

The overall concentration of cellular components is
time-invariant, because the rate at which cell-vol-
ume increases equals (in an normal cell) that at
which overall amount increases, leading to a con-

stant V n j

j

n

/
�

�
1

s

ratio.

(vi) Cell volume doubles over the cell cycle pe-
riod (tc), with an average logarithmic growing rate
of D t� ln( )/ .2 c Under stationary growing condi-
tions, it results from (4) an exponential volume in-
crease, i.e. V V D t� 0e s .

(vii) For stationary growing conditions, species
synthesis rates are equal to first-order dilution rates
(Dcj), leading to time-invariant species concentra-
tions [i.e. homeostatic conditions, (dcj /dt)s = 0].

A variable-volume cell model formulation
presents an important number of advantages:

– the estimated rate constants are more realistic
comparatively with those derived from con-
stant-volume model formulations (usually used in
modelling biochemical systems);

– some simplifications, such as dilution terms
defined for only key species5,9 are removed, and all
species are treated on the same basis;

– species inter-connectivity (i.e. the degree to
which a perturbation in one component influences
others) is better characterized by including direct
interrelations (via common reactions and intermedi-
ates) but also indirect relationships via the common
cell-volume to which all species contribute (see eq.
4);

– possible perturbations in the volume size and
osmotic pressure can be also considered;

– perturbations applied to components of large
concentrations lead to an important cell volume
perturbation, which in turn lead to large perturba-
tions of other cell component concentrations (i.e.
the so-called ‘secondary’ or ‘indirect’ perturbations);
vice-versa, perturbations in species of low levels
will have a low effect on the cell volume, and then
a small secondary effect on other components, be-

cause: Vperturb/V0 = n njj jj
� ��
�
� �

�
� �

�
� �

�
�

perturb 0
.

– cells of large content (large ‘ballast’) dimin-
ishes the indirect perturbations (the so-called ‘iner-
tial’ effect, or perturbation smoothing); the ballast
effect shows how all cell components are intercon-
nected via volume changes;

– the derived performance indices for regula-
tory modules under variable volume conditions are
more realistic comparatively with those derived
from the constant-volume models.

It is also to be observed that, in a variable-vol-
ume model all species (individual or lumped) have
to be included in the model, because all contribute
to the volume dynamics. In such a manner, the
number of rate constants increases leading to a cor-
responding increase in the identification effort.
When comparing two regulatory modules under
variable-volume conditions, the comparison terms
must be kept constant (i.e. the same cell ‘ballast’
and environmental conditions).

When a cell reaches a critical size and a certain
level of the surface-area-to-volume ratio, the divi-
sion phase begins, lasting the last 20 % of cell cy-
cle. Over this phase (not analysed here), specialized
proteins constrict the cell about its equator, thus
leading to cell division. The duplicated content is
thus partitioned, more or less evenly, between
daughters cells. To model such a phase, supplemen-
tary terms must explicitly account for membrane
dynamics.56

Stationary cell growth conditions lead to the
nonlinear set of equations:
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. (6)

As the (RT/�) term is known from the initial
condition (5), the time-invariant set (6) can be used
to estimate k-s (and some unobservable ~c js). Esti-

mation rule is based on fulfilment of QSS station-
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ary condition (6), system invariants (mass balance
equations2), and on imposing optimum regulatory
criteria, such as:

[ � ,~�k cs] = argMin(� P),

subjected to:

h kj c j ns s s( , ) ; , , ;� � �0 1 (eq. 6)

[ � ,~�k cs] > 0;

[ ( )]G Pi

i

n

�

�
0

= constant; [ ( )]G PPi

i

n

�

�
0

= constant;

[ ( )]L O i

i

n

�

�
0

= constant, etc.

[L]active/[Ltotal] =
1
2 , etc.
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�
� = constant, (7)

(where �P has been evaluated by applying a 10 %
[P]s impulse perturbation and by determining the re-
covering time with a tolerance of 1 % [P]s ). To esti-
mate [ � , ~�k c s], other regulatory global properties can
also be used together with the constraints of (7). It
is also to be mentioned here the special case of esti-
mating rate constants in rapid buffering reactions,
of type:
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(variable volume equilibrium, eq. 6). (8)

As discussed by Kholodenko et al.,25 fast buff-
ering reactions are close to equilibrium and have
little effect on metabolic control coefficients. As a
consequence, rate constans of such rapid reactions
are much higher than those of the core synthesis
and dilution rates. To reduce the size of the vector
of unknowns in (7), large values of kdiss�� Ds can
be postulated, while KLO becomes closer to its con-
stant-volume value in (8).

Assuming a known nominal set of species station-
ary concentrations cs, differentiation of the steady-state

conditions (6) lead to evaluate the state sensitivity vs.
nutrient levels [i.e. S c c

j j

j

iNut Nut s� ( / )� ] from:

h kj c cs s Nut s( , , ) ;, �0 j n� �1, , ,s � (9)
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In the previous relationship, the Jacobian J c �
� �� �hi jc/

s
is evaluated numerically at the cell-sys-

tem stationary-state.

Module linking rules

Cell regulatory networks, and in particular pro-
tein synthesis regulation, are poorly understood.
The modular approach of studying the regulation
path, accounting for its structural and functional or-
ganization, seems to be a promising route to be fol-
lowed. Because a limited number of module types
exists, individual regulatory modules can be sepa-
rately analysed and checked for efficiency in condi-
tions that mimic the stationary and perturbed cell
growing conditions. A module is as efficient as the
stationary performance indices are more favourable
and sensitivity to perturbations is lower. Then, they
are linked accordingly to certain rules to mimic the
real metabolic process, by ensuring the overall net-
work efficiency, system homeostasis, and protein
functions. Module linking rules are not fully estab-
lished. It seems that modular network is hierarchi-
cally organised, and includes a large number of
compounds with strong interactions inside a
module and weaker interactions among modules, so
that the whole cell system efficiency can be
adjusted.

For instance, Sewell et al.9 offered some mod-
ule linking suggestions, accounting for automated
system principles. Thus, module interactions can be
defined kinetically, implying common reactions and
species and common input-output components. Dif-
ferent module types can be identified separately
based on stationary compound concentrations, and
by optimising a regulatory efficiency index. When
the network is constructed, linking reactions be-
tween modules are set to be relatively slow compar-
atively with the module core reactions. In such a
manner, individual modules remain fully regulated,
while the assembly efficiency is adjusted by means
of linking reaction and intermediate levels. To pre-
serve the individual regulatory capacity, the magni-
tude of linking reactions would have to decline as
the number of linked modules increases.9

When linking regulatory modules, the main
questions arise on the connectivity mechanism and
on the cooperative vs. uncooperative way of which
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proteins interact over the parallel/consecutive meta-
bolic path. In spite of an apparent ‘competition’ for
nutrient consumption, protein synthesis is a closely
cooperative process, due to the specific role and
function of each protein inside the cell.3,12 Protein
interactions are very complex, being part of the cell
metabolism and distributed over regulatory network
nodes. There are many nodes with few connections
among proteins and a small, but still significant,
number of nodes with many proteic interactions.4

These highly connected nodes tend to be essential
to an organism and to evolve relatively slowly. At a
higher level, protein interactions can be organised
in ‘functional modules’, which reflect sets of highly
interconnected proteins ensuring certain cell func-
tions. Specific proteins are involved in nutrient per-
meation (permeases), in metabolite synthesis
(metabolases), or in gene production (polymerases).
In general, experimental techniques can point-out
molecular functions of a large number of proteins,
and can identify functional partners over the meta-
bolic pathways. Moreover, protein associations can
ensure supplementary cell functions. For instance,
enzyme associations lead to the well-known ‘meta-
bolic channelling’ (or tunnelling) process, that en-
sures an efficient intermediate transfer and meta-
bolite consecutive transformation without any
release into the cell bulk phase.87

It results that an effective module linking strat-
egy has to ensure the cell-functions of individual
proteins and of protein associations over the meta-
bolic synthesis network. As a general observation,
even not presenting common reactions, the modules
are anyway linked through the cell volume (to
which all cell species contribute) and due to some
signalling intermediates controlling the regulatory
network construction. The variable cell-volume
model is able to account for such cell regulatory
characteristics. From the theoretical point of view,
several linking alternatives can be investigated,
such as cooperative vs. uncooperative linking. In a
cooperative linking, common species (or reactions)
are used for a cross-control (or cross-catalysis) of
the synthesis reactions. Thus, the system stability is
strengthened, while species inter-connectivity is in-
creased leading to a better treatment of perturba-
tions.

Step-by-step building-up of a regulatory
modular structure – An example

The present study aims to exemplify, at a ge-
neric level and by using the variable cell-volume
model, various alternatives to link regulatory mod-
ules, and to simulate protein interrelations during
metabolic synthesis. It also investigates the feasibil-
ity of a module linking strategy to elaborate a regu-
latory network, and the way in which a step-by-step

increase in the network complexity is reflected by
the regulatory efficiency of the whole path.

To exemplify such an analysis in a simple way,
one considers a hypothetical cell, similar to E. coli,
in an equilibrated growth at a constant temperature,
with a cell cycle period of tc = 100 min, and a
quasi-constant logarithmic growing rate of Ds =
ln(2)/tc. Concentrations of lumped nutrients in the
environment have been considered constant, i.e.
cNutG,s = 3×106 nmol L–1, cNutP,s = 3×108 nmol L–1

(similarly to Morgan et al.56). As only a few num-
ber of individual species are accounted in the
model, the cell ‘ballast’ is mimicked by adopting
high levels for metabolite concentrations, i.e.

c
j

j

MetP s,
� = 3×108 nmol L–1; c c

j

j

MetG NutG ss, ,� � �

� �
�

�c c j

j j

NutP s s
MetG

cell

, � 106 n mol L–1. For the genes,

proteins, and other intermediates, the stationary
concentrations are displayed in the footnote of Ta-
ble 1. Species in the environment have been
lumped, and only two groups (NutP and NutG)
have been considered. Not to complicate the model,
only protein concentration diminishment due to the
cell-growth dilution effect has been considered, the
protein degradation being neglected. Once the net-
work construction methodology elaborated, more
detailed modular representations can include mech-
anism extensions in the analysis.

The network construction starts with consider-
ing the simplest system, i.e. a cell which includes
only one module for P-protein synthesis, in an un-
regulated alternative G(P)0. In such a simplified
representation, a simple reaction, catalysed by P, is
used to kinetically describe the membrane perme-
ation and nutrient transformation into metabolites
(see Fig. 3). The considered stationary concentra-
tions for the P/G pair are cPs = 1000 nmol L–1 and
cGs = 1 nmol L–1. The value of 1 nmol L–1 for gene
concentration in a newborn cell results from apply-
ing the formula:56

concentration =
no. of copies / cell

N VA cyt
 , 0
(10)

(where NA is the Avogadro number). As for an E.
coli cell, with an approximate Vcyt,0 = 1.66 × 10–15 L
(see Yang et al.5), it results for cGs a value of
1/(6.022 × 1023)(1.66 × 10–15) = 1 nmol L–1 (i.e.
10–9 mol L–1). The other species of the cell are in-
cluded in the cell ‘ballast’ by adopting high levels
for metabolites (~108 n mol L–1). Then, the module
is improved by adding a regulatory element. For in-
stance, by including a simple effector and a buffer-
ing reaction, one obtains the module G(P)1 (Fig. 2
and Fig. 3, cGs = cGPs =

1
2 nmol L–1). Rate constants

are then estimated from the QSS condition (6).

224 G. MARIA, Modular-Based Modelling of Protein Synthesis Regulation, Chem. Biochem. Eng. Q. 19 (3) 213–233 (2005)



Based on that, dynamic regulatory effectiveness [�j;
AVG(�j); STD(�j)], stationary regulatory effective-
ness (S j

NutP), and system stability are evaluated [by
integrating eq. (4-5) after an impulse perturbation,
or by solving the set (9) for j = 1,…, ns]. The re-
sults, presented in Table 1 and Fig. 3, lead to sev-
eral conclusions.

i) Both systems are stable [max(Re(�j)) = – D < 0].
Each system recovers after a dynamic perturbation
in cPs (Fig. 3, down).

ii) Systems are unregulated or very poorly reg-
ulated, the AVG(�j) being large (41 min and 56
min), some species presenting recovering times �j

close or larger than the cell cycle period tc = 100
min.

iii) The dynamic regulatory index for the
key-species P improves from �P = 166.2 min for
G(P)0 to �P = 131.7 min for G(P)1, that is with a
factor of 1.26. Consequently, it is expected that an
allosteric gene G activity control of type G(P)n to
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T a b l e 1 – Stationary (S j
NutP) and dynamic (�j) regulatory effectiveness of (un)coupled regulatory modules [S c cj

j NutP sNutP � �( / )� �

species j level sensitivity to NutP; �j = species j recovering time to QSS, with a 1% tolerance, after a ± 10 % cP1,s im-
pulse perturbation].

Species

G(P)0 G(P)1 G1(P1)0+G2(P2)0 G1(P1)1+G2(P2)1 G1(P1P1)1+G2(P2P2)1 G1(P1)1+G2(P2)1+G3(P3)1

�j (min) S
j
NutP �j (min) S

j
NutP �j (min) S

j
NutP �j (min) S

j
NutP �j (min) S

j
NutP �j (min) S

j
NutP

MetG1-G3 NG -9.9×10–3 NG -9.9×10–3 NG -4.9×10–3 NG -4.9×10–3 NG -4.9×10–3 384.1 -3.3×10–3

MetP1-P3 NG 9.9×10–3 NG 9.9×10–3 NG 4.9×10–3 NG 4.9×10–3 NG 4.9×10–3 NG 3.3×10–3

P1 166.2 -4.9×10–6 131.7 -3.9×10–6 318.1 -4.9×10–6 88.0 -3.9×10–6 76.6 -3.3×10–6 347.9 -3.9×10–6

P2 - - - 502.2 -4.9×10–7 319.4 -3.9×10–7 212.7 -3.3×10–7 NG -3.9×10–7

P3 - - - - - - - NG -3.9×10–6

G1 NG -6.6×10–9 92.0 -2.3×10–9 502.2 -6.6×10–9 322.1 -2.3×10–9 224.7 -1.6×10–9 355.5 -2.3×10–9

G2 - - - - 502.2 -6.6×10–9 288.8 -2.3×10–9 NG -1.6×10–9 456.8 -2.3×10–9

G3 - - - - - - - - - - 456.5 -2.3×10–9

G1P1 - - 92.0 -4.3×10–9 - - 394.1 -4.3×10–9 - - 584.9 -4.3×10–9

G2P2 - - - - - - 425.5 -4.3×10–9 - - 581.6 -4.3×10–9

G3P3 - - - - - - - - - - 581.9 -4.3×10–9

G1P1P1 - - - - - - - - 320.8 -4.9×10–9 - -

G2P2P2 - - - - - - - - 370.1 -4.9×10–9 - -

P1P1 - - - - - - - - 173.4 -6.6×10–11 - -

P2P2 - - - - - - - - 318.1 -6.6×10–11 - -

AVGa 41.5 - 55.9 - 304.1 - 229.7 - 169.6 - 340.8 -

STDb 71.9 - 57.6 - 224.6 - 162.4 - 136.0 - 224.2 -

max(Re(�j)) -D

(stable)
-

-D

(stable)
-

-D

(stable)
-

-D

(stable)
-

-D

(stable)
-

-D

(stable)
-

a) average of �j / min; b) standard deviation of �j / min; �j = QSS-system Jacobian eigenvalues; max(Re(�j)) < 0 indicates a stable QSS; NG = negligi-
ble; stationary concentrations are: [cNutG,s, cNutP,s,  jcMetGj,s

,  jcMetPj,s
, cP1,s, cP2,s, cP3,s, cG1,G2,G3,s, cG1P1,s, cG2P2,s, cG3P3,s, cG1P1P1,s, cG2P2P2,s, cP1P1,s,

cP2P2,s] = [3×106, 3×108, ~106, 3×108, 103, 102, 103, 1(or 1
2), 0(or 1

2), 0(or 1
2), 0(or 1

2), 0(or 1
2), 0(or 1

2), 10
–2, 10–2](nmol L–1);  jcMetGj

= cNutG +

cNutP – cj

j j

;
�

�
MetG

cell

life cycle tc = 100 min; cell-volume logarithmic growing rate D = ln2/tc; ‘s’ index refers to the QSS.



roughly improve (n × 1.26) times the P.I. (see eq.
3), leading to �P values smaller than tc. It is also ex-
pected that another effector and a more effective
regulatory unit to lead to even much better P.I. and
smaller �P values.

iv) The dynamic perturbations affect rather
species present in small amounts inside the cell,
while recovering times for major species (e.g. me-
tabolites MetP, MetG) are negligible (Table 1, Fig.
3).

v) By increasing the complexity from G(P)0 to
G(P)1 (with one effector and a buffering reaction),
the whole module recovers slower after an impulse
perturbation (i.e. the resulted AVG is higher). At
the same time, species interconnectivity increases
(i.e. STD becomes lower), leading to a better regu-
latory index for the target P protein synthesis.

vi) The stationary regulatory indices (sensitivi-
ties vs. nutrients) follow the same trend. For in-
stance, the sensitivity of P vs. NutP is decreasing
from | |S NutP

P = 4.9×10–6 to | |S NutP
P = 3.9 × 10–6 , i.e.

with the same 1.26 improvement factor.

In the second stage of the analysis, one links
two modules G1(P1)0 + G2(P2)0, ensuring regula-
tion of two protein synthesis (P1 and P2), in an un-
cooperative disconnected way (Fig. 4). For this
hypothetic system, synthesis of P1/G1 and P2/G2
from metabolites is realised with any inference be-
tween modules (cP1s = 1000 nmol L–1, cP2s = 100
nmol L–1, cG1s = 1 nmol L–1, cG2s = 1 nmol L–1). The
only connection is due to the common cell volume
to which both protein syntheses contribute. If one
checks this system for stability, by applying a
±10 % impulse perturbation in cP1,s, it results an un-
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F i g . 4 – Un-cooperative coupling of two modules [G1(P1)0] + [G2(P2)0] for P1 and P2 protein synthesis (left).
Degenerative evolution of cell components after a – 10 % impulse perturbation in [P1]s = 1000 nmol L–1 at
t = 0 (right).



stable system, evolving toward the decline and dis-
appearance of one of the proteins (i.e. those pre-
senting the lowest synthesis rate, Fig. 4). Conse-
quently, the homeostasis condition is not fulfilled,
the cell functions cannot be maintained, and the dis-
connected protein synthesis results as a unfeasible
and less plausible linking alternative.

The cooperative connection of [G1(P1)0 +
G2(P2)0] modules in Fig. 5 [sub-case (1)] ensures
specific functions of proteins, i.e. P1 lumps, both,

the permeases and metabolases, while P2 is a poly-
merase. For comparison, the same two-module sys-
tem has been improved by adding simple effectors
for gene activity control. In the cooperatively
linked system [G1(P1)1 + G2(P2)1], [see Fig. 5,
sub-case (2), and Fig. 2], the effectors P1 and P2
act in two buffering reactions, G1+P1 ! G1P1, and
G2+P2 ! G2P2, with the stationary states cG1,s =
cG1P1,s = 1/2 nmol L–1, and cG2,s = cG2P2,s = 1/2
nmol L–1. In the coupled system [G1(P1P1)1 +
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F i g . 5 – Cooperative coupling of two regulatory modules (up): [G1(P1)0] + [G2(P2)0] (case 1); [G1(P1)1] + [G2(P2)1] (case
2); [G1(P1P1)1] + [G2(P2P2)1] (case 3). Cell components recover after a – 10% impulse perturbation in [P1]s = 1000
nmol L–1 at t = 0 (down).



G2(P2P2)1], [see Fig. 5, sub-case (3), and Fig. 2],
the effectors are the dimers P1P1 and P2P2, acting
in two buffering reactions, G1 + P1P1 ! G1P1P1,
and G2 + P2P2 ! G2P2P2, with the stationary
states cG1,s = cG1P1P1,s = 1/2 nmol L–1, and cG2,s =
cG2P2P2,s = 1/2 nmol L–1. Rate constants have been
estimated from the stationary concentrations (cj,s in
Table 1, adopted from the E. coli cell) and by im-
posing regulatory optimal characteristics given by
the criterion (7). The kdiss >> Ds in eq. (8) has been
adopted as being ca. 107 Ds, while system optimiza-
tion with criterion (7) leads to small values for
cP1P1,s and cP2P2,s (i.e. the active parts of dimers).
Such a result is in agreement with the reported val-
ues of Sewell et al.9 and Yang et al.5 for a one-mod-
ule, constant-volume system. The system stability
and dynamic regulatory characteristics have been
determined by studying the QSS-recover after a
± 10 % cP1,s impulse perturbation (Fig. 5, right).
The results, presented in Table 1, reveal the fol-
lowing aspects concerning the systems [G1(P1)0 +
G2(P2)0], [G1(P1)1 + G2(P2)1], and [G1(P1P1)1
+ G2(P2P2)1].

i) All three systems (curves 1-3 of Fig. 5) are
stable [max(Re(�j)) = – D < 0]. Each system recov-
ers after a dynamic perturbation in cP1,s (Fig. 5,
right). It results that the cooperative module link-
ing, by preserving specific functions of each protein
inside the cell, is a viable solution ensuring system
homeostasis.

ii) The system is as better regulated as the
effector is more effective, the AVG(�j) being re-
duced from 304 min, to 229 min, and then to 169
min for the previously mentioned systems. These
values are larger than the cell cycle period tc = 100
min, but an allosteric regulation can drastically im-
prove this index.

iii) The dynamic regulatory index for the
key-species P is significantly improved from �P =
318 min [case G1(P1)0 + G2(P2)0] to �P = 88 min
[for G1(P1)1 + G2(P2)1], or to �P = 77 min [case
G1(P1P1)1 + G2(P2P2)1], that is with a factor of
3.6-4.1. It is expected that, by using an allosteric
gene activity control of type G(P)n or G(PP)n, this
index to be still improved n times (see eq. 3), lead-
ing to �P values much smaller than tc. Thus, the use
of efficient effectors and multiple regulation units
can improve very much the dynamic index, in the
following ranking: G(P)n < G(PP)n < M(P)n.

iv) Dynamic perturbations affect rather species
present in small amounts inside the cell, while re-
covering times for other species (e.g. metabolites
MetP, MetG) are negligible (Table 1, Fig. 5).

v) By adding to [G1(P1)0 + G2(P2)0] regula-
tion effectors of type G(P)1, or even more effective
of type G(PP)1, the whole system recovers faster

after an impulse perturbation (i.e. the resulted AVG
is lower), but also the species interconnectivity in-
creases (i.e. STD becomes lower), with a positive
effect on the target P-synthesis regulation.

vi) The stationary regulatory indices (sensitivi-
ties of states vs. nutrients) follow the same trend.
For instance, the sensitivity of P vs. NutP is de-
creasing from | |S NutP

P = 6.6×10–9, to 2.3 × 10–9, and
1.6 × 10–9, and that is with an improvement factor
of 2.8 times for G(P)1 vs. G(P)0, and of 4.1 times
for G(PP)1 vs. G(P)0.

The regulatory network design procedure can
be continued, by accounting for a new protein (and
synthesis module). For instance, in the simplified
representation of Fig. 6, P1 and P3 lumps permease
and metabolase enzymes, which ensure nutrient im-
port inside the cell, and transformation in gene-me-
tabolites (MetG1-MetG3) and protein-metabolites
(MetP1-MetP3) respectively. Proteic unit P2 lumps
polymerases able to catalyse the gene production. If
one considers the simplest effector case, the re-
sulted cell includes three modules G1(P1)1 +
G2(P2)1 +G3(P3)1, which regulate the synthesis of
P1, P2 and P3, in a cooperative interconnected way
of preserving protein functions. To exemplify, one
considers the stationary concentrations of Table 1
(footnote), with cP1,s = 1000 nmol L–1, cP2,s = 100
nmol L–1, cP3,s = 1000 nmol L–1.

The regulatory effectors are the proteins P1-P3
themselves, while the buffering reactions are of
type G(P)1, that is G1+P1 ! G1P1, G2+P2 !
G2P2, G3+P3 ! G3P3, with stationary states cG1,s =
cG1P1,s = 1/2 nmol L–1, cG2,s = cG2P2,s = 1/2 nmol L–1,
and cG3,s = cG3P3,s = 1/2 nmol L–1. Rate constants
have been estimated from the stationary concentra-
tions and by imposing optimal characteristics to the
buffering reactions [i.e. kdiss >> Ds in eq. (8)]. The
system stability and dynamic regulatory character-
istics have been determined by studying the
QSS-recover after a ± 10 % cP1,s impulse perturba-
tion (Fig. 6, down), while the stationary regulatory
characteristics from solving the set eq. (9). The re-
sults, presented in Table 1, reveal the following as-
pects.

i) The system is stable [max(Re(�j)) = –D < 0],
and recovers after a dynamic perturbation (Fig. 6,
down). It results that the cooperative module link-
ing, by preserving the specific functions of each
protein inside the cell, remains the only viable solu-
tion ensuring homeostasis.

ii) The dynamic regulatory index AVG(�j), �P1,
and species connectivity STD-index become weaker
comparatively to the module G1(P1)1+G2(P2)1
case. One can supposes that, the decline in the dy-
namic regulatory indices is the ‘price’ to be paid by
the increase in the cell complexity, leading to an in-
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F i g . 6 – Cooperative coupling of three regulatory modules [G1(P1)1] + [G2(P2)1 + [G3(P3)1] for P1, P2, P3 protein synthesis
(up). Cell components recover after a – 10 % impulse perturbation in [P1]s = 1000 nmol L–1 at t = 0 (down).



crease difficulty in realising a non-scattered recover-
ing for a larger number of species. However, it is ex-
pected that, by using an allosteric gene activity con-
trol of type G(P)n or G(PP)n, coupled with a cas-
cade control involving M(P)n units, these dynamic
indices to be drastically improved (see eq. 3), thus �j

becoming much smaller than tc.

iii) Dynamic perturbations affect rather species
present in small amounts inside the cell, while re-
covering times for other species are negligible (Ta-
ble 1, Fig. 6).

iv) The stationary regulatory indices (sensitivi-
ties of states vs. nutrients) remain unchanged, as for
the two-modules or one G(P)1 module. Then, the
increase in the network complexity by adding mod-
ules of the same type seems not to affect the sta-
tionary effectiveness of modules but only the
dynamic one.

v) As another positive effect of a larger net-
work, the system robustness and stability increases
with the cell content, due to the ‘ballast’ and ‘iner-
tial’ effects, propagated through the cell-volume to
which all-inner species contributes.

The same rule to develop the regulatory network
can be continued, step-by-step accounting for new
proteins and their specific functions (for instance, in-
cluding individual metabolases for distinct metabolite
synthesis). By extending this rule, other metabolic
syntheses can be modelled in a similar way.

Conclusions

The kinetic modular approach, designed to re-
produce the regulation mechanism of each protein
synthesis, can be used to build-up metabolic regula-
tion networks and to model cooperative interplays
of proteins. In the proposed variable-volume mod-
elling framework, modules are individually ana-
lysed and linked one-by-one, in a cooperative man-
ner that ensures specific functions of each protein
inside the cell. As more proteins are accounted, the
system becomes more complex and more robust to
environmental changes. The alternative, that is an
uncooperative way of linking, in which modules are
only connected by means of the common cell vol-
ume, is proved as not being a viable alternative: the
stationary growth becomes impossible, the homeo-
stasis condition not fulfilled, and the whole system
evolves towards disappearance of some proteins
(presenting the lowest synthesis rate).

In spite of an apparent ‘competition’ for nutri-
ent consumption, protein synthesis is a closely co-
operative process, in which syntheses are mutually
assisted due to the specific protein functions inside
the cell.3,88 Protein complex interactions are part of

the cell metabolism and distributed over regulatory
network nodes.

When linking regulatory modules, species con-
nectivity, system stability, and regulatory perfor-
mance indices vs. stationary and dynamic perturba-
tions are evaluated and analysed. Thus, after each
added module, the network regulatory characteris-
tics are used in adjusting the model parameters to
fulfil the global properties of the whole system. For
the same module type, it appears that an increase in
the network complexity seems to affect rather the
dynamic regulatory indices than the stationary ones.
Dynamic indices can be adjusted by considering an
allosteric control of the enzyme activity, by means
of a suitable effector, and in a structured cascade
control. The improvement factor is ca. 1.3-2 (or
even higher) for each buffering regulatory reaction
added in the allosteric schema. Multiple copies of
effector molecules, allosterically binding the cata-
lyst in negative feedbacks, improve the regulation
effectiveness, species inter-connectivity, and net-
work flexibility; species recover less disparately af-
ter a perturbation and in a shorter time. Perfor-
mance indices also depend on the type of the regu-
latory module used for protein synthesis, improving
in the order G(P)n < G(PP)n < G(P)n; M(P)n’.
Thus, the highly interconnected and cooperative
linking way becomes favourable for the whole
construction, ensuring a fast and economic way to
cope with perturbations over the cell growth.

Dynamic perturbations affect rather species
(intermediates) present in small amounts inside the
cell than those existing in large amounts. However,
the levels of intermediate species are responsible
for optimising the whole network construction effi-
ciency. Global optimization criteria are used to esti-
mate such network parameters of the model. The
cell system complexity and size are responsible for
the ‘ballast’ and ‘inertial’ effect in smoothing
dynamic perturbations from environment.

The variable-volume modelling framework ap-
pears to be more realistic, allowing an accurate evalu-
ation of the network regulatory indices, but also the
study of complex species inter-connectivities (direct
and indirect), effector’s relative importance, and of
dynamic primary and secondary perturbations (propa-
gated by the volume dynamics).

Even if the module-linking rule has been ex-
emplified by accounting only for a generic system
(similar to E. coli), particularisations to various
metabolic syntheses can easily be realised.1,2,5

Functional modules, including several regula-
tory-effectors and a functional-base linking strat-
egy, can lead to simulate complex metabolic paths,
opening the way of developing multi-compart-
mented simulation platforms of the cell.
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N o m e n c l a t u r e

A – monodromy matrix (defined in eq. 2)

Aunsync – stationary regulatory index

ai – constants defined in eq. (3)

bi – constants in eq. (1)

cj – species j concentration

D – cell-content dilution rate (i.e. cell-volume loga-
rithmic growing rate)

di – constants in eq. (1)

h – model function vector

I – identity matrix

Jc = �h/�c – system Jacobian matrix

K – equilibrium constant

kj – rate constant of reaction j

Li – component i at which regulatory element acts

nj – amount of species j (number of moles)

NA – the Avogadro number

n, ni – number of species Oi (effectors)

ns – number of species inside the cell

Oi – regulatory element i (effector)

R – universal gas constant

RD – dynamic regulatory (recovering) index

Rss – relative stationary regulatory index

rj – species j reaction rate

S perturb
state – steady-state sensitivity coefficient vs. perturba-

tions

T – period, or absolute temperature

t – time

tc – cell cycle period

V – cell system volume

xj – independent variable j

yi – dependent variable i

G r e e k s

�i – i-th eigenvalue

� – osmotic pressure

�j – species j recovering time

I n d e x

cyt – cytoplasma

diss – dissociation

env – environment

n – nominal value

0 – initial

perturb – perturbed

s – (quasi-)steady-state

syn – synthesis

S u p e r s c r i p t s

~ – unobservable variable
^ – estimated value

A b b r e v i a t i o n s

arg – argument
AVG – average
G – gene
M – mRNA
Max – maximum
Met – metabolite
Min – minimum
Nut – nutrient
P – protein
P.I. – regulatory performance index
QSS – quasi-steady-state
Re – real part
STD – standard deviation
[.] – concentration
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