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The objective of this work was to evaluate the ability of artificial neural networks 
(ANN) in near infrared (NIR) spectra calibration models to predict the total polyphenolic 
content, antioxidant activity, and extraction yield of the olive leaves aqueous extracts 
prepared with three extraction procedures (conventional extraction, microwave-assisted 
extraction, and microwave-ultrasound-assisted extraction). Partial least squares (PLS) 
models were developed from principal component analyses (PCA) scores of NIR spectra 
of olive leaf aqueous extracts in terms of total polyphenols concentration, antioxidant 
activity, and extraction yield for each extraction procedure. PLS models were used to 
view which PCA scores are the best suited as input for ANN based on three output vari-
ables. ANN showed very good correlation of NIRs and all tested variables, especially in 
the case of total polyphenolic content (TPC). Therefore, ANN can be used for the predic-
tion of total polyphenol concentrations, antioxidant activity, and extraction yield of plant 
extracts based on the NIR spectra.

Keywords: 
NIR spectra, artificial neural networks, olive leaf extracts, conventional extraction, mi-
crowave-assisted extraction, microwave-ultrasound-assisted extraction

Introduction

Polyphenolic compounds play an important 
role as health-protecting factors. They have been 
shown to exhibit different properties, such as an-
ti-allergenic, anti-inflammatory, anti-microbial, an-
ti-thrombotic, anti-cancer, cardio-protective, vaso-
dilatory and antioxidant properties1,2. For the food 
industry, polyphenolic compounds have the poten-
tial to be utilized as preservatives in foods and are 
often valid alternatives to synthetic food additives3.

The olive (Olea europaea L.) belongs to the 
Oleaceae family and is native to tropical and warm 
temperate regions of the world. The olive is consid-
ered a multipurpose crop with great yield potential. 
The tree is famous for its fruit, and is commercially 
significant in the Mediterranean countries as a 
source of oil4. Both the fruit and the oil represent 
important components in the daily diet of a large 
part of the world’s population due to their health 
benefits2,5,6. The olive oil industry generates a large 
amount of by-products, such as crude olive cake, 

vegetation water, twigs, and leaves. Olive leaves are 
also one of the by-products of olive grove farming; 
they accumulate during the harvesting of the olive 
fruit7,8. It has been reported in the literature that ol-
ive leaves represent a source of polyphenolic com-
pounds with a wide range of physiological proper-
ties, such as anti-HIV properties, anti-proliferative 
and apoptotic effects, lipid-lowering activity, etc.9–17 
Many of these properties are due to the antioxidant 
activity, which can be determined by different 
mechanisms, such as free radical scavenging, elec-
tron or hydrogen atom donation, or metal cation 
chelation1. Furthermore, the health benefits of the 
olive can also be attributed to the polyphenols pres-
ent in its leaves18.

In order to acquire the highest possible amount 
of polyphenols, efficient extraction techniques are 
required. Some of the methods used nowadays in-
clude solid-liquid extraction, ultrasound-assisted 
extraction, microwave-assisted extraction, super-
critical fluid extraction, and high pressure or pres-
surized liquid extraction19–24. Solid-liquid extraction 
under controlled experimental conditions is import-
ant for the reproducibility of the products and the 
preservation of their bioactivity25.
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Once obtained, plant extracts need to be further 
treated in order to identify and quantify their chem-
ical composition. Over the years, many analytical 
methods (spectrophotometry, gas chromatography, 
high performance liquid chromatography or capil-
lary electrophoresis methods) have been used in 
identification and quantification of plant extracts24,26. 
Listed methods usually demand complex sample 
preparation; they are time-consuming and not envi-
ronmentally friendly. In order to ensure product de-
velopment and quality control, near infrared (NIR) 
spectroscopy has become an accepted method for 
the qualitative and quantitative analyses of plant ex-
tracts. NIR is described as a non-invasive rapid 
method, which requires almost no sample prepara-
tion, as well as allows the possibility of on-/inline 
measurements, determination of physical and chem-
ical parameters simultaneously, and can be applied 
for a wide range of samples27. As presented by 
Belščak-Cvitanović et al.28, NIR spectroscopy has 
great potential in analysis of the polyphenolic com-
position of medicinal plant extracts. Analyses of the 
NIR spectra can be performed using mathematical 
models and multivariate analysis (chemometrics). 
Chemometrics utilizes various multivariate tech-
niques, such as principal component regression 
(PCR) and partial least squares (PLS), in order to 
build models with the use of reference chemical 
data obtained through other analytical techniques29. 
However, in the case of the high non-linearity, the 
mentioned techniques lead to substantial errors. Ac-
cording to Dou et al.30, application of artificial neu-
ral networks (ANNs) can be a good alternative. 
ANNs are self-adaptive and massively parallel ma-
chine-learning systems composed of layers of pro-
cessing elements (neurons), and are used primarily 
for solving pattern recognition problems by build-
ing nonlinear models. The models can be used to 
generalize their conclusions and to predict patterns 
that have not previously been encountered31. Some 
examples of the use of NIR spectroscopy combined 
with ANNs are: (i) quantification of wine com-
pounds32, (ii) determination of tea polyphenols33, 
(iii) characterisation of olive fruit and olive oil on-
line34, and (iv) determination of polyphenolic com-
pounds of red wines35.

Although there exists research describing that 
the application of near infrared spectroscopy for de-
termination of polyphenols in olive oil and even for 
the control of the whole process of olive oil produc-
tion36, in this work, the olive leaf only was anal-
ysed. The main objective of this study was to eval-
uate the ability of artificial neural networks in near 
infrared spectra calibration models to predict the 
total polyphenolic content, antioxidant activity, and 
extraction yield of the olive leaf aqueous extracts, 
prepared with three extraction procedures (conven-

tional extraction, microwave-assisted extraction, 
and microwave-ultrasound-assisted extraction). To 
our knowledge, there are no papers that correlate 
olive leaf extraction using water as a solvent in 
terms of NIR spectroscopy application for monitor-
ing the total polyphenolic content, antioxidant ac-
tivity, and extraction yield from olive leaves. Most 
of the research done on olive leaves is focused on 
extraction optimization for obtaining the highest 
possible polyphenolic content, as well as the use of 
different organic solvents, excluding water.

Materials and methods

Materials

Plant materials

Dried olive leaves (Olea europaea L.) were 
purchased from a specialized herbal store (Suban 
d.o.o., Zagreb, Croatia). Plant material was collect-
ed in the southern part of Croatia during the season 
of 2015, dried, and properly stored until used. Dry 
matter content of the plant was determined gravi-
metrically by a standard AOAC method36.

Chemicals and reagents

Folin-Ciocalteu reagent and sodium carbonate 
were purchased from Kemika (Zagreb, Croatia). Tro-
 lox (6-hydroxy-2,5,7,8-tetramethylchromane-2-car-
boxylic acid) and potassium peroxodisulphate were 
obtained from Fluka (Buchs, Switzerland). DPPH 
(1,1-diphenyl-2-picrylhydrazyl) and gallic acid 
(3,4,5-trihydroxybenzoic acid) were obtained from 
Sigma-Aldrich Chemie (Steinheim, Germany), 
while methanol was obtained from J. T. Baker (De-
venter, The Netherlands).

Methods

Milling

Dried olive leaves were milled using IKA Tube 
mill control (IKA-Werke, Staufen, Germany). Mill-
ing conditions were as follows: 15000 rpm with ad-
justed milling time (t = 10 – 40 s) in order to obtain 
different particle size fractions.

Separation of particle size fractions

Milled plant material was subjected to sieving 
in order to separate the particle size fractions. The 
following standardized DIN sieves (Fritsch, 
Idar-Oberstein, Germany) were used: d = 100, 250, 
355, 500, 800, and 1000 μm pores diameter. Sieves 
were placed on a laboratory shaker and shaking was 
performed for 10 minutes in intervals of 3 seconds 
with amplitude of 3 mm. Seven different particle size 
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fractions were obtained: <100 μm, 100 μm, 250 μm, 
355 μm, 500 μm, 800 μm, and 1000 μm. Three frac-
tions (d = 100 μm, 355 μm, 500 μm) were the sub-
ject of following experiments.

Conventional extraction of the polyphenolic 
compounds

An amount of m = 1 g of dry plant material was 
placed in a V = 200 mL glass with V = 50 mL of 
deionised water, covered with aluminium foil, and 
heated to a specific temperature (T = 40, 60, 80 °C 
± 0.5 °C) using the Ika HBR4 digital oil-bath (IKA-
Werk GmbH & Co. KG, Staufen, Germany). Ex-
traction experiments were performed based on the 
Full Factorial Experimental design (Table 1). After 
finishing the extraction processes, samples were 
 filtered through a 100 % cellulose paper filter  

(LLG Labware, Meckenheim, Germany) with d = 
20 – 25 µm pore size, and stored at T = 4 °C until 
analysed. All experiments were carried out in dupli-
cate, and the results are expressed as the average ± 
standard deviation.

Microwave and microwave-ultrasound-assisted 
extractions of the polyphenolic compounds from ol-
ive leaves were performed in the MW-ER-02 (Lab 
Kits, USA). Effect of the microwaves and simulta-
neous effect of the microwaves and ultrasound (P = 
50 W, f = 40 kHz) on the extraction efficiency was 
investigated. An amount of m = 1 g of dry plant ma-
terial was placed in an Erlenmeyer flask V = 250 mL 
with metal part for the conduction of the ultrasound 
waves with V = 50 mL of deionised water. The ex-
tractions were performed based on the Full Factori-
al Experimental design shown in Table 2. After fin-

Ta b l e  1  – Experimental conditions for the conventional 
aqueous extraction

Experiment 
number t/min T/ºC rpm d/µm

1 5 40 500 355

2 15 40 500 355

3 5 80 500 355

4 15 80 500 355

5 10 60 250 100

6 10 60 750 100

7 10 60 250 500

8 10 60 750 500

9 10 60 500 355

10 5 60 500 100

11 15 60 500 100

12 5 60 500 500

13 15 60 500 500

14 10 40 250 355

15 10 80 250 355

16 10 40 750 355

17 10 80 750 355

18 10 60 500 355

19 5 60 250 355

20 15 60 250 355

21 5 60 750 355

22 15 60 750 355

23 10 40 500 100

24 10 80 500 100

25 10 40 500 500

26 10 80 500 500

27 10 60 500 355

Ta b l e  2  – Experimental conditions for microwave-assisted 
and microwave-ultrasound-assisted extraction

Experiment 
number P/W t/min d/µm T/ºC

1 400 5 355 60

2 800 5 355 60

3 400 15 355 60

4 800 15 355 60

5 600 10 155 40

6 600 10 500 40

7 600 10 100 80

8 600 10 500 80

9 600 10 355 60

10 400 10 355 40

11 800 10 355 40

12 400 10 355 80

13 800 10 355 80

14 600 5 100 60

15 600 15 100 60

16 600 5 500 60

17 600 15 500 60

18 600 10 355 60

19 400 10 100 60

20 800 10 100 60

21 400 10 500 60

22 800 10 500 60

23 600 5 355 40

24 600 15 355 40

25 600 5 355 80

26 600 15 355 80

27 600 10 355 60
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ishing the extraction processes, samples were 
filtered through a 100 % cellulose paper filter (LLG 
Labware, Meckenheim, Germany) with d = 5 – 13 
µm pore size, and stored at T = 4 °C until analysed. 
All experiments were performed in duplicate, and 
the results are expressed as the average ± standard 
deviation.

The total polyphenolic content (TPC) was de-
termined spectrophotometrically using the Folin-Ci-
ocalteu reagent, according to Lachman et al.38 The 
results were expressed as mg of gallic acid equiva-
lents (GAE) per gram of dry matter (DM) of plant 
material. Antioxidant activity (AA) was assessed by 
the DPPH free radical assay39. The results were ex-
pressed as Trolox equivalents per gram of dry mat-
ter (DM) of plant material. All experiments were 
carried out in duplicate, and the results are ex-
pressed as the average ± standard deviation.

Extraction yield

Extraction yield (EY) was expressed as the dry 
matter content of the aqueous extracts. Dry matter 
content of the plant aqueous extracts was determi-
ned gravimetrically by a standard AOAC method37.

NIR spectroscopy

Measurements of the spectra were performed 
using NIR spectrophotometer NIR128L-1.7 (Con-
trol Development, South Bend, Indiana, USA) with 
installed Control Development software Spec32 us-
ing a halogen light source (HL-2000) for the wave-
length range of l = 904 – 1699 nm. Three consecu-
tive runs for every sample of aqueous extract were 
initially recorded across the entire spectral range, 
and the average spectrum was used for analysis. No 
mechanical or chemical treatment of the samples 
was needed prior to NIRS measurements.

Principal Component Analysis

Principal component analysis (PCA) was used 
for identifying patterns and highlight similarities 
and differences in the data of the individual set of 
experiments. The goal of PCA is to extract the im-
portant information from the data table and express 
this information as a set of new orthogonal vari-
ables called principal components or factors. Raw 
spectra were used to perform principal component 
analysis (PCA) by the Unscrambler® X 10.4, soft-
ware (CAMO software, Norway).

Partial least squares (PLS) regression modelling

To predict total polyphenolic content, antioxi-
dant activity, and extraction yield of the prepared 
extracts based on NIR spectra, partial least squares 
(PLS) regression was applied. PLS prediction is 

achieved by extracting a set of orthogonal factors 
called latent variables that have the best predictive 
power from the predictors. PLS regression model-
ling was carried out on raw NIR spectra using Un-
scrambler® X 10.4, software (CAMO software, 
Norway).

Artificial neural network modelling

To predict total polyphenolic content, antioxi-
dant activity, and extraction yield of the prepared 
extracts based on NIR spectra, artificial neural net-
work modelling was applied. Multiple layer percep-
tron networks were developed in Statistica v.10.0 
software (StatSoft, Tulsa, USA). Based on the PLS 
analysis, the most suitable PCA factors were select-
ed and used as the input variables. Artificial neural 
network (ANN) training was performed with sepa-
ration of data into training, test, and validation sets 
at a 70:20:10 ratio. Back error propagation algo-
rithm available in Statistica v.10.0 was applied for 
the model training. The model performance was 
evaluated based on R2 and root mean squared error 
(RMSE) values for training, test, and validation.

Results and discussion

NIR spectra of olive leaf aqueous extracts

In order to test the ability of ANN calibration 
to predict the total polyphenols concentration, anti-
oxidant activity, and extraction yield of the olive 
leaf aqueous extracts based on NIR spectra, the raw 
spectra of extracts obtained by three different ex-
traction procedures were recorded. For all the ex-
periments presented in Table 1 and Table 2, dupli-
cate measurements were performed. From these 
duplicate measurements, average values of spectra 
were used for later processing. According to litera-
ture17, baseline drifts are eliminated and small spec-
tra differences are enhanced by pre-processing of 
spectra in terms of calculating first and second de-
rivatives. Also, an enhancement of noise as a conse-
quence of differentiation is avoided by smoothing 
the spectra in advance18,19. Nevertheless, in this 
work, the focus was on the raw spectra only in or-
der to simplify data processing. The example of raw 
spectra for classical extraction procedure is present-
ed in Fig. 1.

NIR spectra of the olive leaf extracts show  
no significant differences in the range of 904 to 
1699 nm, based on the absorbance. However, in the 
ranges 904–928 and 1350–1699 nm, slight shifts 
are visible, indicating changes in the third and sec-
ond overtone of the C–H and O–H relations30. These 
relations are also related to the hydroxyl group  
(–OH) bound directly to an aromatic hydrocarbon 
group28.
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ANN modelling

As Dou et al.30 explained, ANNs suffer from 
three major drawbacks: (1) the predictive properties 
of ANNs strongly depend on the learning parame-
ters and the topology of the network; (2) the train-
ing time is long; and (3) ANNs models are complex 
and difficult to interpret. Since all the NIR spectra 
used in this work had 793 wavelengths, in order to 
reduce this vast amount of data to be used later for 
ANN modelling, principal component analysis was 
performed to obtain coordinates of factors (scores). 
In most studies30,34,40,41, PCA was used to scale down 

NIRs wavelengths to match the column number of 
output variables that are used for ANN, thus short-
ening the training time of the neural networks.

Graphical representation of correlations be-
tween PCA factors in combination with four param-
eters of the extraction process (temperature, time, 
particle diameter and rpm) and TPC, AA, and EY 
for each type of extraction are presented in Fig. 2.

For the classical extraction (Fig. 2a), TPC and 
AA were represented in third quadrant, and all the 
factors that were in the third quadrant were taken as 
inputs for ANN calculations, while the TPC and AA 

F i g .  1  – Sample of NIR spectra for 27 experiments performed by classical extraction

Ta b l e  3  – Characteristics and performance of the ANN models developed for the prediction of polyphenols, antioxidant activity, and 
extraction yield of olive leaf aqueous extracts prepared by conventional extraction, microwave-assisted extraction, and microwave- 
ultrasound-assisted extraction 

Model 
output

ANN architecture 
(input layer neurons-
hidden layer neurons-
output layer neurons)

Training 
perf. (R2)

Test perf. 
(R2)

Validation 
perf. (R2)

Training 
error 

(RMSE)

Test error 
(RMSE)

Validation 
error 

(RMSE)

Hidden 
activation

Output 
activation

classical extraction

TPC 12-5-1 0.9324 0.9401 0.9648 0.0032 0.0003 0.0049 Logistics Logistics

AA 7-4-1 0.9114 0.9485 0.9481 0.0039 0.0002 0.0052 Logistics Logistics

EY 6-8-1 0.9939 0.8671 0.8911 0.0073 0.0011 0.0096 Tanh Logistics

microwave-assisted extraction

TPC 9-7-1 0.9999 0.9998 0.9807 0.0001 0.0012 0.0006 Exponential Identity

AA 9-4-1 0.9001 0.9997 0.9742 0.0011 0.0013 0.0039 Logistic Exponential

EY 10-5-1 0.9987 0.9997 0.8590 0.0001 0.0013 0.0004 Exponential Identity

microwave-ultrasound-assisted extraction

TPC 14-7-1 0.9099 0.9213 0.8986 0.0090 0.0015 0.0093 Exponential Exponential

AA 8-4-1 0.9175 0.9999 0.8840 0.0045 0.0003 0.0061 Tanh Exponential

EY 8-5-1 0.9619 0.7967 0.8768 0.0020 0.0005 0.0024 Tanh Exponential
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were used as output variables. Extraction yield was 
represented in the second quadrant, and all the fac-
tors and process parameters from the second quad-
rant were taken as input for ANN calculations and 
extraction yield as output variable. For micro-
wave-assisted and microwave-ultrasound-assisted 
extraction, the procedure was the same, except for 
the case of AA in microwaves and ultrasound-as-
sisted extraction (Fig. 2c), where AA was represent-
ed between the second and the third quadrant. In 
that case, all the factors and process parameters that 
were in the second and third quadrants were taken 
as input variables, and AA as an output variable. 
Although there were 26 factors and four process pa-
rameters at the beginning in all cases, a reduction in 
the number of input variables for ANN was ob-
served, especially in the case of classical extraction 
for extraction yield where only 6 variables were se-
lected, and also in the case of TPC and AA where 8 
variables were selected as inputs for ANN.

Artificial neural network (ANN) modelling 
was performed with the number of the neurons in 
the hidden layer in a range from 3 to 13, depending 
on the extraction procedure. Optimal neural net-
works were selected based on the linear correlation 
coefficient (R2) and the values of the root mean 
square error (RMSE). The R2 values should have 
been as close to 1 as possible. Thus, a good-fitting 
model would have R2 values above 0.90. Values be-
tween 0.70 and 0.90 indicate that the models can be 
considered fairly precise, and values below 0.70 in-
dicate that the model can be used for qualitative dis-
tinction without the capacity to be used in quantita-
tive prediction21,22.

The results of ANN in terms of correlation co-
efficient (R2) and the values of the root mean square 
error (RMSE) are presented in Table 3. The graphi-
cal presentation of training, test, and validation for 
classical extraction, microwave-assisted extraction, 
and microwave-ultrasound-assisted extraction are 
presented in Fig. 3.

Based on the results presented in Table 3, the 
best values in terms of correlation coefficients for 
validation were achieved for TPC for all three dif-
ferent extraction procedures, with values of R2 
 ranging from 0.8986 (microwave-ultrasound-assist-
ed extraction) to 0.9807 (microwave-assisted ex-
traction). Such good correlations are visible in Figs. 
3a, 3d and 3g. With such high correlations, it can be 
stated that NIRs can easily be used as one of the 
techniques for determination of TPC concentration, 
which is in accordance with literature data regard-
ing NIRs and TPC23,24. The values of correlation co-
efficients for validation for AA were also very high 
for classical extraction (0.9481) and microwave-as-
sisted extraction (0.9742). The lowest correlation 
was obtained for the microwave-ultrasound-assisted 

F i g .  2  – Geometrical representation of PLS models for deter-
mination of correlations between PCA factors combined with 
extraction process parameters (temperature, time, particle di-
ameter, and rpm) and total polyphenols concentration, antioxi-
dant activity, and extraction yield for a) classical extraction, b) 
microwave-assisted extraction, and c) microwave-ultrasound- 
assisted extraction

(a)

(c)

(b)
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extraction; R2 = 0.8840. Although the measurements 
were performed in duplicate and mean values were 
used for calculations, an error occurred.

For the extraction yield in all three extraction 
types, validation correlation coefficients were the 
lowest in the range of 0.8768 for the -microwave-ul-
trasound-assisted extraction to 0.8911 for the classi-
cal extraction, probably due to experimental method 
used for the measurement of the extraction yield.   
In Fig. 3c, suggests that the extraction yield mea-
sured for the extract prepared under the conditions  
t = 5 min, T = 80 °C, rpm = 500, and d = 355 µm 
shows the highest data dispersion. Based on all ob-
tained results, it can be concluded that the ANN 
showed very good correlation of NIRs and all tested 
variables (total polyphenol concentrations, antioxi-
dant activity, and extraction yield), especially in the 
case of TPC. In addition, developed ANN model 
ensured good fitting based on the error values. For 
all selected ANN models, the validation error was 
low and slightly higher than the training error. 

Therefore, ANN can be used for the prediction of 
total polyphenol concentrations, antioxidant activi-
ty, and extraction yield of plant extracts based on 
the NIR spectra.

Conclusions

It is possible to obtain very good correlations 
with total polyphenol concentrations using ANNs 
even from the raw NIR spectra of olive leaf ex-
tracts, without pre-processing and additional manip-
ulation of spectral data in terms of smoothening or 
differentiation. The obtained results show the po-
tential of quantitative prediction of polyphenols 
with the possibility of on-line monitoring of total 
polyphenol concentrations in extraction procedures. 
In addition, very good correlations were obtained 
for the antioxidant activity and extraction yield, 
showing growing potential of NIR spectroscopy re-
lated to ANN for use in quality control.

F i g .  3  – Comparison between experimental data and ANN models predicted data for classical extraction procedure for (a) total 
polyphenolic content – TPC, (b) antioxidant activity – AA, and (c) extraction yield – EY; for microwave-assisted extraction procedure 
for (d) total polyphenolic content – TPC, (e) antioxidant activity – AA, and (f) extraction yield – EY; microwave-ultrasound-extraction 
procedure for (g) total polyphenolic content – TPC, (h) antioxidant activity – AA, and (i) extraction yield – EY

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)
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