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This paper presents a mathematical model to evaluate the kinetics of two different 
Pseudomonas putida strains, wild and mutant-type for the microbial production of poly-
hydroxyalkanoates (PHAs). Model parameters were estimated to represent adequately 
experimental data from the batch reactor using the differential evolution algorithm. Based 
on the mathematical model with the best-fit parameter values, simulations suggested that 
the high production of PHA by the mutant strain can be attributed not only to the higher 
production of PHA but also to a reduction in the consumption rate of the substrates of 
approximately 66 %. Remarkably, the cell growth rate value is higher for the wild type 
than the mutant type, suggesting that the PHA increase is not only to an increase in the 
production rate but also to the metabolism of the cells. This mathematical model advanc-
es comprehension of the PHA production capacity by P. putida paving the road towards 
environmentally friendly plastics.
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Introduction

Plastics are one of the most used materials 
worldwide and their production rate is increasing 
over the years. In 2013, the worldwide plastic mate-
rial production was approximately 299 million tons, 
and these numbers continue to increase, causing 
large amounts of waste which highly contributes to 
the pollution of the environment1. Plastic materials 
have been for a long time produced through petro-
chemicals routes. Theses plastics have a high dura-
bility and are resistant to degradation. Although 
such properties are considered important for the in-
dustrial production of plastics, these are a signifi-
cant source of environmental and waste manage-
ment problems2.

New avenues of research have been developed 
to produce plastics with biodegradability properties, 

called bioplastic materials. The replacement of a 
fraction of synthetic plastics with biodegradable 
polymers produced from renewable resources offers 
to solve important problems such as the overall 
consumption of fossil fuels, environmental pollu-
tion, and solid waste management3. Bioplastics can 
easily be degraded (Figure 1), and in this way, the 
plastics deposited in nature could be largely de-
creased, serving as a carbon substrate for different 
microorganisms.

Bioplastics are available in specific areas and 
applications, for example composting bags and 
sacks, fast food tableware (cups, plastic bottles, cut-
lery, etc.), agriculture and hygiene4. Furthermore, 
biopolymers are also used in most industries for 
technical applications, including medicine and phar-
macy. Among the candidates for biodegradable 
plastics, polyhydroxyalkanoates (PHAs) have been 
drawing much attention because of their similar ma-
terial properties to conventional plastics and com-
plete biodegradability. PHAs are insoluble in water 
and exhibit a rather high degree of polymerization 
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ranging from 105 to 107 Dalton (Da). Their non-tox-
icity and biodegradability properties are essential 
for their potential use3.

PHAs are naturally produced as granules in the 
cytoplasm of cells by numerous bacteria under lim-
iting nutrients and excess carbon source3,5. Pseudo-
monas putida strains are the most used bacteria for 
the synthesis of medium-chain-length PHAs (mcl-
PHAs) in the presence of different carbon sources, 
such as fatty acids, glucose, and glycerol. Particular 
properties of mcl-PHAs give them a broader appli-
cation range over short-chain-length PHAs6. Usual-
ly, the production process is composed of two 
phases. In the first phase, cells are challenged by 
growth in a minimal medium with an excess of car-
bon source and a limited amount of ammonium as 
the nitrogen source. The cells rapidly consume the 
carbon substrate and exhibit exponential growth as 
long as ammonium is present in the medium3,6. The 
second phase is characterized by the transition from 
a feast to a famine period, which allows the high 
synthesis of mcl-PHA in batch reactors3,6,7.

Nevertheless, the amount of bacterial produc-
tion of mcl-PHA is insufficient compared to the de-
mand and the reduced quantity of production, influ-
encing the price of bioplastics in the market. 
Systems metabolic engineering approaches of Pseu-
domonas putida (P. putida) have enhanced the pro-
duction of PHA, thus enabling development of a 
more efficient strain, which closes the cost gap be-

tween petroleum and bacterial-based production of 
polymers. For example, the in silico driven meta-
bolic engineering approach developed by Po-
blete-Castro and coworkers, re-designed P. putida 
to enhance the production of mcl-PHAs using glu-
cose as the carbon source. The metabolically engi-
neered strains that were performed predicted only 
one key mutation, revealed a 100 % increase in the 
final PHA titer, a 50 % increase in the cellular PHA 
content, and 80 % in the PHA yield, relative to its 
parent strain.

Additionally to the improvements through ge-
netic modifications, mathematical models have 
proved to be a relevant tool to enhance biopolymers 
production8. On the one hand, metabolic approaches 
are focused on metabolic pathways for PHA pro-
duction, these can reflect the intracellular dynamics. 
There is a particular interest for this level of model-
ling due to the high detail that can describe8. Never-
theless, this detail level promotes highly complex 
models. On the other hand, modelling approaches 
based on the population growth can help dissect the 
dynamics of different strains8. This approach could 
be useful in developing different cultivation strate-
gies in order to enhance the PHAs production with-
out increasing the model complexity9,10.

Recently, several mathematical models, based 
on population growth, have been proposed to facil-
itate the dynamics of biopolymer production9–14. 
Most of these works contain many parameters esti-

F i g .  1 	–	 Bioplastics cycle. Bioplastics are produced by microorganisms, which are collected after being 
used as solid wastes. These are degraded and used as carbon sources for the microorganisms.
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Fig. 1 Bioplastics cycle. Bioplastics are produced by microorganisms, which are collected after being used as solid wastes. These are degraded and 
used as carbon sources for the microorganisms. 
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properties, called bioplastic materials. The replacement of a fraction of synthetic plastics 

with biodegradable polymers produced from renewable resources offers to solve important 

problems such as the overall consumption of fossil fuels, environmental pollution, and solid 

waste management3. Bioplastics can easily be degraded (Figure 1), and in this way, the 
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Bioplastics are available in specific areas and applications, for example composting bags 

and sacks, fast food tableware (cups, plastic bottles, cutlery, etc.), agriculture and hygiene4. 
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mated based on local optimization algorithms. Note 
that parameter estimation is a complex problem in-
volving highly non-linear equations and several 
variables. Therefore, global optimization algorithms 
are needed to avoid incorrect fits and consequently 
incorrect interpretations.

The mechanisms of self-adaption, self-organiz-
ing and self-learning in stochastic optimization ap-
proaches allow addressing challenging problems 
that cannot be solved by traditional methods. In this 
paper, a variant of the Differential Evolution (DE) 
algorithm15 is considered for parameter estimation. 
This optimization algorithm is used in many engi-
neering applications due to its simplicity and 
straightforward implementation.

Materials and methods

Strains, medium and batch fermentations

For this work, considered was the parent strain 
P. putida KT2440 (DSM 6125), which was obtained 
from the German Collection of Microorganisms and 
Cell Cultures (DSMZ, Braunschweig, Germany). 
To generate single deletion mutant of P. putida 
KT2440, genome editing was applied16. P. putida 
strains were grown in a defined mineral medium. 
The experiments were performed in a 2 L top-bench 
BIOSTAT bioreactor with working volume of 1.5 L 
at 30 °C and 180 rpm. The dissolved oxygen was 
kept at 20 % of air saturation by control and the 
pH-value was maintained at 7.

The basic structure of PHA was confirmed by 
NMR analysis. Thirty mL of culture was harvested 
and the pellet was washed with deionized water, 
frozen at –20 °C and lyophilized. The lyophilizate 
was then suspended in 10 mL chloroform and kept 
for 3 h at 80 °C to extract the PHA. The PHA com-
position, as well as the cellular PHA concentration, 
were determined by gas chromatography (GC) and 
mass spectrometry (MS). A more detailed descrip-
tion of the experiments can be found in6.

Mathematical model

The mathematical model proposed here is 
based on the following differential equations:
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where S is the glucose (carbon source), N is the NH4 
concentration (nitrogen source), X is the active bio-
mass, and P is the biopolymer PHA. NH4 is as-
sumed as the limiting nutrient13 and the total biomass 
(Cell Dry Mass) is composed by the catalytically 
active biomass and the PHA, thus CDW = X + P.

Consumption rates of substrates by active bio-
mass are presented in equations (5) and (6). mS and 
mN can be interpreted as the specific consumption 
rates of glucose and NH4 by the active biomass, re-
spectively. These are experimentally proportional to 
biomass concentration, and reach their maximum 
when the concentration of substrates is high.

The substrate S is consumed by the active bio-
mass at a rate (k1), which is modeled by equation 
(5) using the following Monod function:
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where KS is the saturation or affinity constant of the 
substrate S.

NH4 dynamics are represented by equation (6). 
Experimental data6 indicate that ammonium is com-
pletely consumed in the growth phase. Different 
functions were considered for the NH4 consump-
tion, however, the best estimations were achieved 
by the following rate equation: 
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where KN is the saturation or affinity constant of the 
substrate N.

Active biomass dynamics of strains are pre-
sented in equation (7). The specific growth rate of 
biomass with glucose is defined according to the 
“two substrates” kinetic equation (known as “dou-
ble Monod” relation). The limiting substrate ammo-
nium (N) is essential to produce the active biomass 
X and limits its synthesis at low concentrations. The 
active biomass growth m writes as follows: 
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where mmax is the maximum growth rate, KS1 and KN1 
represents the affinity constants of X.

The biopolymer PHA (P) is produced at a rate 
k4 by active biomass dynamics of P. putida (X), 
which is triggered by a limited amount of ammoni-
um provided in the growth medium, this can be ex-
pressed by the following equation:
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Note that mP(t) term will increase when the val-
ue of ammonium decreases. A growth term based 
on the biomass growth k3 m (t) was introduced to 
provide better fitting for the PHA. This signifies 
that small amounts of PHA are produced during 
biomass growth.

Parameter estimation

Parameter estimation for mathematical models 
can be understood as the search for a set of values 
for the parameters θ that minimize the difference 
between the outcome of model yi and experimental 
data yi as close to zero as possible. This search is 
restricted to system dynamics, algebraic restrictions, 
and system constraints. In this paper, the Sum of the 
Square of Weighed Residues (SSWR) function17 is 
used for parameter estimation, and is defined as fol-
lows:
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where j and i represent the number of variables and 
experimental data points, respectively, y is the set of 
experimental data points6, and y is the outcome of 
the mathematical model.

To know the behavior of each parameter within 
an interval of given values, in each ODE the likeli-
hood profile for all parameters is estimated. Using 
equation (10), each parameter was fixed while other 
parameters in the equation were estimated. Since 
the ODEs integration routine requires dense data 
sets at different times depending on the adaptive 
step size, inputs in each estimation are approximat-
ed by piecewise linear interpolation. For these esti-
mations, the Residual Sum of Squares (RSS) is used 
as minimization function.
 
	 ( ) ( )2

1

 
n

i i
i

RSS y yθ
=

= −∑ 	 (10)

The differential equations are solved using 
solver ode45 from MATLAB to obtain the model 
outcome.

Differential evolution algorithm

The minimization of equations (9) and (10) im-
plies a non-linear optimization problem with sever-
al variables, which can be solved using a global 
optimization algorithm. Differential evolution (DE) 
algorithm15 is among the most popular global opti-
mization algorithms. DE is designed for optimizing 
p-dimensional continuous functions. Each individu-
al in the population is a p-dimensional vector that 
represents a candidate solution to the problem.

In DE algorithm, two individual mutually ex-
cluding r1 ≠ r2 are picked randomly among the pop-

ulation, the difference is scaled and added to a third 
individual r3 ∉ {r1, r2} chosen randomly to create a 
new mutant vector vi. The individuals are defined as 

1 2
, , , ,[ , , ], p

i g i g i g i gX x x x= … , where i  =  1, 2, …, NP,  
g  =  1, 2, …, G. The variable G represents the maxi-
mum number of generations, and NP the population 
number.

The first step is the initialization of the  
population within a search space for each element 
of the individuals, defined by model restrictions  
as 1, 2, ,  [ , , , ]min min min p minX x x x= … , and Xmax  = 

1, 2, ,  , ,[ ],max max p maxx x x… .

The second step is the mutation, for which dif-
ferent strategies exist. In this work, the following 
mutation strategy is considered: 
 
	 , , 1, 2, (  )i g best g r g r gv x F x x= + − 	 (11)

where xbest,g is the individual with the best fit in the 
current generation. xr1,g and xr2,g are different vectors 
chosen randomly among the population, and F ∈ 
[0,1] is the scaling factor.

The third step is the crossover, a new trial vec-
tor is generated recombining the mutant vi,g and  
target xi,g vectors. For this paper, the exponential  
approach (12) was considered. In this approach,  
s ∈ [1,p] and L ∈ [1,p] are random integer numbers. 
s represents the starting element in target vector xi,g 
to create a new trial vector ui,g recombining the L 
components donated by the mutant vector vi,g.
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where A:= {s, …, min(p,s + L – 1)}, and B : = {1, …,  
s + L – p – 1)}

The last step is the selection, a cost function is 
used to determine which vector survives for the 
new generation (g + 1), the mutant ui,g and target xi,g 
vectors are evaluated to find which has the best 
yield. The basic idea is shown as follows:
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where f  (⋅) is the evaluation of the objective func-
tion.

Numerical results

The experimental work assessed the growth 
and PHA production performance by the wild and 
mutant-type P. putida strains in minimal medium 
using glucose as a carbon source (18.5 g L−1) and a 
limiting amount of ammonium as nitrogen source 
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(350 mg L−1). The experimental data6 are shown in 
Figure 2. The exponential growth of CDW initiates 
at 5 hours and continues while glucose in the medi-
um exists. The stationary phase is reached when the 
glucose concentration is less than 0.1 g L–1. In Po-
blete-Castro work6, the authors showed gluconate 
production by the wild type strain, and at the same 
time possible consumption of the gluconate when 
the glucose is depleted in the medium. However, to 
develop a model as simple as possible without com-
promising accuracy, in the proposed model, the for-
mation and consumption of gluconate were not con-
sidered.

The exponential growth of PHA started at 10 
hours, this could be attributed to the shortage of ni-
trogen source in the medium. The PHA content ex-
hibits two phases, the first is proportional to cell 
growth, when PHA production is slow. The second 
phase is the exponential growth of PHA, which is 
triggered when the nitrogen source present in the 
medium is less than 0.1 g L−1.

The development of new avenues of thinking 
to decrease bioplastics costs are urgently needed. To 
this end, mathematical models can help interpret 
experimental results on quantitative grounds. Here, 
the reactor dynamics6 are represented with the sys-
tem (1)–(4).

Before mathematical models can be considered 
for reliable predictions, the unknown parameters 
should be estimated by comparing model output to 
experimental data (maximum likelihood principle). 
However, the mathematical model equations (1)–(4) 
possess parameters that could be difficult to esti-
mate using common model optimization strategies, 

e.g., least value, steepest descendent, inner and out-
er approximation, etc. Innovative optimization ap-
proaches help tackle challenging problems that can-
not be solved by traditional methods. Here, the DE 
algorithm15 is considered and the fine tuning of the 
algorithm is based on18–20. Furthermore, the novel 
approach proposed by Raue et al.21 exploits the 
likelihood profile to determine both structurally and 
practically non-identifiability. In addition, the itera-
tive fitting routine proposed by Binder et al.22 is 
used to decompose the problem of fitting a system 
of coupled ordinary differential equations (1)–(4) 
into smaller sub-problems. Using equation (10) the 
likelihood profile for all parameters are estimated to 
check the identifiability.

Results of likelihood profiles are displayed in 
Figure 3. Likelihood profile graphics suggests KP is 
structurally non-identifiable. In addition, parame-
ters KS1, k4, and k3 are practically non-identifiable 
since their confidence regions do not converge to-
wards a specific value21. Parameters k3, k4 and KS1 
could take any value close to zero and do not en-
hance the model fit significantly. In the same way,  
KP could take any value inside the interval without 
enhancing the model fit. On the other hand, likeli-
hood profile graphics suggest that parameters k1, k2, 
KS and KN1 are identifiable. Even though a threshold 
cannot be determined, the graphics offer an over-
view of which parameters can be identifiable or not.

To simplify the parameters estimations based 
on likelihood profile, graphics parameters detected 
as non-identifiable were fixed. Values for fixed pa-
rameters were chosen to minimize the SSWR func-
tion, while the remaining parameters were simulta-
neously estimated. Furthermore, values for mmax 
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medium is less than 0.1 g L−1. 
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needed. To this end, mathematical models can help interpret experimental results on 

quantitative grounds. Here, the reactor dynamics6 are represented with the system (1)-(4). 

 

Fig. 2 Experimental data for the wild (black) and mutant-type (gray) strains of P. putida. S is the glucose concentration, N is the NH4 concentration, 
CDM is the total biomass. 

 

Before mathematical models can be considered for reliable predictions, the unknown 

F i g .  2 	–	 Experimental data for the wild (black) and mutant-type (gray) strains of P. putida. S is the 
glucose concentration, N is the NH4 concentration, CDW is the total biomass.
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were taken from the work of Poblete-Castro6.  
In Figure 3, parameters k3 and k4 are non-identifi-
able. Thus, the parameter k4 was fixed, while the 
parameter k3 was estimated. The best-fit parameter 
values can be found in Table 1.

Model simulation results in Figure 4 reveal 
good fitting to the experimental data depicted by 
empty circles. The model presents a better fit for 
wild type strain than mutant type strain. This differ-
ence is clearer on PHA graphics, where there is a 
logistic growth in the first 10 hours, after that the 
growth is linear. This behavior is also presented in 
CDW graphics and is consistent with NH4 con-
sumption.

As discussed previously, the production and 
consumption of gluconate by the wild type strain 
described in6 were not considered in the presented 

F i g .  3 	–	 Likelihood profiles for parameters of both strains, wild type – black line, and mutant type – gray line

Ta b l e  1 	–	Model parameters. These are the best fitting result 
using the iterative fitting routine22.

Parameter Wild Type Mutant type

k1 (h
–1) 0.210 0.071

k2 (h
–1) 0.712 5.719

k3 (h
–1) 0.051 0.146

k4
* (h–1) 0.007 0.0105

KS (g L–1) 0.434 0.206
KN

* (g L–1) 0.739 14.789
KS1

* (g L–1) 0.001 0.001
KN1 (g L–1) 0.047 0.028

mmax
1 (h–1) 0.53 0.450

KP
* (g L–1) 3 0.216

(*) parameters were fixed.  
(1) parameter was taken from experimental data6
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model. However, the gluconate production and con-
sumption could explain the growth of active bio-
mass and PHA after the glucose is consumed. 

Confidence interval

Due to the highly variable data in biological 
systems, further validation of estimated parameters 
is necessary. Even though the likelihood profile of-
fers a visual insight for parameters validation, due 
to a lack of experimental data it cannot be deter-
mined clearly whether a parameter is identifiable or 
not. Confidence intervals help determine the degree 
of validity for each parameter estimated. Bootstrap 
methods are used to provide statistical inferences of 
a set of parameters. However, these results are af-

fected by the high variability of experimental mea-
surements or by the erroneous assumption in the 
statistical distributions.

The Weighted Bootstrap method is an effective 
tool for semiparametric estimation23, which allows 
the study of asymptotic properties of the proposed 
solution when there are measurement and numerical 
errors24. The Weighted Bootstrap method can be 
written as follows:
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where w is a vector with independent, identically 
distributed positive random weights with mean 
[E (w) = 1] and variance [Var (w) = 1]. Statistical dis-
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Fig. 4 Simulation results. The results are displayed, a) for wild strain, and b) for mutant strain. The simulations were developed using parameter 
values from Table 1 

 

Confidence intervals were calculated using the Weighted Bootstrap method25. Results 

F i g .  4 	–	 Simulation results. The results are displayed, a) for wild strain, and b) for mutant strain. The simulations were developed 
using parameter values from Table 1.
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values from Table 1 

 

Confidence intervals were calculated using the Weighted Bootstrap method25. Results 
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tribution of w is independent of y and y 25.  θ̂B
 is the 

vector of estimated parameters after each bootstrap.
Confidence intervals were calculated using the 

Weighted Bootstrap method25. Results after 1000 
bootstrap trials are displayed in Table 2, for each 
constant parameter, the 2.5 % and 97.5 % quantiles 
of the estimates were selected to compute the 95 % 
confidence interval.

The model was refitted in each repetition to ob-
tain the corresponding parameter distribution. Pa-
rameter distribution is displayed in Figure 5. Pa-
rameters KS for the wild strain and k2 for the mutant 

F i g .  5 	–	 Parameter distributions. The histograms show the distribution for parameters of both wild (black) and mutant (gray) 
strains. Data taken from bootstrap results.

Ta b l e  2 	–	The confidence interval for each parameter. After 
1000 weighted bootstrap, confidence interval with 
95 % of confidence for both strains is shown.

Parameter
Confidence interval

Wild type Mutant type

k1 (h
–1) 0.1790–0.3405 0.0600–0.0910

KS (g L–1) 0.3070–0.8900 0.0995–0.4575

k2 (h
–1) 0.6235–0.8300 4.7625–6.0970

KN1 (g L–1) 0.0320–0.0620 0.0220–0.0450

k3 (h
–1) 0.0381–0.0685 0.1020–0.1930
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strain have the larger confidence intervals, respec-
tively, this allows the model to be more flexible to 
changes of these parameters.

The parametric dependence was obtained using 
the results from Weighted Bootstrap method, each 
parameter was plotted against another in scatter 
plots, which show the correlation between parame-

ters (Figure 6). It is the case of parameters k1 – KS 
which are linearly dependent, if k1 increases, KS in-
creases too; this behavior was expected because 
both parameters belong to the same equation. The 
same behavior is presented in parameters k2 – KN 
(Figure 7). Parameter KN was fixed due to always 
reaching the upper limits, this behavior is consistent 

F i g .  6 	–	 Parameter dependency. The scatter plots show the parametric dependence between parameters for both wild (black) and 
mutant (gray) strains. Data taken from bootstrap results. 
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with their likelihood profile (Figure 3) where a 
threshold cannot be determined.

For the glucose equation (1), the consumption 
rate (k1) and the affinity constant (KS) of mutant 
type strain are smaller than those of wild strain. Ad-
ditionally, the proportion between both parameters 
(k1/KS) is smaller for mutant strain than that one of 
the wild strain. On the other hand, in the NH4 equa-
tion (2), despite the higher values in parameters k2 
and KN  for mutant strain with respect to those of 
the wild strain (see Table 1), their proportion is 
smaller between parameters for mutant type strain 
than wild type strain. These proportions suggest that 
the mutant strain consumes the substrates slowly in 
comparison to the wild strain. Furthermore, the mu-
tant strain grows slower than the wild strain.

Conclusions

This work presents a mathematical model for 
biopolymer production in a batch reactor, which can 
assess the performance of two different P. putida 
strains, wild and mutant type strains. The model pa-
rameters were evaluated using a variant of DE algo-
rithm to minimize the difference between experi-
mental data and the model output. These parameters 
were estimated through computing their likelihood 
profile and confidence intervals. The likelihood 
profiles helped determine the parameter identifiabil-
ity. This analysis was complemented with the confi-
dence interval estimations.

Estimations suggested that the higher PHA pro-
duction by the mutant strain, in comparison with the 
wild strain, may be related to the adequate con-
sumption of substrates, which can be clearly ob-
served in the glucose and nitrogen consumption 
graphics (Figure 4). The presented model contains 
fewer parameters than previous mathematical mod-
els for biopolymer productions9–14. Furthermore, 

some models have described fed-batch and batch 
cultures9,10,13, and these approaches use the fed-
batch cultures model to increase the PHA yield. The 
model presented in this work is simpler, which 
helps to obtain a better parameter estimation. Dif-
ferent terms were considered for substrates equa-
tions (1)–(2), e.g. bilinear terms (k1SX) or more 
complex like Hill functions (Xn/(Xn + KS)). Never-
theless, a better estimation was reached using the 
equations (1)–(2). As future work, to enhance the 
accuracy of the model, the dynamics of gluconate 
presented by Poblete-Castro et al. work6 will be in-
cluded.
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