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This paper proposes a multi-objective evolutionary algorithm for optimizing model 
base predictive control (MBPC) tuning parameters applied to the boiling process. The 
multi-objective evolutionary algorithms are able to incorporate many objective functions 
that can simultaneously meet robust stability and performance that can satisfy control 
design objective functions. These promising techniques are successfully implemented to 
stabilise MBPC at the implications of different levels of model uncertainties.

The Pareto optimum technique is able to overcome the problem of trapping the 
standard genetic algorithms (SGAs) in the local optimum when using the LQ as the ob-
jective functions at the price of high model uncertainty. Introducing robust stability and 
performance objective functions has successfully improved the search procedure for 
MBPC tuning variables at high model uncertainty.
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Introduction

MBPC is a control strategy based on the ex-
plicit use of a process model to predict the process 
outputs over a long period. When no process model 
mismatches are present, there are sufficient condi-
tions to guarantee stability and feasibility of the 
controller. If the process model is uncertain, it is 
compulsory to consider the bounded uncertainties 
in the controller synthesis in order to guarantee ro-
bust stability, which is very difficult or impossible 
to be analytically calculated1,2. Therefore, it was 
necessary to find an alternative solution to stabilise 
MBPC without conducting a difficult mathematical 
analysis. Genetic algorithms are promising in find-
ing optimum tuning parameters for MBPC to meet 
robust control design. This type of advance control 
system is widely used in industry. Qin and Badgwell3 
reported that the majority of MBPC applications 
(67 %) are in the area of refining, the original appli-
cation field of MBPC. A significant proportion of 
the remainder can be found in the petrochemicals 
and chemicals industries. The main difference 
among MBPC strategies is in the kind of model 
used for the process modelling and the formulation 
of the cost-function that needs to be minimised.

One of the most popular MBPCs is Dynamic 
Matrix Control (DMC), during the last three decays 

large number of DMC control design, analysis, and 
tuning methods have been proposed, which started 
with a systematic tuning procedure that presented 
by Cooper et al. when the model is identical to the 
process only4a,4b.

An optimal tuning approach based on particle 
swarm optimisation, in which the Morari resiliency 
index and the condition number were applied as the 
performance measure, is proposed by Chu et al.5 
Also, the tuning parameters were computed by 
searching for an optimal bandwidth that gave a 
trade-off between robustness and nominal perfor-
mance6.

More recently, the tuning problem has been 
formulated as a two-degree-of-freedom (2-DOF) 
optimisation problem by Júnior, Martins and Kalid7. 
This framework is also employed to achieve better 
closed-loop responses, as measured by overshoots, 
settling times, and output oscillations with us-
er-specified parametric uncertainties8.

Jorge et al.9 reviewed various techniques and 
available tuning guidelines for model predictive 
control. Nagrath et al.10 used default prediction 
horizon value of 10 for DMC controlling a state-
space representation of a continuous-stirred tank re-
actor (CSTR) with excellent results.

The control horizon parameter affects how ag-
gressive or conservative the control action is. Ya-
muna Rani and Unbehauen11 suggested a default *email: haitham.osman@gmail.com
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value of 1 for the control horizon. Georgiou et al.12 
proposed setting the model horizon larger than the 
time required for the slowest open-loop process out-
put response to reach 95 % of the steady state. 
Shridhar and Cooper13, and Wojsznis et al.14 pro-
posed setting the model horizon equal to the final 
prediction horizon.

Rowe and Maciejowski15 used an LQG/LTR 
approach to tune an infinite horizon state-space 
MPC controller. Using that technique, the authors 
derived an expression for the output weights for 
minimum phase systems as the product of the trans-
pose of the output matrix C multiplied by the output 
matrix. Rowe and Maciejowski15 provided another 
equation based on H∞ shaping of the process mod-
el. This applies for nonstrictly proper cases. For 
strictly proper cases, the expression is the same as 
in the LQG approach. Both studies assume that the 
weight of change of inputs is 1.

Penalizing the rate of change yields a more ro-
bust controller but at the cost of the controller being 
more sluggish. Setting a small penalty or none 
whatsoever gives a more aggressive controller that 
is less robust. Hinde and Cooper16 used an approach 
to set the rate of change of inputs (suppression) 
weights based on the desired controller performance 
defined as a short rise time with 10–15 % overshoot.

The advantage of using an auto-tuning method 
is that the control engineer is not required to have a 
great amount of systems knowledge to initialize the 
tuning procedure. However, this comes at the price 
of computation time, since the engineer is now re-
quired to calculate two optimization procedures per 
time step rather than the one in an offline tuning 
strategy. However, modern computer systems have 
reduced computational time tremendously.

Future work in MBPC will focus on stability 
analysis, the development of data-driven techniques 
to perform the plant decomposition and feasibility 
of the computational feature17.

The objective of this paper was to find opti-
mum tuning parameters for DMC for the boiling 
process to meet robust control design at the impli-
cation of different levels of model uncertainty.

Overview of standard genetic algorithm 
for tuning MBPC parameters

The basic concept of MBPC is that the future 
control action is evaluated by minimising a quadrat-
ic objective function:
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in which the error between the predicted output and 
the reference signal is reduced and balanced against 

a term related to the rate of change of the control 
action. At every sampling interval the control signal 
in the case of model reference predictive control is 
calculated by minimising the objective function by 
searching for the control changes between time 0 
and Nu–1. The variable y(t+i) represents i steps 
ahead prediction of the output signal, r(t+i) the set 
point at the time t+i, and u(t+i–1) is the control sig-
nal. The values N1 and N2 are the minimum and the 
maximum of the prediction horizons, respectively 
(hence, Np = N2 – N1), and Nu denotes the control 
horizon, D is the difference operator (1– z–1), param-
eters λ1, λ2 represent the control weightings. Equa-
tion 1 is the GPC quadratic cost function. This cost 
function is solved by using the Diophantine identi-
ty18 to obtain the prediction equation, and the con-
trol law as follows:

	 1( ) ( )T Tu G G I G r fλ −∆ = + − 	  (2)

where u is the control single output, G is a square 
matrix, contains the step-response coefficients and 
is of dimension (N2 – N1+1) by Nu, r is the set-
point, f is the response, l is the weighting matrix.

Standard Genetic Algorithms (SGAs) are sto-
chastic search algorithms inspired by the principles 
of natural selection and genetics. The fundamental 
mode of operation is that a population of candidate 
solutions or individuals compete with each other for 
survival. Using a measure of fitness, stronger indi-
viduals are given a greater chance of contributing to 
the production of new individuals than weaker ones. 
The flowchart of a simple genetic algorithm is pre-
sented by Goldberg19. Genetic algorithms offer the 
potential to tune automatically the MBPC parame-
ters. One of the important reasons for using SGAs 
to optimize MBPC tuning parameters is that the op-
timization problem often becomes non-convex in 
the presence of MBPC constraints and/or a nonlin-
ear process, which makes the conventional optimi-
zation algorithm converge to a local optimum, re-
sulting in poor tuning of MBPC and a degradation 
of performance. The problem of optimizing the 
MBPC tuning parameters is nonlinear and it is dif-
ficult to solve by analytical solution for the case of 
optimal control design methods (e.g. using LQC, 
H2 and H control design). Indeed, rarely is there an 
analytical solution to the exact problem the designer 
wishes to solve. The analytical solution becomes 
impossible, especially in the case of increasing pro-
cess plant complexity and in the presence of con-
straints and disturbances.

The tuning of unconstrained SISO DMC is 
challenging because of the number of adjustable pa-
rameters that affect closed-loop performance. These 
include the following: a finite prediction horizon, 
Np; a control horizon, Nu; a control weighting, and 
a sample time t, in Control, Automation and Sys-
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tems (ICCAS), 2014 14th International Conference. 
The first problem that needs to be addressed is the 
selection of an appropriate set of tuning parameters 
from among those available for DMC. Practical 
limitations often restrict the availability of sample 
time, t as a tuning parameter. The model horizon is 
also not an appropriate tuning parameter, since trun-
cation of the model horizon misrepresents the effect 
of past moves in the predicted output, and leads to 
unpredictable closed-loop performance20.

Therefore, the tuning parameter variables used 
in this paper are the two control weighting λ1,λ2 and 
the control horizon Nu.

The following is the general specification of 
SGAs applied to optimize MBPC prediction hori-
zon and the control weightings tuning parameters.

Population size: all runs are initialized with 
similar random population of 100 members to en-
sure stability of the algorithm and fare comparison.

Using the random number generator is one of 
the important components of evolutionary algo-
rithms to ensure population diversity. The random 
number generator uses a seed (i.e. similar seeds 
produce a similar set of numbers) to select the first 
number and then updates it for the second, and so 
forth. It is necessary to initialize the GA with simi-
lar population at each run to guarantee fair compar-
ison between the optimization problems. Fitzpatrick 
et al.21 showed that, in general, increasing the popu-
lation size while decreasing the samples per trial 
appears to improve the performance of genetic al-
gorithms. However, this effect is moderated by the 
requirement that the algorithm performs a sufficient 
number of iterations to adequately explore the 
search space. This latter requirement places a limit 
on the population size when the genetic algorithm 
overhead is relatively high in comparison to the 
sampling cost.

Goldberg19 mentions that “At small population 
sizes the GA makes many errors of decision, and 
the quality of convergence is largely left to chance 
or to the serial fix-up of flawed results through mu-
tation or other serial injection of diversity. At large 
population sizes, GAs can reliably discriminate be-
tween good and bad building blocks, and parallel 
processing and recombination of building blocks 
leads to the quick solution of even difficult decep-
tive problems.’’

Chromosome encoding: The control decision 
variables are encoded using the binary system; the 
prediction horizon, and the control weighting are 
encoded as 16 bit and combined which leads to a 
32-bit chromosome length.

Fitness assignment: After the objective func-
tion is calculated, the fitness function is scaled in 

the range, then the population is ranked related to 
its fitness value.

Genetic operators: The single point crossover 
with probability of Pc = 0.95 is chosen as it proved 
to work in most difficult optimization problems, the 
single point mutation with Pm = 0.01 is used, and 
the population size is 100 individuals. The objective 
function is to reduce the MSE (Mean of Square Er-
ror) which proved to be a successful performance 
index for tuning PID22.

The combustion boiler process model

The combustion system of a coal-fired power 
plant boiler is shown in Figure 1. The main objec-
tives of the combustion control system are to keep 
steam pressure stable and respond to the load chang-
es rapidly, in order to achieve optimum combustion 
efficiency and keep furnace negative pressure sta-
ble.

There are three control loops, including those 
for main steam pressure, excess air coefficient, and 
furnace negative pressure. The input variables are 
coal mass flow rate, supply air flow rate and draft 
gas flow rate, the output variables are the main 
steam pressure, excess air coefficient, and furnace 
negative pressure, respectively. Generally, the dy-
namic model of the boiler combustion system can 
be written as follows23:
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where: y1, y2 and y3 are the main steam pressure 
(MPa), oxygen content of flue gas, and furnace neg-
ative pressure (Pa), respectively. u1, u2 and u3 are coal 
mass flow rate (kg s−1), supply air flow rate (m3 s−1), 
and draft gas flow rate (m3 s−1), respectively. The 
main steam pressure change is mainly caused by the 
coal flow changes and the main steam flow chang-
es. In normal operation conditions, the variations of 
main steam flow are very small. Especially in steady 
conditions, the main steam flow can be considered 
stable. Thus, the transfer function can be written  
as a first order plus time delay (FOPTD) process  
model, which represents the relation between the 
main steam pressure y1 and the coal mass flow rate 
u1 as follows:

		   (4) 
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where: K = 0.44, T = –93.2 and τ = 39.1 are the 
gain, time delay, and time constant, respectively.
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Tuning of the MBPC parameters at the 
implications of model mismatched

In industry, the specification of the process 
characteristics makes it difficult to obtain an accu-
rate model of the detailed behaviour of the system. 
Generally, most chemical processes are nonlinear. 
Nonlinearity and complex dynamics make it impos-
sible to model the real plant identically.

Much research has dealt with the MBPC when 
the model is identical to the real plant, and have 
ignored the uncertainty of the model. Neglecting 
model uncertainty leads to designing a controller 
which is too tight and likely to become unstable in 
the real operating environment. Although many re-
searchers have addressed tuning of unconstrained 
and constrained MBPC for SISO and MIMO sys-
tems analytically, there are still no clear guidelines 
when the control model is not identical to the real 
plant. The stability and performance of MBPC in 
this case have proven to be a complicated issue and 
difficult to solve.

Standard Genetic Algorithms (SGAs)  
for tuning MBPC

The MBPC is used to control the boiling com-
bustion model, the SGA parameters are the same as 
shown previously, the control objective function is 
to minimize the Mean of Square Error (MSE). Fig-

ures 2 and 3 show the simulation results; when the 
model is identical to the process plant, the SGA is 
able to tune the MBPC variables. However, at some 
values of tuning parameters it shows a slow re-
sponse to achieve the set point at the end. When 
increasing the uncertainty of the model in the time 
delay to +0.07 %, it can be seen in Figure 3, that the 
SGA algorithm trapped in the local optimum result-
ed in poor tuning of the MBPC parameters and in-
stability of the system at the price of model uncer-
tainty, which is where the algorithm failed; the same 
initial random population was used to ensure same 
environment and all algorithms were terminated af-
ter the 10th generation. The computation time for the 
SGA lasted 1–2 seconds. Hence, SGA algorithm has 
proven the ability to tune MBPC when the model is 
identical to the plant but fails at model uncertainty.

The Bounded Input – Bounded Output (BIBO) 
stability is used for the MBPC, the state space 
description of the closed loop is obtained using 
MATLAB to determine the pole location. The 
closed loop (BIBO) stable if all the poles are inside 
the unit circle. However, the system could have a 
situation where is BIBO stable but not asymptoti-
cally stable.

The Pareto ranking approach

The previous case determined that SGA with 
MSE (Mean Square of the Error) single objective 
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function is unable to tune MBPC when the control 
model is not identical to the real process.

Although, many methods are available for the 
stability analysis of linear, time invariant control 
systems including LQC, H∞, H2, yield optimum sta-
ble control. However, for nonlinear systems and 
time varying systems, stability analysis may be ex-
tremely difficult or impossible, and the analysis of 
the stability of MBPC in the case of model/plant 
mismatch is very difficult or impossible, especially 
in the presence of constraints.

To overcome the drawbacks of SGAs combined 
with only MSE objective function, it is desirable to 
add a new function and combine a two objective 
functions in a single objective function, and then 
balance this function with weights.

The LQC design has proven a successful tool 
for stability of nonlinear control systems in analyti-
cal design. However, the use of SGAs with the LQC 
as objective function is a conventional approach to 
finding the minimum of the linear combination of 
variances of steady state and set point with the con-
trol output as follows objective function:

		  (5) 
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The variance of the steady state actuator is the 
difference between the plant output and the set 
point, and it can be replaced by the MSE perfor-
mance index to do the same work. The weighting of 
this objective function can provide the balance be-
tween the two functions and ensure that they have 
the same chance of being affected in the calculation 

of the SGA. Choosing the weighting variables can 
be the most difficult task. Initially, the weighting 
variable should provide the normalised to balance 
between the two objective functions. To find the 
value of the weighting variable r (sometimes called 
lambda) may need another optimisation routine in 
cascade, which could increase the computational 
time tremendously.

Non-dominant Sorting Genetic 
Algorithm (NSGA)

An alternative approach is to use the Pareto 
ranking technique to incorporate multi-objective 
functions. This way, there is no need to specify 
weighting to balance between MSE performance in-
dex and the control penalty. The non-dominant sort-
ing genetic algorithm (NSGA-11) by24a, 24b in Figure 
4 is based on several layers of classification of the 
individuals. Before selection is performed, the pop-
ulation is ranked on the basis of domination (using 
Pareto ranking). All non-dominant individuals are 
classified into one category (with a dummy fitness 
value proportional to the population size). To main-
tain diversity of the population, these classified in-
dividuals are shared after all individuals have been 
compared with each other. To build a fair compari-
son, the previous specifications of GAs are used, 
population size of 100 individuals, single crossover 
of Pc = 0.9, and single mutation point of Pm = 0.01. 
The GA is terminated after 10 generations. Tables 1 
and 2 show the results.
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Fig. 1 Power plant boiler combustion system
23
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Implementing modified NSGA–II  
with constraints handling

In all experiments, the above GA configuration 
was used in addition to a sharing factor of 0.48, as 
well as elitism and a crowded comparison operator 
that keeps diversity of the solutions.

Unfortunately, there was no guarantee that the 
algorithm would find the global optima without 

sticking in the local optima. Therefore, the NS-
GA-II was modified to test if it at least approached 
near global optima solutions, as follows: a different 
set of population members was used in each run, 
the number of iterations was increased, and the mu-
tation rate in the evolutionary algorithm was in-
creased. A small routine was added to ensure saving 
the best solution along running time of the algo-
rithm, as follows:

F i g .  4  – Flow diagram of the original NSGA24a,24b
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{Store the best solution; 
Obtain the neighbour solutions for the best solution; 
Compare the best solution and best neighbour solution; }

The NSGA-II was also modified to handle con-
straints to avoid trapping in unstable solutions. The 
comparison study of using modified NSGA-II in 
Tables 1 and 2 at different model uncertainties revealed 
that NSGA-II was able to find a Pareto optimum 
front that covers a wider range of the search space.

Results and discussions

Successful implementation of evolutionary al-
gorithms for the boiler process revealed that SGA 
was able to tune the MBPC up to 0.07 % model 
mismatch, but was trapped in the local optimum at 
the price of increasing model uncertainty.

Figures 5a–5f show the ability of the NSGA-II 
to tune the MPC at additive model uncertainty from 
15 % of the time delay up to 105 %, where it was 
trapped and unable to tune the MPC. Figures 6a–6b 
show that the NSGA-II negative model uncertainty 
from –15 % to only –60 %, which is the case when 
the tuning variables trapped in the local optimum 
resulted in oscillation and instability.

Further investigations of increasing the model 
uncertainty to +105 % by using NSGA-II in con-
junction with LQC objective functions showed that 
NSGA-II was able to find a Pareto optimum front 
that covered a wider range of the search space.

This provided multiple solutions which help in 
the synthesis of process control at high model un-
certainty, compared with other control conventional 
design methods that give only a single solution and 
are not able to deal with model uncertainty. The 
simulation was terminated after 38.48 ± 0.14 sec-
onds and 10 generations in Pentium i5 4GB RAM.

Comparing with the literature25 the original 
NSGA-II was trapped in the local optimum at only 
+90 % of model uncertainty, which resulted in in-
stability and poor tuning of the control system.

Yuanhao et al.26 applied sliding mode predic-
tive control system (SMPC) to boiler main steam 
pressure control system under model mismatch con-
ditions when a set point change was introduced at 
time t = 0, and compared the results with traditional 
PID control and Smith Predictor (SP), which 
showed that both outputs of PID and SP were close 
to critically damped, but the SMPC produced a fast-
er response than that given by the SP. Compared to 
the NSGA-II, it was not only able to outperform the 
SMPC in terms of faster response, but was also able 

to tune the MPC at very high model uncertainty, in 
addition to giving a wide range of optimum solu-
tions.

It is very common to have Model to Plant Mis-
match (MPM) more than 60 %. In practices it is 
unfeasible technically or economically, to develop 
detailed first principle models (e.g. regression). One 
of the important reasons for MPC’s success in in-
dustry has been the ability of engineers to construct 
the required models efficiently from plant tests. In 
current real industrial application, non-linear mod-
els are derived from the input-output data. Howev-
er, it will unavoidably contain significant bias and 
variance. The uncertainties need to be quantified 
and used in the controller design and analysis. The 
theory for doing this is still in the developmental 
stages, even for linear systems. However, the need 
for systematic tools to deal with them is clear as 
insights and heuristics developed for linear control-
lers do not apply to non-linear controllers.

In general, impulse- and step-response test de-
scriptions are only equivalent when there is no un-
certainty. If there is uncertainty, they behave rather 

–	 Initialize population and generate random population 
P- size Nind

–	 Evaluate objective values

For i=1 to Gen

–	 Assign rank based on Pareto dominance using non-
dominated sorting strategy

–	 Determine crowding distance between points on each 
front of solutions (same rank)

–	 Generate offspring population Q- size Nind

–	 Binary tournament selection

–	 Recombination

–	 Mutation

–	 Evaluate objective values for the offspring population Q 
and stability criteria

–	 Combine parent population P and offspring population 
Q- size: 2*Nind

–	 Assign rank based on Pareto dominance using non-
dominated sorting strategy

–	 Determine crowding distance between points on each 
front of solutions (same rank).

–	 Select Nind solutions to propagate to the next generation 
(1st: elitist -biased towards lower ranks- 2nd: crowding 
distance - bias less crowded solutions)

End loop

F i g .  5 	–	 Modified NSGA-II with instability constraint Pseudo 
code
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Ta b l e  1 	–	MBPC simulation and Pareto front under Positive Model Uncertainty

MBPC simulation Pareto front for 10 generations

Model mismatch +15 %
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uncertainty. On the other hand, decreasing negative uncertainty in the delay time to only -60 % resulted in 

instability of the system. 

    A comparison with literature
25

 revealed that the modified NSGA-II had the largest capacity to tune 

MBPC variables beyond the 90 % positive uncertainty. 

    A future investigation will be to modify the control objective functions to include H2, H-infinity and 

other control performance indices. 
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Table 2 MBPC simulation and Pareto front under Negative Model Uncertainty  
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Ta b l e  2 	–	MBPC simulation and Pareto front under Negative Model Uncertainty

MBPC simulation Pareto front for 10 generations

Model mismatch –15 %

213 
 

  

  

Model 

mismatch 

+105 % 

 0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2
Outputs for105% model mismatch

Time

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
Manipulated Variables

Time

Fig. 5e 

6 6.5 7 7.5 8 8.5 9

x 104

0

1

2

3

4

5

6

7

8

9
x 10-6 Pareto Front for105%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

 
                   Fig. 5f 

Model 

mismatch     

+115 %  

0 500 1000 1500 2000 2500
1

1.002

1.004

1.006

1.008

1.01
Outputs for115% model mismatch

Time

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02
Manipulated Variables

Time

Fig. 5g 

6.3 6.301 6.302 6.303 6.304 6.305

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-10 Pareto Front for115%model mismatch

MSE

C
on

tr
ol

 V
ar

ia
nc

e

 
Fig. 5h 

 

 

 

 

 

Table 2 MBPC simulation and Pareto front under Negative Model Uncertainty  

 
 MBPC simulation  Pareto front for 10 generations 

Model 

mismatch     

-15 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-15% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3
Manipulated Variables

Time

Fig. 6a 

1.78 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88

x 105

2

4

6

8

10

12

14

16
x 10-8 Pareto Front for-15%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6b 

Model 

mismatch 

 -30 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-30% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6c 

1.4 1.5 1.6 1.7 1.8 1.9 2

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-6 Pareto Front for-30%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6d 

Fig. 6a

213 
 

  

  

Model 

mismatch 

+105 % 

 0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2
Outputs for105% model mismatch

Time

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
Manipulated Variables

Time

Fig. 5e 

6 6.5 7 7.5 8 8.5 9

x 104

0

1

2

3

4

5

6

7

8

9
x 10-6 Pareto Front for105%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

 
                   Fig. 5f 

Model 

mismatch     

+115 %  

0 500 1000 1500 2000 2500
1

1.002

1.004

1.006

1.008

1.01
Outputs for115% model mismatch

Time

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02
Manipulated Variables

Time

Fig. 5g 

6.3 6.301 6.302 6.303 6.304 6.305

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-10 Pareto Front for115%model mismatch

MSE

C
on

tr
ol

 V
ar

ia
nc

e

 
Fig. 5h 

 

 

 

 

 

Table 2 MBPC simulation and Pareto front under Negative Model Uncertainty  

 
 MBPC simulation  Pareto front for 10 generations 

Model 

mismatch     

-15 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-15% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3
Manipulated Variables

Time

Fig. 6a 

1.78 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88

x 105

2

4

6

8

10

12

14

16
x 10-8 Pareto Front for-15%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6b 

Model 

mismatch 

 -30 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-30% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6c 

1.4 1.5 1.6 1.7 1.8 1.9 2

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-6 Pareto Front for-30%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6d 

Fig. 6b

Model mismatch –30 %

213 
 

  

  

Model 

mismatch 

+105 % 

 0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2
Outputs for105% model mismatch

Time

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
Manipulated Variables

Time

Fig. 5e 

6 6.5 7 7.5 8 8.5 9

x 104

0

1

2

3

4

5

6

7

8

9
x 10-6 Pareto Front for105%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

 
                   Fig. 5f 

Model 

mismatch     

+115 %  

0 500 1000 1500 2000 2500
1

1.002

1.004

1.006

1.008

1.01
Outputs for115% model mismatch

Time

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02
Manipulated Variables

Time

Fig. 5g 

6.3 6.301 6.302 6.303 6.304 6.305

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-10 Pareto Front for115%model mismatch

MSE

C
on

tr
ol

 V
ar

ia
nc

e

 
Fig. 5h 

 

 

 

 

 

Table 2 MBPC simulation and Pareto front under Negative Model Uncertainty  

 
 MBPC simulation  Pareto front for 10 generations 

Model 

mismatch     

-15 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-15% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3
Manipulated Variables

Time

Fig. 6a 

1.78 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88

x 105

2

4

6

8

10

12

14

16
x 10-8 Pareto Front for-15%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6b 

Model 

mismatch 

 -30 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-30% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6c 

1.4 1.5 1.6 1.7 1.8 1.9 2

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-6 Pareto Front for-30%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6d Fig. 6c

213 
 

  

  

Model 

mismatch 

+105 % 

 0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2
Outputs for105% model mismatch

Time

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
Manipulated Variables

Time

Fig. 5e 

6 6.5 7 7.5 8 8.5 9

x 104

0

1

2

3

4

5

6

7

8

9
x 10-6 Pareto Front for105%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

 
                   Fig. 5f 

Model 

mismatch     

+115 %  

0 500 1000 1500 2000 2500
1

1.002

1.004

1.006

1.008

1.01
Outputs for115% model mismatch

Time

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02
Manipulated Variables

Time

Fig. 5g 

6.3 6.301 6.302 6.303 6.304 6.305

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-10 Pareto Front for115%model mismatch

MSE

C
on

tr
ol

 V
ar

ia
nc

e

 
Fig. 5h 

 

 

 

 

 

Table 2 MBPC simulation and Pareto front under Negative Model Uncertainty  

 
 MBPC simulation  Pareto front for 10 generations 

Model 

mismatch     

-15 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-15% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3
Manipulated Variables

Time

Fig. 6a 

1.78 1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88

x 105

2

4

6

8

10

12

14

16
x 10-8 Pareto Front for-15%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6b 

Model 

mismatch 

 -30 % 

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5
Outputs for-30% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6c 

1.4 1.5 1.6 1.7 1.8 1.9 2

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10-6 Pareto Front for-30%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6d Fig. 6d

Model mismatch –45 %

214 
 

  

  

Model 

mismatch    

 -45 % 
0 50 100 150 200 250 300 350 400 450 500

1

1.5

2

2.5
Outputs for-45% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6e 

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

x 105

0

0.5

1

1.5

2

2.5

3

3.5
x 10-5 Pareto Front for-45%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6f 

Model 

mismatch  

   -60 % 

(unstable) 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5
Outputs for-60% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20
Manipulated Variables

Time

Fig. 6g 

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pareto Front for-60%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6h 

Fig. 6e

214 
 

  

  

Model 

mismatch    

 -45 % 
0 50 100 150 200 250 300 350 400 450 500

1

1.5

2

2.5
Outputs for-45% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6e 

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

x 105

0

0.5

1

1.5

2

2.5

3

3.5
x 10-5 Pareto Front for-45%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6f 

Model 

mismatch  

   -60 % 

(unstable) 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5
Outputs for-60% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20
Manipulated Variables

Time

Fig. 6g 

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pareto Front for-60%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6h 

Fig. 6f

Model mismatch –60 %  
(unstable)

214 
 

  

  

Model 

mismatch    

 -45 % 
0 50 100 150 200 250 300 350 400 450 500

1

1.5

2

2.5
Outputs for-45% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6e 

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

x 105

0

0.5

1

1.5

2

2.5

3

3.5
x 10-5 Pareto Front for-45%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6f 

Model 

mismatch  

   -60 % 

(unstable) 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5
Outputs for-60% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20
Manipulated Variables

Time

Fig. 6g 

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pareto Front for-60%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6h 
Fig. 6g

214 
 

  

  

Model 

mismatch    

 -45 % 
0 50 100 150 200 250 300 350 400 450 500

1

1.5

2

2.5
Outputs for-45% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4
Manipulated Variables

Time

Fig. 6e 

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

x 105

0

0.5

1

1.5

2

2.5

3

3.5
x 10-5 Pareto Front for-45%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6f 

Model 

mismatch  

   -60 % 

(unstable) 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5
Outputs for-60% model mismatch

Time

0 50 100 150 200 250 300 350 400 450 500
-20

-10

0

10

20
Manipulated Variables

Time

Fig. 6g 

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pareto Front for-60%model mismatch

MSE

C
on

tro
l V

ar
ia

nc
e

Fig. 6h 

Fig. 6h

Outputs for 15 % model mismatch

Outputs for 30 % model mismatch

Outputs for 45 % model mismatch

Pareto Front for 60 % model mismatch

Pareto Front for 45 % model mismatch

Pareto Front for 30 % model mismatch

Pareto Front for 15 % model mismatch

Outputs for 60 % model mismatch



322	 H. M. Osman, Optimizing Model Base Predictive Control for Combustion Boiler Process…, Chem. Biochem. Eng. Q., 31 (3) 313–324 (2017)

differently27. In order to arrive at a tight uncertainty 
description, both tests may have to be used simulta-
neously and further constraints may have to be im-
posed on the coefficient variations. In addition to 
the previously mentioned, Nafsun and Yusoff27 
showed that the gain mismatch has significant ef-
fect on MPC controller performance compared to 
time constant and time delay mismatch when test-
ing MPM up to 70 %. For set-point tracking, MPC 
controller performance is bad in the presence of 
gain mismatch, but good in the presence of time 
constant and time delay mismatch.

Badwe et al.28 showed that, in the time delay 
mismatch case, an underestimated (negative uncer-
tainty) leads to oscillatory behaviour, and depend-
ing on the controller tuning, it may lead to instabil-
ity. Overestimated (positive uncertainty) time delay 
in the model makes the controller conservative, 
leading to an over-damped response. They also ap-
plied MPM to Shell Control Problem (SCP) and the 
kerosene hydrofining unit, and noticed that the un-
derestimate of the gain leads to a situation where 
the controller is aggressive as it computes large in-
put moves in order to attain the specified set point 
target.

Further investigations of increasing the model 
uncertainty to more than +115.1 % by using modi-
fied NSGA-II in conjunction with LQC objective 
functions showed that NSGA-II was trapped in a 
local Pareto optimum and resulted in no tuning 
variables found for the MBPC at the price of in-
creased model uncertainty. On the contrary, de-
creasing negative uncertainty in the delay time to 
–60 % resulted in instability of the system. This 
suggests the need to investigate modification of the 
control objective function to include H2, H-infinity 
and other control performance criteria.

Conclusions

SGA is able to successfully tune MBPC when 
the boiling process model is identical to the process 
plant, but fails at the price of increasing the model 
uncertainty to only +0.07 %, which resulted in poor 
control tuning and instability of the system, even 
though the objective function was the LQC.

The modified algorithm of NSGA-II separated 
the LQC objective functions and overcame the dif-
ficulties of specifying the weighting coefficients 
that balance between the objectives functions.

The comparison study of using modified NS-
GA-II at different model uncertainty revealed that 
NSGA-II was able to find a Pareto optimum front 
that covered a wider range of the search space. Fur-
ther investigations of increasing the model uncer-
tainty to +115 % and slight modification to NS-

GA-II in conjunction with LQC objective functions 
showed that modified NSGA-II was able to find a 
Pareto optimum front that covered a wider range of 
the search space. Compared to the literature21 the 
original NSGA-II was trapped in the local optimum 
at only +90 % of model uncertainty resulting in in-
stability and poor tuning of the control system.

It can be seen from the simulation results that 
modified NSGA-II tuning algorithm applied to con-
trol system of the boiler main steam pressure to deal 
with the time delay was able to provide multiple 
solutions, which help in the synthesis of process 
control at high model uncertainty, compared with 
other control conventional design methods that give 
a single solution and are not able to deal with mod-
el uncertainty.

Further investigations of increasing the model 
uncertainty to +105 % by using modified NSGA-II 
in conjunction with LQC objective functions 
showed that modified NSGA was trapped in a local 
Pareto optimum and resulted in poor tuning and 
very slow response of MBPC at the price of in-
creased model uncertainty. On the other hand, de-
creasing negative uncertainty in the delay time to 
only –60 % resulted in instability of the system.

A comparison with literature25 revealed that the 
modified NSGA-II had the largest capacity to tune 
MBPC variables beyond the 90 % positive uncer-
tainty.

A future investigation will be to modify the 
control objective functions to include H2, H-infinity 
and other control performance indices.

L i s t  o f  s y m b o l s  a n d  a b b r e v i a t i o n s

NP 	 –  Prediction horizon
NSGAII	 –  Non-dominated sorting genetic algorithm ii
NU 	 –  Control horizon
POF 	 –  Pareto optimum front
SGA	 –  Standard Genetic Algorithm
U(.)	 –  Process input signal or the control signal
Y(.)	 –  Process output signal
W	 –  Control weighting
SISO	 –  Single input single output
CV	 –  Control variables
DMC	 –  Dynamic matrix control
EAS	 –  Evolution algorithms
FI	 –  Shared fitness
G	 –  Matrix of step coefficients of the model
GC	 –  Control transfer function
GI	 –  Coefficient of process step response model
GP	 –  Process transfer function
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