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In this study, the potential of two software sensors for on-line estimation of biomass 
concentration during cultivation of filamentous microorganisms is examined. The first 
sensor is based on common bioreactor off-gas analyses, and uses the assumption of the 
biomass concentration linear dependence on the square root of cumulative O2 consump-
tion. Parameters of the semi-empirical data-driven software sensor based on off-gas anal-
ysis were calculated from experimental cultivation data using linear regression. The sec-
ond sensor is based on biocalorimetry, i.e., the on-line calculation of metabolic heat flux 
from general enthalpy balance of the bioreactor. The software sensor based on biocalo-
rimetry thus essentially represents a model-driven approach, making use of a fundamen-
tal process model based on the enthalpy balance around the bioreactor. This approach has 
been combined with the experimental identification of the specific biomass heat produc-
tion, which represents the main process-specific parameter of the software sensor based 
on biocalorimetry. For this sensor, the accuracy requirements on the process variable 
on-line measurements were also analysed. The experimental data from the pilot-scale 
antibiotics Nystatin production by a bacterium Streptomyces noursei were used to calcu-
late the specific bioprocess heat production value using linear regression. The achieved 
results enabled us to propose a new on-line indicator calculated as the ratio of the outputs 
of both sensors, which can serve as a timely warning of the risk of undesired nutritional 
conditions of a culture characterized as underfeeding.

Keywords:
software sensors, filamentous fermentation, biomass, calorimetry, process monitoring

Introduction

The software sensor (“soft sensor” or “software 
sensor”) already represents an established concept 
in the field of production process monitoring. The 
term “software” indicates the fact that the output 
signal is largely the result of more or less complex 
calculations realized in a program module. The term 
“sensor” then means that the entire software sensor 
provides on-line information about the monitored 
process, similarly to traditional hardware sensors1. 
The basic principle of software sensors is the use of 
one or more relatively easy on-line measurable pro-
cess variables to estimate other variables or process 
indicators that are difficult to measure in on-line 

mode, or can be measured with too long sampling 
periods. In principle, it is possible to distinguish be-
tween two basic types of software sensors2,3.

– “grey-box” sensor, also referred to as “mod-
el-driven” – based on a mathematical model of a 
process based on physical, chemical or biological 
relationships with experimental identification of un-
known parameters from historical process data;

– “black-box” sensor, also referred to as “da-
ta-driven” – is used in cases where a mathematical 
model of the relation between inputs and outputs of 
the software sensor is not known. Therefore, the 
mathematical description of this relation is derived 
from historical process data using appropriate com-
putational tools (regression analysis, neural net-
works, etc.).

Software sensors based on mathematical mod-
els that are used in chemical and biotechnological 
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processes typically result from mass or enthalpy 
balances supplemented, for example, with kinetic 
equations. In addition to the choice of a suitable 
calculation method, the key factor for the function-
ality of the sensor is also the choice of suitable in-
put, on-line measured quantities. In the case of bio-
technological processes, software sensors that use 
on-line measurement of the composition of the bio-
reactor off-gases are quite common4. These on-line 
measurements are successfully used for the on-line 
calculation of so-called derived quantities, such as 
the oxygen uptake rate (OUR), the carbon dioxide 
production rate (CPR), the respiratory quotient 
(RQ), or the volumetric mass-transfer coefficient in 
the bioreactor (kLa). More sophisticated software 
sensors are able to estimate the key indicators of 
bioprocesses, such as the biomass concentration and 
the biomass growth rate based on the abovemen-
tioned online measurements (often combined with 
other on-line measurable process variables, such as 
pH, temperature, or dissolved oxygen concentra-
tion) of the concentration and production rates of 
main products5–9.

The interest in the application of software sen-
sors in the monitoring of production bioprocesses 
increases proportionally to the increasing demands 
on the quality of the production process itself and 
the resulting products. In particular, this is the case 
in the field of pharmaceutical products, as a result 
of the trends called “Quality by Design” and “Pro-
cess Analytical Technology – PAT”. Compared to 
costly and relatively complex analytical technolo-
gies, the application of software sensors is often a 
more convenient solution for monitoring especially 
those bioprocesses that are operated in the form of 
fed-batch cultivations, for which complex process 
dynamics, considerable variability due to the vari-
able input composition, and frequent change of the 
production bioprocesses due to the production of 
various products, are typical. In these cases, soft-
ware sensors are successfully used not only to mon-
itor the production process itself, but also to evalu-
ate the quality of input raw materials or the quality 
of production microbial cultures at the very begin-
ning of the production process used as a seed cul-
ture10–12.

In this paper, two alternative approaches to the 
development of software sensors for on-line estima-
tion of biomass concentration of filamentous micro-
organisms will be proposed. The first approach is 
based on the on-line measurement of the composi-
tion of the bioreactor off-gases, specifically on the 
close relationship between the cumulative values of 
oxygen consumption or carbon dioxide production, 
and the biomass concentration in the bioreactor. The 
second approach is based on biocalorimetry, i.e., the 
on-line calculation of metabolic heat flux from the 

general enthalpy balance of the bioreactor. The pro-
cess used in this study is the industrial production 
of antibiotics Nystatin, which is a polyene antifun-
gal medication that is produced as a secondary 
product from the bacterium Streptomyces noursei.

Materials and methods

Process description

The production of the antibiotics Nystatin is 
carried out in large bioreactors with the volume of 
50,000 L. For the purposes of pilot-scale testing, the 
production process can also be carried out in small-
er bioreactors with the volume of 300 L. The pro-
duction process can be divided into two distinct 
phases. In the initial phase, the main objective is the 
maximisation of the cellular growth. In the subse-
quent second phase, the microbial culture produces 
the secondary product Nystatin. The bioreactors are 
equipped with a set of sensors providing online 
measurements of most of the important process 
variables influencing the product development (e.g., 
pH, dissolved oxygen concentration, temperature, 
pressure, etc.). Still, it is necessary to take samples 
regularly for laboratory analyses for variables that 
are not measured on-line (e.g., biomass, nutrient, 
and product (Nystatin) concentrations, viscosity of 
medium, etc.). Specifically in the initial phase, pre-
cise and timely information related to cell growth is 
important for efficient process monitoring, and 
hence the application of software sensors for on-
line estimation of biomass concentration presents a 
cost-efficient solution that can improve the quality 
of the Nystatin production process substantially. 
Due to preserving manufacturing secrets, the pro-
duction process cannot be described in more detail, 
and therefore in all charts published in this paper, 
unit-scale representations are used for all data sets.

Software sensors based on off-gas analysis

Software sensors for biomass concentration es-
timation based on off-gas analysis data have been 
reported in a number of applications13–15. The rates 
of oxygen consumption and carbon dioxide produc-
tion are known to be closely related to the biomass 
growth in microbial cultivation processes. Specifi-
cally, in aerobic microbial cultivation processes, 
this relationship can be described by the Lue-
deking-Piret-type of equation13 (Eq. 1 for OUR and 
Eq. 2 for CPR, respectively).
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where YO/X  (kg oxygen consumed per 1 kg biomass 
produced) is the yield coefficient relating oxygen 
consumption to biomass production, cX (kg m–3) is the 
microbial cell concentration in the bioreactor, t (min) 
is the cultivation time, mO (kg oxygen consumed per 
1 kg biomass per 1 min) is the oxygen consumption 
coefficient related to maintenance, YC/X (kg carbon 
dioxide produced per 1 kg biomass produced) is the 
yield coefficient relating carbon dioxide production 
to biomass production, and mC (kg carbon dioxide 
produced per 1 kg biomass per 1 min) is the carbon 
dioxide coefficient related to maintenance.

If the yield coefficients can be assumed to be 
constant, and the contribution of the maintenance 
part of equations 1 and 2 is low enough to be ne-
glected, then the relationship between the cumula-
tive (integral) values of O2 consumption (COC) and 
CO2 production (CCP), and the biomass concentra-
tion can even have the form of linear dependence13,16. 
However, in the specific case of filamentous micro-
organisms with complex morphology, a linear cor-
relation was observed between biomass concentra-
tion and the square root of the cumulative CO2 
production16. This linear relationship between the 
biomass concentration and the square root of the 
cumulative CO2 production must be considered as 
semi-empirical, as it has no immediate theoretical 
explanation in terms of the underlying microbial 
growth kinetics16.

Therefore, in this study, it was decided to ex-
plore four different types of biomass concentration 
software sensors based on off-gas analysis data.
Type 1: biomass concentration is assumed to be lin-
early dependent on cumulative O2 consumption;
Type 2: biomass concentration is assumed to be lin-
early dependent on cumulative CO2 production;
Type 3: biomass concentration is assumed to be lin-
early dependent on the square root of cumulative O2 
consumption;
Type 4: biomass concentration is assumed to be lin-
early dependent on the square root of cumulative 
CO2 production.

Software sensors based on calorimetry

The literature survey says that the bioprocess 
heat production can be determined by the enthalpy 
balance of a bioreactor17–19. Establishing the quanti-
tative connection between the bioprocess heat pro-
duction and the biomass concentration, we can ob-
tain the tool for online monitoring of the biomass 
growth.

For this purpose, the process variables depicted 
in the fermentation scheme (Fig. 1) need to be mea-
sured. The measured process variables can then be 
used in the following heat balance (Eq. 3).

The process variables usually measured in 
practice are used in the balance, for example, the 
volumetric flow multiplied by density instead of the 
mass flow. In the equation, the first and second term 
of the right-hand side correspond with the sensible 
heats of cooling water and aeration gas, and con-
tribute to the total enthalpy flow through the appa-
ratus by –90 % and –3 %, respectively (the minus 
sign represents heat losses, the plus sign represents 
heat gains). The term described as the sum of “k.ad-
ditive“ represents the enthalpy brought into the fer-
mentation broth by the addition of nutrients, buf-
fers, etc. Further terms after the sum of “k.additive“ 
represent the following quantities (and contribute to 
the total enthalpy flow in the following amounts): 
heat loss/gain through the vessel wall (±1 %), heat 
losses due to water evaporation into the aeration gas 
(–4 %), and CO2 desorption (–3 %), respectively. 
Then the heat production terms follow, namely the 
amount of heat generated by the microbial culture 
biomass QBIO (+85 %), followed by heat production 
due to stirring enthalpy dissipation Pimp (+15 %), 
and gas bubbles expansion (+0.5 %), respectively. 
The percentage values stated above in brackets for 
individual equation terms are estimates published in 
literature17,18. The value of QBIO can be calculated 
on-line from the heat balance (Eq. 3) when all other 
process variables are measured on-line. The per-
centage values show that the major part of the heat 
flow originates from the bioprocess itself (around 
85 %), while the secondary heat sources (e.g., im-
peller power input or gas bubbles expansion) ac-
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count for only a minor part. The fraction of the heat 
produced by the bioprocess is higher in large-scale 
fermenters, where the higher volume-to-surface ra-
tio occurs, so the calorimetric determination of bio-
mass content will generally be more accurate in 
larger apparatuses.

Analytical methods and process data 
measurement

Off-gas composition measurements

The oxygen and carbon dioxide concentrations 
in the off-gas from the bioreactor were measured by 
Servomex Servopro process analysers. The result-
ing off-gas composition measurement data were 
then used for on-line calculation of O2 uptake 
(OUR) and CO2 production (CPR) rates, as well as 
their corresponding cumulative values – cumulative 
O2 consumption (COC) and cumulative CO2 pro-
duction (CCP), using Eqs. (4–7):

where V
.
in, Air (m

3 s–1) is the volumetric air flow rate 
at the inlet to the bioreactor, VL (m

3) is the broth 
volume in the bioreactor, ρAir (kg m–3) is the air den-
sity, MAir (kg mol–1) is the molecular weight of air, 
ΔO2 (% vol.) is the difference between oxygen 
 concentrations in the inlet air and the off-gas, ΔCO2 
(% vol.) is the difference between carbon dioxide 
concentrations in the inlet air and the off-gas, O2 (% 
vol.) is the oxygen concentration in the off-gas, CO2 
(% vol.) is the carbon dioxide concentration in the 
off-gas, N2 (% vol.) is the nitrogen concentration   
in the air (assumed to be constant at 79.07 %), MO2

 
(kg mol–1) is the molecular weight of oxygen, MCO2

 
(kg mol–1) is the molecular weight of carbon diox-
ide, kconv is the coefficient for the conversion of con-
centration values from volume percent into dimen-
sionless volume fraction (kconv = 1/100 = 0.01),  
t (min) is the current cultivation time, and τ (min) is 
the variable of integration (takes on values from 
time 0 to the current t).

Calorimetry measurements

To be able to use the QBIO parameter, described 
in Materials and methods (subsection Software sen-
sors based on calorimetry), for the determination of 
biomass concentration, the specific bioprocess heat 
production, in W per kg of dry biomass, was deter-
mined using a laboratory calorimeter. The calorime-
ter was filled by 120 mL of fermentation broth. 
During the pilot plant fed-batch fermentation pro-
cess, the samples of fermentation broth were taken 
periodically to measure the unit biomass heat pro-
duction in the laboratory calorimeter. The broth 
samples were kept in the calorimeter, where the 
gas-liquid oxygen transfer sufficient for biomass 
respiration was ensured by the sufficient value of 
the volumetric gas liquid interfacial area (sufficient 
surface area of the broth level). An increase in tem-
perature was recorded for 30 minutes, as shown in 
Fig. 2, and the specific bioprocess heat production 

F i g .  1  – Bioreactor scheme with the process variables (in 
Italics and Bold) which are needed to be measured 
in calorimetry
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was calculated from the slope of the tempera-
ture-time profile as follows:

 
d
d

CAL
sbio p

dB CAL

Q Tq c
C V τ

= = ⋅
⋅

 (8)

The calorimetry measurements were carried 
out in the Dewar vessel; therefore, the heat loss 
through the vessel could be neglected. The impeller 
used in the calorimeter to support sufficient gas-liq-
uid interfacial transfer was of the diameter equal to 
3 cm only, so its power input was much lower than 
the value of 15 % considered typically for large fer-
menters, as mentioned in the explanatory text to Eq. 
3. From the impeller power number and stirring 
speeds used in the calorimeter, we calculated its 
value to be 0.06 W kg–1 for 300 rpm, which rep-
resents approximately 3 % of the qsbio value, which 
is compensated by the amount of heat consumed 
due to the CO2 desorption (–3 % as mentioned in 
the explanatory text to Eq. 3). Therefore, by ne-
glecting these two terms, the qsbio data are not dis-
torted significantly.

Overview of the cultivations and laboratory assays

Three pilot-scale Nystatin production cultiva-
tions were carried out in the 300-L bioreactor as 
part of the study of software sensors for biomass 
concentration estimation. In all three cultivations 
(C1–3), the off-gas composition was measured on-
line by process analysers. In one cultivation (C1), 
calorimetry measurements were carried out follow-
ing the procedure described in Materials and meth-
ods (subsection Calorimetry measurements).

Biomass concentration in the bioreactor was 
determined off-line gravimetrically as cell dry mass. 
The concentration of nutrients (carbohydrate sub-
strates) in the bioreactor was measured as reducing 
substances using a standard laboratory assay used in 
the Nystatin production plant.

Results and discussion

Biomass concentration estimation using 
software sensor based on off-gas analysis

In order to compare the four proposed variants 
of software sensors based on off-gas composition 
analysis, a series of three pilot-scale cultivations 
was carried out, which in its course corresponded to 
the normal course of production cultivation (i.e., 
starting with the growth phase of biomass followed 
by the production stage, where the growth of bio-
mass is already relatively low). From the measured 
data (Fig. 3), it is obvious that the assumption of the 
linear relationship between the estimated off-line 
variable (biomass concentration) and the corre-
sponding considered on-line variable (COC, CCP, 
sqrt(COC), sqrt(CCP)), is only valid in the case of 
types 3 and 4 (sqrt(COC), sqrt(CCP)), with slightly 
better results for type 3 (R2 = 0.87 for sqrt(COC) vs 
R2 = 0.85 for sqrt(CCP)).

Thus, the resulting software sensor is based on 
type 3. The software sensor consists of four equa-
tions (Eqs. 4, 6, 9, and 10) that allow the on-line 
estimation of dry biomass concentration in the bio-
reactor on the basis of the instantaneous rate of ox-
ygen consumption and the initial dry biomass con-
centration in the reactor after inoculation (Fig. 4). 
Even though the software sensor is essentially da-
ta-driven, no specific data preconditioning methods 
are needed, because it uses a cumulative process 
variable (COC) as its input, and therefore, the mea-
surement noise is eliminated as a result of the inte-
gration (Eq. 6) involved in calculation of the cumu-
lative process variable (COC).

 ( ) ( )_ 1 1 COC 2BIO sc t k t k∆ = ⋅ +  (9)

 ( ) ( ) ( )_ 1 _ 1 _ 1 0BIO s BIO s BIO sc t c t c∆= +  (10)

The software sensor was calibrated on the basis 
of experimental data using linear regression (k1 = 
2.0237 ± 0.1025, k2 = –1.9958 ± 0.6033). Error es-
timation of the resulting software sensor was per-
formed by 3-fold cross-validation over the data 
from all three cultivations. Firstly, the dataset was 
randomly partitioned into 3 equal sized subsamples. 
Of the 3 subsamples, a single subsample was re-
tained as the validation data for testing, and the re-
maining 2 subsamples were used as training data. 
The cross-validation process was then repeated 3 
times, with each of the 3 subsamples used exactly 
once as the validation data. For each round, a root 
mean square error of cross-validation (RMSECV) 
was computed. The 3 results were then averaged to 
produce a single estimation. The obtained estima-
tion of the sensor error was below 10 % of the bio-
mass concentration range, which is comparable to 
the results reported in the literature for similar types 

F i g .  2  – Example of the temperature-time profile measured in 
the laboratory calorimeter, from the slope of which the biopro-
cess heat production rate can be determined
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of software sensors for filamentous fermentations16. 
Fig. 5 shows the biomass concentration estimates of 
the software sensor for all three cultivations. As an 
initial estimate of the dry biomass concentration in 
the bioreactor at the beginning of the cultivation af-
ter inoculation, the value of 1.33 ± 0.36 kg m–3 (av-
erage cBIO_S1(0) over all three cultivations) was used.

Biomass concentration estimation using 
software sensor based on calorimetry

Specific bioprocess heat production

Using Eq. 8, more than 20 experimental data 
series obtained during the cultivation C1 using the 
laboratory calorimeter were evaluated, and the QCAL 
values shown in Fig. 6 were obtained.

However, since the biomass culture conditions 
were not maintained at optimum level throughout 
the duration of the cultivation (see Results and dis-
cussion, subsection Combining off-gas analysis and 
calorimetry data for process state monitoring), the 
biomass did not produce as much bioprocess heat as 
it would under optimal conditions. For this reason, 
the upper envelope curve of the data, shown in Fig. 
7, was taken into account. Linear regression using 
least square minimization was then used to fit the 

F i g .  3  – Relationship between biomass concentration (dry cell mass) and COC,  
CCP (a) and sqrt(COC), sqrt(CCP) (b), respectively, data from cultiva-
tions 1 – 3

F i g .  4  – Input-output scheme of the software sensor based on 
off-gas analysis

(a)

(b)
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F i g .  5  – Estimation of biomass concentration by software sensor from on-line measured off-gas composition data in cultivations 
C1–3 (a, b, c) compared to the dry biomass mass values determined by gravimetric analysis

(a)

(b)

(c)
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selected points. Standard deviation, calculated from 
the value differences of the points in Fig. 7 from the 
regression line, was used to determine the range of 
uncertainty (±84.1 W kg–1).

Estimation of biomass concentration and the 
accuracy requirements on the measured process 
parameters

Evaluating QBIO according to Materials and 
methods (subsection Software sensors based on cal-
orimetry), we can estimate the biomass concentra-
tion as follows:

 ( ) ( )
_ 2

1 BIO
BIO s

L sbio

Q t
c t

V q
= ⋅  (11)

where the value qsbio is known from the measure-
ment in laboratory calorimeter (see Materials and 
methods, subsection Calorimetry measurements and 
Fig. 8). However, maintaining the optimal cultiva-
tion conditions in the bioreactor is a prerequisite for 
using this equation to estimate the biomass concen-
tration.

The accuracy of the biomass concentration es-
timate using software sensor based on biocalorime-
try additionally depends on the accuracy of the 
measurement of several process parameters. The 
following table (Table 1) shows the accuracy of in-
dividual process variables necessary to remain at a 
certain level of the contribution to the overall rela-
tive error of the software sensor. The necessary ac-
curacies were obtained by the parametric study, 
where individual variables were changed and the 
effect on the resulting QBIO value was calculated in 
terms of the percentage of QBIO change.

Combining off-gas analysis and calorimetry 
data for process state monitoring

From the comparison of the time courses of the 
carbohydrate substrates concentration in the biore-
actor and the calorimetric measurements, it is ap-
parent that the heat production was reduced in the 
part of the cultivation where the substrate concen-
tration was very low (shown in Fig. 9), at a level 
which is undesirable from the perspective of pro-
duction. In this context, an alternative use of the 
proposed calorimetry software sensor is offered – 
the output of this sensor combined with the output 
of the biomass software sensor based on off-gas 
analysis can be used to monitor the feeding status of 
the production filamentous culture. In particular, the 
ratio of both estimates given by Eq. 12 can serve as 
an indicator of underfeeding (see Fig. 10), and its 
decrease below a suitably chosen threshold, can 
serve as a timely warning of the risk of onset of this 
undesired condition. This indicator can serve as a 
suitable supplement to the standard operation pro-
cedure for the monitoring of the nutritional status of 
the filamentous culture, which consists of laborato-
ry off-line determination of carbohydrate substrates 
concentration in the bioreactor, measured as reduc-
ing substances.

 _ 2
/

_ 1

BIO s
cal oxy

BIO s

c
R

c
=  (12)

F i g .  6  – Results of calorimetric measurements in the labora-
tory calorimeter taken during the cultivation C1

F i g .  7  – Upper envelope of the data on the biomass heat pro-
duction resulting in the average value of the specific biomass 
heat production equal to 753.3 ± 84.1 W kg–1 of dry biomass

F i g .  8  – Input-output scheme of the software sensor based on 
biocalorimetry
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Conclusions

The aim of this study was to explore the poten-
tial of two different approaches to the task of on-
line estimation of biomass concentration in a fila-
mentous microorganism cultivation process by 
software sensors. Whereas the first approach is 
based on the on-line measurement of the composi-
tion of the bioreactor off-gases (oxygen consump-
tion and carbon dioxide production respectively), 
the second approach uses the on-line measurement 
of process variables related to the enthalpy balance 
of the bioreactor (calorimetry). In the case of the 
software sensor based on off-gas analysis, the ex-
perimental results have shown that there is a linear 
relationship between the biomass concentration and 
the square roots of cumulative consumption (oxy-
gen) and production (carbon dioxide), respectively. 
Since slightly better results were obtained in the 
case of the cumulative oxygen consumption, the 
first proposed software sensor was based on this on-
line measured process variable. In the case of the 
second explored type of software sensor – the calo-
rimetry-based software sensor, the experimental de-
termination of the specific bioprocess heat produc-
tion was shown, and analysis performed to determine 
the accuracy requirements of the measured process 
variables. However, in the case of non-optimal con-
ditions for biomass growth (underfeeding), the ob-
tained experimental results have shown that the 
amount of heat produced per unit of biomass can be 
lower, and the software sensor can thus underesti-
mate the biomass concentration. Even though this 
fact considerably limits the potential of the calorim-
etry-based software sensor for biomass concentra-
tion estimation, its alternative use can be found in 
the monitoring of the feeding status of the produc-

Ta b l e  1  – Accuracies of individual process variables contributing to the overall relative error of the software biocalorimetry-based 
sensor as obtained by the parametric study

Accuracy of each measured process variable necessary to contribute to the overall relative error of SW  
sensing no more than by the percentage given below

quantity value unit 1 % 2 % 4 % 6 % 8 % 10 %

Tin,w 17 °C 0.039 0.078 0.16 0.23 0.31 0.39

Tout,w 24 °C 0.039 0.078 0.16 0.23 0.31 0.39

V
.
W 6.613757 kg s–1 0.094 0.19 0.38 0.57 0.76 0.94

23.80952 m3 h–1 0.34 0.68 1.36 2.04 2.73 3.41

Pimp 60 kW 4 8 16 24 32 40

pw0 3.78 kPa 0.47 0.95 1.89 2.84 3.78 4.73

TL accuracy resulting from pw0 2.19 4.39 8.78 13.17 17.56 21.95

F i g .  9  – Concentration of carbohydrate substrates in the fer-
mentation broth measured as reducing substances 
(a) and calorimetric measurements (b) in cultivation 
C1

(a)

(b)
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tion filamentous culture when the outputs of both 
sensors are combined. Specifically, the resulting ra-
tio can serve as an indicator of underfeeding, thus 
providing a useful supplement to current practice 
based on off-line laboratory analysis of the nutrient 
concentration in the bioreactor.
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N o m e n c l a t u r e

Asurf – surface area of the fermenter available for 
free convection heat exchange, m2

CCP – cumulative carbon dioxide production, kg m–3

cBIO_s1 – estimated biomass concentration (dry bio-
mass) using the software sensor based on 
off-gas analysis, kg m–3

cBIO_s2 – estimated biomass concentration (dry bio-
mass) using the software sensor based on 
calorimetry, kg m–3

cdB – biomass concentration (dry biomass), kg m–3

cX – microbial cell concentration in the bioreac-
tor, kg m–3

c, cp – heat capacity, J kg–1 K–1

CO2 – carbon dioxide concentration in the off-gas, 
% vol.

COC – cumulative oxygen consumption, kg m–3

CPR – carbon dioxide production rate, kg m–3 s–1

ΔO2 – difference between oxygen concentrations in 
the inlet air and the off-gas, % vol.

ΔCO2 – difference between carbon dioxide concen-
trations in the inlet air and the off-gas, % vol.

Fk – nutrient flow flag in k-th addition defined in 
Eq. 3

∆h – fermentation broth depth, m
ΔHevap – heat of evaporation, J mol–1

k1, k2 – calibration parameters of the software sensor 
based on off-gas analysis

kconv – coefficient for the conversion of concentra-
tion values from volume percent into dimen-
sionless volume fraction (kconv = 0.01)

M  – molecular weight, kg mol–1

m.  – mass flow, kg s–1

mC – carbon dioxide coefficient related to mainte-
nance, kg (CO2) kg–1 (biomass) min–1

mdB – weight of dry biomass, kg
mL – weight of fermentation broth, kg
mO – oxygen coefficient related to maintenance, 

kg (O2) kg–1 (biomass) min–1

N2 – nitrogen concentration in the air (assumed 
constant at 79.07 %), % vol.

OUR – oxygen uptake rate, kg m–3 s–1

O2 – oxygen concentration in the off-gas, % vol.
Pimp – impeller power, W
p  – pressure, Pa
pCO2

, pW – partial pressure of CO2 and water in gas, 
 respectively, Pa

pw
0 – water vapour pressure, Pa

QCAL – heat production in laboratory calorimeter, W
qbio – specific bioprocess heat production, W kg–1 

of fermentation broth
qsbio – specific biomass heat production, W kg–1 of 

dry biomass
QBIO – bioprocess heat production in the bioreactor, 

W

F i g .  1 0  – Ratio of biomass concentration estimates based on calorimetry and 
 off-gas composition analysis in cultivation C1
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Rcal/oxy – ratio of outputs from software sensors based 
on calorimetry and off-gas analysis

t  – current cultivation time, min
T  – temperature, oC or K
V  – volume, m3

V
.
 – volumetric flow, m3 s–1

VCAL – fermentation broth sample volume in the lab-
oratory calorimeter, L

YO/X – yield coefficient relating oxygen consump-
tion to biomass production, kg (O2) kg–1 (bio-
mass)

YC/X – yield coefficient relating carbon dioxide pro-
duction to biomass production, kg (CO2) kg–1 
(biomass)

α – heat transfer coefficient from the fermenter 
surface to ambient air, W m–2 K–1

ρ – density, kg m–3

τ – variable of integration (takes on values from 
time 0 to the present t), min

S u b s c r i p t s

Air – physical quantities for gas phase in fermenta-
tion

ambient – physical quantities for the environment sur-
rounding the bioreactor

in – input stream
out – output stream
surf – fermentation vessel surface
w – physical quantities for cooling water
L – physical quantities for fermentation broth
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