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For the purpose of this paper genetic algorithm (GA) was used for a model-based
optimization of the enzymatic synthesis of N-acetyl neuraminic acid and experimental
optimization of the initial conditions of an aqueous two-phase extraction system.

Model-based optimization of enzymatic synthesis of N-acetyl neuraminic acid was
carried out by using an earlier developed and verified mathematical model for this sys-
tem in a batch reactor.”” The influence of pyruvate (c,,,) and N-acetyl glucosamine
(CGena) Initial concentrations, epimerase (E,;) and aldolase (E,,) concentrations and re-
action time (¢) were investigated to optimize volumetric productivity (Q,) and ratio (R)
of the final concentrations of N-acetyl neuraminic acid and pyruvate. In this example pa-
rameters were optimized within 40 generations of 8 experiments. Maximal volumetric
productivity of O, = 47.8 g/(dm’ d) in the batch reactor and ratio of R = 2.57 were esti-
mated under the following initial operating conditions: ¢, = 1 mmol/dm?, ¢ \,. = 460
mmol/dm’, E_; = 39.9 mg/em’, £, = 0.2 mg/cm’ and ¢ = 156.8 min. Conversion of
N-acetylglucosamine to N-acetylneuraminic acid at these conditions was 0.15 %, and
conversion of pyruvate to N-acetylneuraminic acid was 71.99 %.

Experimental optimization using GA was applied to investigate the influence of the
mass fraction of PEG-6000 (w,;), the mass fraction of ammonium sulfate (w,), pH and
BS Albumine (BSA) concentration ¢, on partition coefficient of BSA K, in aqueous
two-phase system consisting of PEG-6000 and ammonium sulfate. The partition coeffi-
cient was optimized within five sets of four experiments. It was found out that the mass
fraction of PEG-6000 of 0.1770, the mass fraction of ammonium sulfate of 0.1105, pH of
7.0 and BSA concentration of 2.5 g/dm? are the best working conditions to achieve the
optimal partition coefficient of K ., = 0.4793.
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Introduction

One of the basic problems in the bioprocesses
development is the optimization of initial experi-
mental conditions. Considering that, there is a great
deal of parameters that can influence the outcome
of bioprocess, it is of general concern to find a good
optimization method. High number of parameters
considerably narrows the choice of optimization
methods, and it also indicates the system’s com-
plexity. The usual methods generally used for this
purpose (e.g. simplex,! EVOP,> response surface
methodology?) are not good enough when there are
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too many parameters involved, i.e. they are some-
times not successful in finding the optimum. In these
cases it is very useful to use the genetic algorithm
(GA) which is not necessary to solve problems of
comparatively smaller magnitude, but promising for
complicated multidimensional problems.*

Optimization itself represents considerable
cost, due to a great number of experiments neces-
sary to find optimal conditions. If long-term optimi-
zation benefits are considered, it can be stated that
its cost is of no importance in comparison to its
benefits in large-scale processes.’

Generally speaking, there are two kinds of op-
timization methods: statistical and stochastic. Sta-
tistical methods include various methods of experi-
mental design. They include four steps: (1) identifi-
cation of the most important media components,



106 Z. FINDRIK et al., Model-based and Experimental Optimization Using Genetic ..., Chem. Biochem. Eng. Q. 18 (2) 105-116 (2004)

called screening, (2) identification of the optimum
variable range or ‘narrowing’, (3) identification of
the optimum or optimum search and (4) experimen-
tal verification of identified optimum. The success
of these methods depends of a random choice of a
variable range, which doesn’t have to be always
correct. This leads to another limitation of these
methods: the target function has to be unimodal,
otherwise a local optimum can be identified instead
of the global one.®

One of the examples of these methods is
one-dimensional search with successive variation of
variables, the classical procedure for optimizing fer-
mentation media. It has been employed as yet and
even seems to be the most frequently used®. This is
very surprising since many examples show that it is
practically impossible for one-dimensional search
to achieve the optimum in a finite number of exper-
iments.”! General principle of one-dimensional
search is shown in Figure la.

All stochastic methods of generations are based
on the following procedure: (1) generating a first
experimental plan, (2) determining the values of the
target function, (3) generating new experimental
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a) X,

7

- =
X

Fig. 1 - a) Statistical optimization methods: Simplified
principle of one-dimensional search, b) Stochastic optimization
methods: Simplified principle of genetic algorithm. O the first
generation of experiments @ the last generation of experiments

points with the quality of the previous generation
by correlating the number of new experimental
points relative to the target function and by fitting
the step width around a previous experimental point
to a global optimization success.®

Genetic algorithm (GA) is a stochastic optimi-
zation method based on the principals of evolution.
It is quite commonly used for experimental optimi-
zation, but is also used for parameter estimation of
the nonlinear systems.!! It can also be used for opti-
mization of initial conditions when mathematical
model of the process is available.

GA’s were first devised by Holland in 1975.
They are non-model-based optimization methods
that can search a large parameter space in a highly
directed way.!? Since the early nineties of the last
century, greater use of GA has been noticed in vari-
ous scientific fields.**2* Using genetic algorithm, it
has been experimentally verified, with help of pro-
cess examples, that process improvements can be
achieved for both microbial and enzymatic conver-
sions and for cell cultures, despite the large number
of medium components under simultaneous consid-
eration. In exploring a variable space, process im-
provements of more than 100 % were generally
achieved, while in those cases where standard opti-
mization procedures were involved, improvement
reached only 2040 % of the target quantity.® In
comparison to other methods, GA considerably de-
creases the number of experiments. There is a good
example corroborating this statement. During con-
tinuous production of format dehydrogenase, a me-
dium for growth of Candida boidinii was optimized
in order to improve the volumetric productivity and
the activity of the enzyme!4. The concentrations of
14 medium components were optimized within 125
experiments in shake flasks. It would take 101'# ex-
periments for the full experimental plan. The results
hereof were improved by 50 %. It can be stated that
GA differs from traditional and usual methods of
optimization. It offers a number of possible solu-
tions to the problem and it is up to a user to decide
which choice will be final. The simplified principal
of GA is shown in Figure 1b.

This paper presents in what manner genetic al-
gorithm can be used for model-based (Example 1:
Enzymatic synthesis of N-acetyl neuraminic acid)
and experimental (Example 2: Aqueous two-phase
extraction of BSA) optimization.

Genetic algorithm (GA)

Principals of genetic algorithm

GA uses the rules of evolution on a population
of potential solutions to produce better individuals.
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The mechanism used for this purpose is called se-
lection. Choosing individuals from each generation
considering their qualities, a new set of approxima-
tions is being created.

Individuals are encoded as binary strings, i.e.
chromosomes, so that the genotypes (chromosome
values) are uniquely mapped onto the decision vari-
able, phenotypic domain. For example, a problem
with two variables x; and x, may be mapped onto
the chromosome structure as it is shown in Figu-
re 2a. x, is coded with 10 bits, and x, with 15 bits,
possibly reflecting the level of accuracy or range of
the individual decision variables. During the re-
production phase, each individual is assigned a fit-
ness value derived from its raw performance mea-
sure given by the objective function. This value
is used in the selection to bias towards more fit
individuals. Highly fit individuals, relative to the
whole population, have a high probability of being
selected for mating whereas less fit individuals
have correspondingly low probability of being se-
lected.?

a)
1011010011 | 010001011000101
§ xj B < X2
b)
01101 01000
11000 ) 11101
©) Mutation point —__
Original string 01101
Mutated string 01001

Fig. 2 — Principals of genetic algorithm. a) The presenta-
tion of an individual as a binary string. x, is coded with 10 bits,
and x, with 15 bits; b) Example of crossover. It involves two bi-
nary strings, and the place where the crossover takes place is
ati = 2; ¢) Example of mutation. Occasional change of one bit
from 1 to 0 takes place.

Genetic operators manipulate directly with the
chromosome genes with the assumption that certain
gene codes represent better individuals. The basic
operator for the production of new chromosomes is
crossover. It creates new individuals that have ge-
netic material from both parents. As the crossover
takes place, the place of its occurrence is randomly

being chosen. It can be at any position i of the inte-
ger, at the interval [1, /1] where [ is the length of
the integer. Two new offspring arise hereout.>> The
simplest crossover is shown in Figure 2b. It in-
volves two binary strings, and the place where the
crossover takes place is at i = 2. It is important to
emphasize that crossover does not occur always and
not in all individuals, but with a certain probability
p, that is assigned by the algorithm.

Besides crossover, there is another operator
that has important role in GA. It is called mutation.
The mutation in nature is a random process at
which change in genetic code takes place. In ge-
netic algorithms mutation is used as an operator
with low occurrence probability. This probability is
adjusted in the algorithm, and it is usually between
0.001 and 0.01. Mutation may not occur too often
because of the possible loss of good genetic mate-
rial, which can lead away from optimum values.
Mutation enables the appearance of each possible
string, i.e. each possible individual or gene combi-
nation with a certain possibility.?> Mutation can also
restore a good genetic material that can be lost by
selection or crossover. Figure 2¢ shows the example
of mutation where the occasional change of one bit
from 1 to O takes place.

Use of software GALOP

The software GALOP (Genetic Algorithm for
the Optimization of Processes) Version 1.24 devel-
oped at the Institute of Biotechnology, Research
Centre Jilich, Germany, was used for both mo-
del-based and experimental optimization.?®

Use of software GALOP includes a program
that consists of:

— the list of parameters (including lower and
upper boundary of each parameter optimized and
the step size by which these variables change);

— the list of target functions that need to be op-
timized,;

— the list of target functions that need to be op-
timized with weighting factors and belonging func-
tions.

After the initiation of the algorithm, the first
generation is created. The algorithm can randomly
create it, or the author can create it by himself. Hav-
ing performed model simulations or experiments,
values of target functions should be written in GA
as return information, which GA then uses for fur-
ther adjustments of individuals. If objective of opti-
mization is reached, GA will end, otherwise new
generation will be proposed. The following diagram
shows a typical program run (Figure 3).
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Fig. 3 — Flowchart of the GALOP software

Model based optimization for the
enzymatic synthesis of N-acetyl
neuraminic acid

N-acetyl neuraminic acid (Neu5Ac) is a repre-
sentative of amino sugars and plays an important

aldolase

role in biological processes. It is a component of
drugs used for treating the diseases of ear, nose and
throat. It is also used for the production of N-acetyl
neuraminic acid derivates known as selective inhib-
itors of enzyme sialidase and as blockers for its
binding sites.?’

In this paper GA was used for the purpose of
optimization of enzyme synthesis of N-acetyl
neuraminic acid. It is a two-stage synthesis, which
involves the reaction of epimerisation of N-acetyl
glucosamine (GIcNAc), which is catalysed by
2-acylamido-2-deoxy D-glucose 2 epimerase (epi-
merase, EC 5.1.3.8.). This reaction produces N-acetyl
mannosamin (ManNAc) necessary for the main re-
action. This compound reacts with pyruvic acid (Pyr)
in the reaction catalyzed by the enzyme N-acetil-
neuraminic acid aldolase (aldolase, EC 4.1.3.3.) and
produces N-acetyl neuraminic acid (Figure 4).
Namely, N-acetyl glucosamine is relatively cheap,
and N-acetyl mannosamine is quite expensive, and
that is why it is more profitable to carry out this re-
action stage wise, especially when it's known that
epimerase is an inexpensive enzyme. The experi-
ments were carried out in the enzyme membrane re-
actor. The model was written and verified by these
experiments.?’

The mathematical model

The mathematical model?’ for this system is
given by the equations 1-6. The kinetic model is
presented by the equations 1 and 2, and the equa-
tions from 3—6 are balance equations for the batch
reactor.

NHAc
CH,OH
(6]
HO + <
HO H,C COOH
OH

N-acetyl mannosamine pyruvic acid

epimerase
CH,OH
O
HO
HO OH
NHAc

N-acetyl glucosamine

HO H
H O OH
AcNH

HO

N-acetyl neuraminic acid

Fig. 4 — Thereaction scheme for the enzymatic synthesis of N-acetyl neuraminic acid
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v, = m m ) anq concentrations of two enzymes: a}dolase and
1+ CGleNAc CManNAc epimerase, as well as the reaction time in thg batch
KglcNAc Knl\;IanNArfk enzyme membrane reactor. The target function for
that purpose was maximum value of volumetric
degienac productivity, Op (Equation 7) and maximum value
T ==V, (3) of the ratio, R, of the concentration of N-acetyl neu-
raminic acid and pyruvic acid at the end of experi-
deptanNAc ment (Equation 8). This ratio is very important from
dt V2T ) the aspect of downstream processing. Namely, the
isolation of N-acetyl neuraminic acid is being car-
depy, ried out by ion-exchange chromatography, and
dt =" ®) these two compounds have similar pK, values, so it
q is not easy to separate them.?’
c
% =V (6) 0, = cNeuSAc];/INeuSAc %
Model parameters were optimized and pre-
sented in the literature?’ (Table 1). R= ENeusAc (8)
CPyr

Table 1 — Values of parameters of the mathematical model
for the enzymatic synthesis of N-acetyl neura-
minic acid

KN mmol/dm?] 14.01

KN rmol/dm?] 35.19

K [mmol/dm?] 0.136

Ky [mmol/dm’] 9.44

KMaNAe o mol/dm?] 402.2

K" [mmol/dm’] 1.301

KM rmmol/dm?] 23.76

K, [mmol/dm?] 1556

KWaNAC Tukat/g] 0.829

KoeNAC ykat/g] 0.078

Vinax [ukat/g] 13.8

Ve [ukat/g] 8.51

*adapted from ref 27

Model-based optimization

The aim of this work was optimization of ini-
tial conditions of the N-acetyl neuraminic acid syn-

Start values of investigated parameters, namely,
initial concentrations of pyruvic acid and N-acetyl
glucosamine, concentrations of aldolase and epime-
rase, and reaction time, investigated area of parame-
ters (defined by lower and upper border) and opti-
mization step are shown in Table 2. Equal impor-
tance was given to both target functions by the
choice of the same weighting factors, which was 1
in both cases. Each function was written as linear
combination of given parameters. The evaluation
functions are generally optimized on the principle
that higher number is better than a lower number.
Negative coefficients indicate the search for the
minimum, and positive the search for the maxi-

Table 2 — Start values of investigated parameters, investi-
gated area of parameters (defined by lower and upper border)
and step of the optimization for model-based optimization

Parameter Unit Step Lower Upper

border border
Goyr mmol/dm? 1 1 2000
CGleNAe mmol/dm? 1 1 1000
Eepi mg/cm3 0.1 0.1 40
E.q mg/cm? 0.05 0.05 5
t s 10 10 43200
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mum. If there is no coefficient in front of certain
parameter that indicates that there is no special re-
quirement concerning it. Coefficient “+1”” was writ-
ten for both target functions (Qp and R) in the linear
combination, and “—1” for the parameter of aldolase
concentration. Both target functions had the same
linear combination of parameters, i.e. the same co-
efficients.

Mutation occurrence in the program was set to
0.01, which indicates the probability of 1 % for mu-
tation to appear. The crossover occurrence was set
to 0.95 and the number of individuals in a genera-
tion was 8.

The principle of optimization was as follows:
GA offers the first random population of 8§ individ-
uals with given characteristics (initial concentra-
tions of substrates and enzymes and the time of the
reaction). These values were assigned to the pro-
gram written in SCIENTIST software?® (which con-
sists of kinetic and mass balance equations of the
mathematical model) and the reactions at these con-
ditions were then simulated. Values for volumetric

productivity, and product ratio estimated by SCI-
ENTIST were written in GA as return information,
which GA used for further adjustments of individu-
als.

The model-based optimization is not usual in
cases where model is involved. It is usually used for
the cases where it is very difficult to set a model, or
there is no way to write it. It can also be used for
parameter optimization of mathematical models.
One example of parameter optimization in the liter-
ature shows the changes of their values through
1500 of generations''. This example shows that fin-
ding the optimal values of parameters does not nec-
essarily mean uniformity of all parameters through
out the generations. If good improvement of the re-
sults is achieved, then it doesn’t really matter how
many generations were made. Besides these facts
that are already mentioned, GA can truly achieve
the results improvement by 100 % in comparison to
other optimization methods.®

Graphic analysis of results is given in Figures 5
and 6. Optimization was carried out through 40

Individual

|8

5 6 7 8

Individual

Fig. 5 — a) Values of optimization parameters for the first generation; b) Values of optimization parameters for the tenth genera-
tion, ¢) Values of optimization parameters for the twentieth generation; d) Values of optimization parameters for the thirtieth genera-
tion, e) Values of optimization parameters for the fortieth generation. normalized concentration of pyruvate, g3 normalized con-
centration of N-acetyl glucosamine, T normalized concentration of epimerase, mm normalized concentration of aldolase, 111 nor-

malized reaction time
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Fig. 6 — a) Changes in the volumetric productivity (®)
through generations; b) Changes in the value of the ratio (B) of
N-acetyl neuraminic acid and pyruvic acid through genera-
tions. I standard deviation of data

generations. The results in Figure 5 are presented as
normalized values (calculated by Equation 9, y in
the equation is the concentration or reaction time)
of all eight individuals of a certain generation: the
first, the tenth, the twentieth, the thirtieth and the
fortieth. The results in Figure 6 are presented as
middle values of target function of a certain genera-
tion (middle value of 8 individuals) with standard
deviations. It can be seen that uniformity of all pa-
rameters did not occur. (The concentration of
pyruvate was equal for 5 individuals of the last gen-
eration. The concentration of N-acetyl glucosamine
was equal in all individuals of the last generation.
The concentration of epimerase was practically the
same for all individuals of the fortieth generation,
only with small deviations seen. The concentration
of aldolase was the same for six individuals of the
last generation.)

Despite that, great improvements in target
functions value through the generations are obvious
(Figure 6 a and b). It can be concluded that selected
target functions are highly sensitive to small
changes of parameters. That especially goes for the

sensitivity of the ratio target function, and it is obvi-
ous from the standard deviations in Figure 6b. With
reference to the target function of volumetric pro-
ductivity, it can be stated that value of this function
was pretty stable through more than last ten genera-
tion. That is not the case with the ratio target func-
tion. It is obvious that it should take more calcula-
tions to reach the optimum for this target function.
The target function R is highly sensitive to small
changes in concentration of aldolase, as is expected,
because both concentrations Neu5SAc and Pyr are
highly dependant on concentrations of enzymes.

y=- ©)

y max

Up to this point, the role of reaction time hasn’t
been mentioned in the discussion. It seems that GA
was inert in changing the reaction time, because
from the second generation to the end there were
only small changes in its value. This is not so obvi-
ous from Figure 5 a, b, ¢ and d because these values
are normalized, but a great percentage of all indi-
viduals had time parameter around 150 minutes.
The question is why GA did not alter the reaction
time considerably through generations?

The answer is quite simple actually. If one look
is taken upon linear combinations of target func-
tions and its requirements, it can be seen that be-
sides maximization of target functions, other condi-
tion in finding the optimum was also minimal con-
centration of aldolase. Considering that require-
ment, GA almost always offered lower concentra-
tion of aldolase, but still within the range where
slight changes of its value can highly influence the
reaction rate, i.e. in the range where the enzyme
concentration is a limiting factor, and not the reac-
tion time itself, for the production of NeuSAc. This
can be proven by the results obtained from the mea-
suring of the dependence of specific activity on the
concentration of aldolase.?” One could conclude
that time has no particular influence on the target
function. But that is not the case. Figures 7a and b
show to what extant volumetric productivity and the
ratio depend of the reaction time. Optimal values of
substrate concentrations and enzyme concentrations
from GA were taken as initial values in simulation.
It is obvious that volumetric productivity highly de-
pends on the reaction time, and as for as the ratio is
concerned, it also depends on the reaction time, but
only at the beginning of the reaction.

In the given example of GA optimization 40
generations were calculated and no further attempt
was made. The simulation results include 5 % error.
Optimum value of volumetric productivity Qp, =
47.8 g/(dm? d) and the ratio of N-acetyl neuraminic
acid and pyruvate R = 2.57 were estimated under
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Fig. 7 — a) Dependence of volumetric productivity on the
reaction time at optimal initial concentrations of substrates and
enzymes; b) Dependence of ratio of the final concentration of
N-acetyl neuraminic acid and pyruvic acid on the reaction time
at optimal initial concentrations of substrates and enzymes

these conditions: cp,, = 1 mmol/dm?, cgena, = 460
mmol/dm?, E,; = 39.9 mg/em® and E,y = 0.2 mg/cm’.
As regards the reaction time GA gave value of
156.8 min. At these optimal conditions conversion
of N-acetylglucosamine to N-acetylneuraminic acid
was 0.15 %, and conversion of pyruvate to
N-acetylneuraminic acid was 71.99 %. It can be
concluded from the Figure 7 that another compro-
mise can be made between these two target func-
tions. For example, at reaction time 57.6 min the ra-
tio is 2.21 and volumetric productivity is 99.97
g/(dm? d). The choice of optimum here depends on
our priority. Considering the earlier mentioned (re-
garding more calculations being needed for achie-
vement of the stability of both target functions) the
obvious about the genetic algorithm could be: GA
lands either at global optimum or at a value nearer
enough to be considered as global optimum.?* The
more important fact in this problem of finding the
optimum is the advantage of GA in finding the
global and not local optimum, which is provided by
unique mechanisms of evolution.

Weakness of the obtained results lies in the
lack of experimental evaluation for which unfortu-
nately there was no opportunity. Considering these
results, performing model-based optimization with
GA may seem discouraging due to a high number
of generations and a long time spent in front of
computer. Usually, this is not the case. Namely, in
this particular case the situation was more compli-
cated because of two target functions involved and
the requirement for low aldolase concentration. If
one target function is involved, the optimum could
be usually reached up to tenth generation.

Experimental optimization of an
aqueous two-phase extraction of BSA

Aqueous two-phase systems have a great po-
tential for the extraction of bioproducts.'*»?*3 The
aqueous environment provides mild conditions for
bio-molecules so that denaturation which often oc-
curs in organic solvents hardly takes place.*’ To
form the two aqueous phases, usually polyethylene
glycol (PEG) and ammonium sulfate (AS) (or
PEG-dextran) are required.

General properties of aqueous two-phase sys-
tem have been studied by several researchers.!#?
However, the mechanism governing the partition of
biological materials isn’t completely understood.
The observed partition coefficient is a result of van
der Waals, hydrophobic, hydrogen bond, and ionic
interactions of bio-molecules with the surrounding
phase. Therefore, the partition coefficient is influ-
enced by many factors, including the concentrations
and molecular weights of PEG, type and concentra-
tion of added salts, temperature and pH.*

The aqueous two-phase system, consisting of
PEG-6000 and ammonium sulfate, was used to in-
vestigate the behavior of batch system for extrac-
tion of BS Albumin model solution. This system
was used to illustrate how GA can be applied for
experimental optimization. GA was proved to be a
reliable method for the optimization of process con-
ditions for protein extraction in the PEG-salt
system!. Since GA is not based on any assumption
it can easily cope with irregularities of the aqueous
two-phase system. It is neither harmed by very
small values nor is limited at the maximum. In
comparison to other optimization methods (e.g.
steepest ascent, simplex), GA does not need to be
further adopted or limited just to begin the opti-
mization process. The batch experiments were used
to examine the effects of pH, concentration of
PEG-6000, concentration of ammonium sulfate and
the enzyme concentration on partitioning in aque-
ous two-phase system. The partition coefficient (K,
ratio of equilibrium concentrations of enzyme in the
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extract phase, ¢* , and in the rafinate phase, ¢®")
defined by Eq. 10 was optimized using the genetic
algorithm.

K= (10)
CR*

Materials and methods

PEG-6000 with an average molecular weight
of 6000 g/mol, ammonium sulfate, and BSA were
obtained from "Merck". Concentration of stock so-
lutions of PEG-6000 and ammonium sulfate were
40 % (mass fraction). The concentration of NaCl of
0.9 % (mass fraction) was used to prepare stock so-
lution of BSA with an accurately known concentra-
tion 1.5 g/dm?. Different stock solutions of K,HPO,
and KH,PO, were used to prepare the aqueous
two-phase system at different pHs.

Aqueous two phase partitioning experiments
were performed at 20 °C by mixing the determined
volume of the phase forming polymer solution with
solutions of salt and BSA in the graduate cylinder.
The buffer solution was then added to obtain the fi-
nal volume of 5 cm3. The system was mixed and
then left overnight. After 24 hours samples were
carefully withdrawn from the top (extract) phase
and from the bottom (rafinate) phase. In addition to
the BSA concentration determination, the absor-
bance of each sample was measured using the spec-
trophotometer (Lamda EZ 210, Perkin Elmer) at
280 nm.

Experimental optimization

Phase diagram and thermodynamic parameters of
aqueous two-phase system consisting of PEG-6000
and ammonium sulfate were determined previously
and published elsewhere?-?. It was assumed that
the presence of different concentrations of BSA and
pH used in the experimental optimization do not
have any influence on thermodynamic equilibrium
of system.

To reduce the number of parameters mass frac-
tion of PEG-6000 and ammonium sulfate were re-
placed with the tie-line length (TLL)**. If two-points
of binodal curve, the top and the bottom phase com-
position, for a particular mixture composition are
known distance between them is the tie-line length
and may be calculated using equation 11,

TLL= \/(WAS_ Was) + (WPEG—()OOO - WPEG—6000) (11)

where w™" and w®" are the equilibrium mass frac-
tions (%) of ammonium sulfate (AS) and PEG-6000
in the extract (E) phase and in the rafinate (R) phase
of aqueous two-phase system. The total mixture

composition was always prepared at the critical
point (or plait point) of binodal curve at which vol-
umes of the extract and the rafinate phase theoreti-
cally become equal.

List of parameters used in the optimization of
partitioning using GA, namely, tie-line length, pH
and BSA concentration, investigated area of param-
eters and optimization steps are shown in Table 3.
Weighting factor of target function K was set to 1
and it was written as linear combination of investi-
gated parameters. Mutation occurrence in a pro-
gram was set to 0.01, the crossover occurrence was
set to 0.95 and the number of individuals in a gener-
ation was 4.

Table 3 - Start values of investigated parameters, investi-
gated area of parameters (defined by lower and upper border)
and step of the optimization for experimental optimization

Lower Upper

Parameter Unit Step border border
Chsa g/dm’ 0.5 1.0 2.5
oH i 0.5 55 75
TLL cm 1 ! >

Furthermore, when the tie-line comes close to a
plane point (where composition of the extract phase
and the rafinate phase are equal) e. g. for small val-
ues of TLL, the density difference between the
phases decreases and hence, time for phase separa-
tion increases. That was the reason of setting the
distribution function for 7LL in that way so as to
prefer more frequent acceptance of bigger TLL
value, e. g. to ensure faster phase separation.

Experimental optimization of process parame-
ters was carried out through 5 generations. The
principle of experimental optimization was as fol-
lows: GA offers the first random population of 4 in-
dividuals with given characteristics (tie-line length,
pH and concentration of BSA). Experiments were
performed under process conditions given by GA.
After the equilibrium has been reached, equilibrium
concentrations of BSA in the rafinate and in the ex-
tract phase were measured and partition coefficient
calculated. These experimentally obtained values of
partition coefficients were written in GA as return
information, which GA used for further adjustments
of next generation.

Normalized values of investigated parameters
in the first and in the fifth generation are shown in
the Figure 8. Normalized values of pH in the first
and in the third individual of the first generation are
equal to 0 which matches an absolute value of pH
of 5.5. The same is for normalized value of the



114 Z. FINDRIK et al., Model-based and Experimental Optimization Using Genetic ..., Chem. Biochem. Eng. Q. 18 (2) 105-116 (2004)

a) 1.0
0.8
0.6
0.4

0.2 1

TLL I-], pH [+, egg, [
[TTTTTTTITTTTTTTTITTITTTTT

[TTTTTITTTITTITTTT1]

0.0

1 2 3 4
Individual

0.8

0.6

0.4 4

0.2 1

[TTTTTTTTTITTTTTTITTITITITTT
[TTTTTTTTTITTTTTTTTITTITTT
[TTTTTTTTITITTTTTITTTTTITTT

TLL [-], pH [-], cggy [

[TTTTTTTTITITITTTT]

0.0

1 2 3 s
Individual

Fig. 8 — a) Values of the optimized parameters for the first
generation; b) Values of the optimized parameters for the fifth
generation. 1 normalized tie-line lenght, Bl normalized pH,
E= normalized concentration of BSA
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Fig. 9 — Changes in the partition coefficient (®) through
generations. 1 standard deviation of data

BSA concentration in the second individual of the
first generation (equal to 0 which matches an abso-
lute value of cgqy = 1.0 g/dm?). Average value of K
of a certain generation (average value of 4 individu-
als) with standard deviations is shown in Figure 9.

It can be noticed that uniformity of all parame-
ters did not occur. Experiments 1, 2 and 4 in the
fifth generation are the best performing of these
four and show striking homology in process condi-
tions. Namely, in the fifth generation BSA concen-
tration differed in one individual. As it can be seen
from Figure 9, this change practically did not affect
the partition coefficient (small standard deviation).
It means that change in BSA concentration has very
small effect on K. From the first to the fourth gener-
ation a constant and a huge improvement of K is
found. Only minor improvements were found going
further on to generations four and five.

Data of Figure 8 show that pH and tie-line
length have a strong positive influence on the maxi-
mum partition coefficient reached. Since a large im-
provement in the partitioning was not achieved be-
tween fourth and fifth generation and process con-
ditions given by GA in fifth generation were quite
homolog, the optimization was stopped after fifth
generation.

Under optimal process conditions, namely,
tie-line length of 36 cm (representing the mass frac-
tion of PEG-6000 of 0.1770 and the mass fraction
of ammonium sulfate of 0.1105), pH of 7.0 and
BSA concentration of 2.5 g/dm?3, the maximal parti-
tion coefficient of K = 0.4793 was achieved. Fur-
thermore, it should be stated that process optimum
was achieved in five generations with four experi-
ments, namely in twenty experiments, comparing it
to 1530 experiments needed for full experimental
plan.

Conclusions

GA is a simple program that makes optimiza-
tion of highly complex systems possible, i.e. sys-
tems with high parameter number. Furthermore, GA
allows relatively fast, extensive and effective opti-
mization of process conditions. In this paper mo-
del-based and experimental optimization were shown
for two different systems, model based optimization
of enzyme synthesis of N-acetyl neuraminic acid,
and experimental optimization of an aqueous
two-phase extraction of BS Albumine respectively.

For model based optimization of enzyme syn-
thesis of N-acetyl neuraminic acid the optimum is
given by the value of volumetric productivity, O, =
47.8 g/dm*d and R = 2.57 for cp,, = 1 mmol/dm’,
Colenac = 460 mmol/dm?, E_ . = 39.9 mg/cm?, E,, =
0.2 mg/cm? and ¢ = 156.8 min. At these optimal
conditions conversion of N-acetylglucosamine to
N-acetylneuraminic acid was 0.15 %, and conver-
sion of pyruvate to N-acetylneuraminic acid was
71.99 %.
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For experimental optimization of aqueous two-
-phase system containing PEG-6000 and ammo-
nium sulfate, the maximal partition coefficient of K
= 0.4793 was achieved at the tie-line length of 36
cm (representing the mass fraction of PEG-6000 of
0.1770 and the mass fraction of ammonium sulfate
of 0.1105), pH of 7.0 and BSA concentration of 2.5
g/dm3. Comparing the full experimental plan, which
would take 1530 experiments, process optimum us-
ing GA was achieved only in twenty experiments.
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List of symbols

c — concentration of substrate, mmol/dm?
E,q - concentration of aldolase, mg/cm?

. . 3
E,,; - concentration of epimerase, mg/cm

K - partition coefficient, —
K ManNAc_ Tnhibition constant for N-acetyl mannosamine
(reaction catalyzed by aldolase), mmol/dm?

K [Pyr — Inhibition constant for pyruvate (reaction cat-
alyzed by aldolase), mmol/dm?

— Michaelis-Menten constant for N-acetyl glu-
cosamine (reaction catalyzed by aldolase),
mmol/dm?3

K ManNAc_ Michaelis-Menten constant for N-acetyl man-

nosamine (reaction catalyzed by aldolase),
mmol/dm?3

GlcNAc
Km

K }:fa“NAC*— Michaelis-Menten constant for N-acetyl man-
nosamine (reaction catalyzed by epimerase),
mmol/dm?

K ,I:e”SAC — Michaelis-Menten constant for N-acetyl neu-

raminic acid (reaction catalyzed by aldolase),
mmol/dm?

K ,l;yr — Michaelis-Menten constant for pyruvate (reaction
catalyzed by aldolase), mmol/dm?3

— Inhibition constant that describes the influence of
initial concentrations of substrates (reaction cata-
lyzed by aldolase), mmol/dm?3

/ — length of integer, —

M - molar weight, g/mol

QOp - volumetric productivity, g/(dm? d)
p - probability, —

K

v

R - ratio of the final concentration of N-acetyl neu-
raminic acid and pyruvate, —

t — time, s or min

TLL - tie-line length, cm

v, - reaction rate of the N-acetyl neuraminic acid syn-
thesis, mol/(dm> min)

v, - reaction rate of the reaction of epimerisation,

mol/(dm* min)
y ManNAe _ maximal specific activity of epimerase for the
synthesis of N-acetyl mannosamine, ukat/g
— maximal specific activity of epimerase for the
synthesis of N-acetyl glucosamine, ukat/g
Vniax — maximal specific activity of aldolase for the
N-acetyl neuraminic acid synthesis, ukat/g

GlecNAc
Vmax

Vflax — maximal specific activity of aldolase for the
N-acetyl neuraminic acid degradation, ukat/g

w  — mass fraction, %

w*  — equilibrium mass fraction, %

X, X,— parameters, —

Abbreviations

ald - aldolase

AS - ammonium sulfate

BSA - bovine serum albumine

E - extract phase

epi - epimerase

GA - genetic algorithm
GlcNAc — N-acetyl glucosamine
ManNAc- N-acetyl mannosamine
Neu5Ac -~ N-acetyl neuraminic acid
PEG - polyethylene glycol

Pyr - pyruvic acid

R - rafinate phase
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