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Lignocellulosic biorefineries (LBRs) are platforms for the production of a variety of 
bio-based products such as biofuels, biomaterials, biochemicals, food, and feed using 
lignocellulosic biomass (LB) as feedstock. LBRs are still rare worldwide. Their commer-
cialization depends on challenges associated with the entire feedstock supply chain, effi-
ciency, sustainability, and scale-up of pretreatment methods, as well as isolation and pu-
rification of value-added products. Each step within LBRs requires the development of 
new technologies or the improvement of existing ones, considering all three sustainabil-
ity dimensions, environmental, social, and economic. Machine learning (ML) methods 
are widely used in various industrial fields, including biotechnology. The merging of 
biotechnology and ML has driven scientific progress and opened new opportunities for 
the development of LBRs as well. In this review, ML methods and their efficiency, used 
in biotechnology (metabolic engineering, bioprocess development, and environmental 
engineering), are presented, followed by their application in various phases of LB valo-
rization.
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Introduction

The linear economy operates on the “take-
make-waste” model, where raw materials are ex-
tracted from the earth, products are manufactured 
and consumed, and then disposed of as waste. Pro-
duction processes generate significant waste 
streams, including gas emissions that contribute to 
the greenhouse effect and climate change. In con-
trast, the circular (bio)economy aims to recycle ma-
terials and minimize waste accumulation. While the 
circular economy includes various feedstocks, such 
as fossil-based materials, the bioeconomy specifi-
cally focuses on biomass, with recent emphasis on 
residual LB. A bioeconomy based on the innovative 

and cost-effective use of residual LB for the pro-
duction of bio-based products should be driven by 
integrated LBRs1–3. These biorefineries are often 
compared to traditional petrochemical refineries in 
terms of feedstocks, building block composition, 
processes, and the chemical intermediates produced 
at a commercial scale1. Although LB is chemically 
complex, it is no more so than petroleum4,5. Howev-
er, unlike petroleum, it is available worldwide. The 
entire supply chain in LBRs depends on many fac-
tors, such as the seasonal availability of feedstock, 
transportation and storage challenges due to its 
large volume, and chemical complexity, among oth-
ers6. To ensure sustainability, all three main compo-
nents of LB (lignin, cellulose, and hemicellulose) 
must be utilized in environmentally friendly and 
cost-effective ways for the co-production of multi-
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ple bio-based products in LBRs, which poses sig-
nificant challenges. High capital and operating ex-
penditures, irregularities in the biomass supply 
chain, immature technologies (such as pretreatment, 
isolation and purification, catalytic or biocatalytic 
conversion, etc.), and scale-up difficulties are the 
reasons why LBRs remain relatively rare world-
wide7.

Due to its complexity, the biorefinery concept 
presents challenges for industry, decision-makers, 
and investors in identifying the most promising op-
tions and assessing technological and economic 
risks1. The initial phase in LBRs involves pretreat-
ment. LB pretreatment methods can generally be 
categorized into physical, chemical, physicochemi-
cal, and biological approaches8,9. Selecting a pre-
treatment method requires finding a cost-effective 
and environmentally friendly approach that avoids 
the formation of inhibitors7. Additionally, challeng-
es arise in scaling up processes to extract, and iso-
late, and convert polymers from biomass into de-
sired products sustainably. One novel and sustainable 
extraction method for LBRs is the use of deep eu-
tectic solvents, as recently reviewed by Sharma et 
al.10 A life cycle assessment should be employed as 
a decision support tool early in the product develop-
ment stage within LBRs11,12. New technologies are 
needed to monitor, automatically control, and accu-
rately predict each step of the biorefinery process. 
In this context, ML is of great interest, as it can help 
save labor and time in experiments, as highlighted 
in numerous recent publications13–19. ML, a branch 
of artificial intelligence, was developed to address 
the need for efficient tools to analyze large datasets 
due to the automation of experimental equipment 
and the enormous increase in computer resources, 
which have generated numerous datasets20. Using 
statistical methods, ML enables computers to learn 
from data and make judgments without being ex-
plicitly programmed21, allowing systems to improve 
performance over time by learning from experience. 
Consequently, ML has become crucial for the de-
velopment of various industries, new products and 
services, data analysis, and visualization22, includ-
ing the advancement of biorefineries13–19.

The proposed review aims to provide research-
ers and decision-makers in the field of LBR devel-
opment with insights into the application of ML 
methods in various biorefinery steps. The first part 
discusses general information on LBRs, emphasiz-
ing technological challenges. The second part fo-
cuses on the analysis of ML algorithms and de-
scribes the development of ML models, including 
the importance of selecting model input variables. 
The third part reviews traditional applications of 
ML in several fields of biotechnology. Finally, the 

review examines the use of ML in various process 
steps within LBRs and outlines future research op-
portunities and perspectives.

Concept of lignocellulose biorefineries

The concept of biorefineries emerged in re-
sponse to increasing fossil resource prices, their un-
certain availability, and global environmental con-
cerns. Biorefineries vary widely depending on the 
feedstocks used, the type of intermediates generated 
(such as syngas or sugar), the conversion processes 
employed (thermochemical, biochemical, two-plat-
form), and the stage of technological development 
(conventional, advanced, etc.)4,23. They can also be 
categorized based on the different generations of 
feedstock used: first-, second-, third-, and fourth-
generation biorefineries24–26. Some specific charac-
teristics of different types of biorefineries are de-
tailed in Table 1.

LBRs are notable for their ability to produce 
multiple products from LB through several process 
stages, as presented in Fig. 1a. These biorefineries 
can be either energy- or material-driven23. The con-
version of lignocellulosic biomass into high-value 
chemicals involves several key steps, including pre-
treatment, hydrolysis, and the subsequent conver-
sion of the resulting sugars and other components 
into desired products (Fig. 1b)27,28.

In addition to biological processes, various 
thermochemical processes have been developed for 
biomass utilization. Key information about these 
thermochemical processes29–33 is summarized in Ta-
ble 2.

LB constitutes more than 90 % of all biomass 
and does not compete with food resources34. This 
includes energy crops, grasses, and biological resi-
dues from various industrial processes, such as har-
vest residues, wood industry residues, food industry 
residues, and household biowaste, etc.34–37

LB is primarily composed of lignin, cellulose, 
and hemicellulose present in varying amounts and 
ratios depending on the type and origin of the bio-
mass. It also contains smaller amounts of pectin, 
protein, extractives, and inorganic compounds. The 
complex and variable chemical structure of LB pos-
es a barrier to its widespread use in producing bio-
based products3,38. Determining the chemical com-
position of LB is a crucial first step in selecting the 
appropriate pretreatment method39. Conventional 
methods for this purpose are often time-consuming 
and not environmentally friendly, highlighting the 
need for rapid and accurate alternatives40,41. The 
choice of feedstock is a critical determinant in uti-
lizing LB for chemical production, significantly in-
fluencing both the efficiency and sustainability of 
the process42,43. Feedstock composition, which in-
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Ta b l e  1 	– 	Overview of various types of biorefineries24–26

Biorefinery 
type Feedstock Typical product Advantages Disadvantages

First-
generation

Food crops (corn, sugarcane, or 
soybeans)

Bioethanol
Biodiesel

Established technology with well-
understood processes.
Provides an alternative use for 
agricultural produce.

Competes with food 
supply.
Limited feedstock 
availability.

Second-
generation

Non-food biomass, including 
agricultural residues (e.g., straw, 
corn stover), woody biomass, 
and dedicated energy crops like 
switchgrass or miscanthus

Cellulosic 
ethanol
Bio-based 
chemicals

Does not compete with food supply.
Utilizes a broader range of feedstocks.

More complex and 
costly technology.
Requires advanced 
pretreatment and 
processing methods.

Third-
generation

Microalgae and other aquatic 
biomass as feedstocks

Algal biofuels
Algae-derived 
chemicals

High productivity and growth rates of 
algae.
Can be grown on non-arable land and 
using non-potable water.
Potential for wastewater treatment.

High water and nutrient 
requirements.
Challenges in harvesting 
and processing algae 
economically.

Fourth-
generation

Focuses on advanced 
biotechnological methods, 
including genetic engineering 
and synthetic biology, to 
optimize feedstock production 
and conversion processes

Genetically 
modified 
organisms
Carbon capture 
and utilization

Potential for significantly higher 
efficiencies and lower environmental 
impacts.
Tailored production of specific 
high-value chemicals and fuels.

Ethical and regulatory 
concerns regarding 
GMOs.
High initial research and 
development costs.

F i g .  1  – (a) Biorefinery concept: Types of lignocellulosic biomass (LB) used for the production of a variety of energy- 
and material-driven products (b) Steps of conversion of lignocellulosic biomass into high-value chemicals

(a)

(b)
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cludes varying proportions of cellulose, hemicellu-
lose, and lignin, determines the suitability of specif-
ic biomass types for particular chemical pathways. 
For instance, hardwoods, softwoods, and agricultur-
al residues like corn stover or wheat straw exhibit 
distinct structural and chemical characteristics that 
affect their conversion efficiency44,45. Hardwoods, 
which typically have higher cellulose content, are 
more suitable for bioethanol production, while agri-
cultural residues, rich in hemicellulose, are more 
suited for producing bio-based chemicals such as 
xylitol or furfural46,47. Moreover, the inherent vari-
ability in feedstocks affects both the yield and qual-
ity of the final products. Consistency in feedstock 
quality ensures predictable processing outcomes, 
which is essential for industrial-scale operations. 
Variations in moisture content, ash content, and the 
presence of inhibitory compounds can complicate 

the pretreatment and conversion processes, leading 
to inefficiencies and reduced product quality48,49. 
Selecting feedstocks that are locally available and 
abundant can reduce transportation costs and car-
bon footprint, enhancing the overall sustainability 
of the biomass conversion process. The economic 
viability of LB conversion also depends on the cost 
and availability of the chosen feedstock. Agricultur-
al residues and forestry by-products are often con-
sidered waste materials and can be sourced at lower 
costs compared to dedicated energy crops. Howev-
er, the seasonal availability of some feedstocks ne-
cessitates robust supply chain management to en-
sure a consistent input to biorefineries50,51. In 
summary, selecting the appropriate feedstock is fun-
damental to optimizing the yield, quality, and eco-
nomic feasibility of chemicals produced from LB. A 
thorough understanding of the chemical composi-

Ta b l e  2 	– 	Thermochemical process used in biomass utilization29–33

Process Mechanism Product Advantages Disadvantages

Torrefaction

Involves heating biomass in an inert or 
low-oxygen environment to 
temperatures typically ranging from 200 
°C to 300 °C.

Torrefied biomass  
or biocoal

Improved energy density
Biomass hydrophobicity
Uniformity
Reduced transportation costs

Energy consumption
Capital and 
operational costs

Pyrolysis

Thermal degradation of various biomass 
(either a solid or liquid) in the absence 
of oxygen, producing bio-oil, biochar, 
and gases as fuels in a sustainable and 
green manner. Is usually conducted 
under elevated temperatures ranging 
from 400 to 600 °C.

Biochar
Bio-oil
Syngas

Versatility in products
Waste management
Carbon sequestration
Reduction of emissions

High capital and 
operational costs
Complexity in process 
control
Bio-oil stability

Gasification

A process that converts organic 
materials (biomass) into a combustible 
gas mixture called syngas (synthesis 
gas). This process occurs at high 
temperatures (typically 700–1000 °C) in 
an environment with a controlled 
amount of oxygen, steam, or air, which 
is insufficient for complete combustion.

The syngas produced 
primarily consists of 
carbon monoxide 
(CO), hydrogen (H₂), 
carbon dioxide 
(CO₂), methane 
(CH₄), and other 
trace gases

High energy efficiency
Versatile syngas applications
Renewable energy source
Waste reduction

High capital costs
Complex process 
control
Feedstock variability
Limited scalability

Liquefaction

A process that converts solid biomass 
into liquid fuels and chemicals through 
thermochemical or biochemical 
methods. Two primary methods for 
biomass liquefaction are: hydrothermal 
liquefaction (HTL), and fast pyrolysis.

Biofuels or as 
intermediates for 
producing higher-
value chemicals

High energy density products
Efficient conversion
Compatibility with existing 
infrastructure
Valorization of waste

High capital and 
operational costs
Complex process
Environmental 
concerns
Hydrogen and catalysts

Carbonization

Converts organic materials into 
carbon-rich solids, primarily biochar, 
through the application of heat in a 
low-oxygen or oxygen-free 
environment. The process involves 
heating biomass to temperatures 
typically between 300 °C and 700 °C, 
resulting in the thermal decomposition 
of organic materials.

Biochar
Biochar production
Waste management
Energy production
Soil health improvement

High energy input
Capital and 
operational costs
By-product 
management
Scale-up challenges
Potential release of 
pollutants
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tion and availability of different biomass types al-
lows for tailored processing strategies that maxi-
mize efficiency while minimizing environmental 
impact and costs52.

Deciding on the location for biorefineries is 
crucial as it significantly influences both investment 
and operating costs. The location also has environ-
mental implications, particularly through transpor-
tation and logistics activities for supply chain sourc-
ing. Once a biorefinery’s location is established, the 
supply chain must be designed53, including decisions 
on which crops to harvest, when to harvest them, 
and how to transport them (whether crops or resi-
dues) to the biorefinery. For economic feasibility, 
biorefineries must fully utilize the LB. This means 
adopting strategies that use all the building blocks 
of lignocellulose for the production of bio-based 
products. Additionally, the waste streams generated 
during the pretreatment and fractionation of LB, as 
well as during the extraction, isolation, and catalytic 
or biocatalytic production of the products from lig-
nin, cellulose, or hemicellulose, should also be ef-
fectively utilized. The optimal approach involves 
the cascade utilization of lignocellulose54.

For instance, combining thermal and chemical 
pretreatment methods can result in the formation of 
highly toxic chemical compounds, which inhibit the 
microorganisms used in further microbial conver-
sion of pretreated biomass into products55. Guo et 
al.56 summarized various pretreatment methods, de-
tailing the inhibitors, their mechanisms of action, 
and their removal, along with information on their 
sources, whether lignin, hemicellulose or cellulose. 
When selecting an appropriate pretreatment meth-
od, considerations should include sustainability, en-
ergy consumption, investment costs, and the overall 
efficiency of the processes9,40. The selection process 
is further complicated by the difficulty in assessing 
the efficiency of various options due to limited data 
representation39. Another challenge lies in choosing 
upstream methods, such as the extraction and/or 
isolation of desired polymers, as well as selecting 
methods (catalytic, biocatalytic, or microbial using 
advanced metabolic engineering technologies, etc.) 
to convert the process residues into products3,7,57,58.

There remain significant technological and 
economic challenges in utilizing LB to produce 
chemicals with high selectivity and yield. It is often 
suggested, for economic reasons, to integrate bioen-
ergy production with the production of chemicals 
and/or other bio-based products23. Sustainability in 
integrated LBRs requires developing new technolo-
gies or improving existing ones for each step of the 
process. When producing chemicals from LB, 
tradeoffs between yield and quality involve a deli-
cate balance of feedstock selection, pretreatment, 

enzymatic hydrolysis, fermentation, catalytic con-
version, and downstream processing59–61. Optimiz-
ing these factors requires a holistic approach that 
considers both technical and economic aspects to 
achieve a feasible and sustainable process. Fig. 2 
provides a systematic overview of the tradeoffs be-
tween yield and quality in the production of chemi-
cals from LB. Given the substantial amount of data 
generated by automation and computerization in 
this field, there is a pressing need for rapid and ef-
fective data analysis.

Machine learning in lignocellulose 
biorefineries

Basic concept of machine learning

According to Schmidt et al.62, the advancement 
of information technology has enabled the efficient 
implementation of ML algorithms for tasks such as 
classification, regression, clustering, or dimensional-
ity reduction of high-dimensional input data. Coupling 
ML algorithms with specific process or phenomena 
databases has shown considerable promise in iden-
tifying complex relationships implicit in the data63.

The term ML refers to a subset of artificial in-
telligence that uses a series of methodologies or al-
gorithms that enable computers to automate da-
ta-driven model development by systematically 
discovering patterns in statistically significant 
data64,65. Artificial intelligence broadly encompasses 
technologies that mimic cognitive processes such as 
learning and problem solving, often associated with 
human intelligence. ML focuses on algorithms that 
improve their performance as they are exposed to 
more data, while deep learning, a subset of ML, 
uses multi-layered neural networks to learn from 
large datasets.

According to Basha and Rajput66, and Wang et 
al.67, solving problems using ML involves three key 
steps: (i) framing the learning problem in an algo-
rithm that the computer can process, (ii) choosing 
an evaluation method to assess the quality or accu-
racy of the ML system’s predictions, often a classi-
fier, and (iii) optimizing the process. ML algorithms 
(Fig. 3) are classified into taxonomies based on the 
algorithm’s expected output68: (a) Supervised learn-
ing, (b) Unsupervised learning, (c) Semi-supervised 
learning, (d) Reinforcement learning, and (e) Trans-
duction. Commonly applied ML methods include 
K-Nearest Neighbours (K-NN), Naïve Bayes Clas-
sification (NBC), Decision Tree (DT) Classifica-
tion, Random Forest (RF), Gradient-Boosted Deci-
sion Trees (GBDT), Support Vector Machines 
(SVMs), and Artificial Neural Networks (ANN)69,70.
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The K-NN algorithm categorizes components 
based on the closest training samples in the feature 
space71,72. K-NN is an instance-based learning or la-
zy-learning method, where the function is estimated 
locally, and full computation is delayed until classi-
fication. When there is little deep information about 
the data distribution, K-NN is the most basic and 
simplest classification algorithm71,72. Because of its 
simplicity, ease of implementation, and effective-
ness, K-NN is a widely used classification tech-
nique. It is one of the top 10 data mining algorithms 
and is widely used in a variety of sectors.

NBC is a classification algorithm that predicts 
the most likely class by combining frequency and 
value combinations in the given dataset73,74. Deter-
mining which domain knowledge is beneficial for 
selecting information features in model data classi-
fication involves several steps and strategies. The 
goal is to leverage domain expertise to identify fea-
tures that are most likely to improve model perfor-
mance while avoiding irrelevant or misleading in-
formation75. For example, Exploratory Data Analysis 
(EDA)76 can be used to understand the distribution, 
relationships, and patterns in the data. Furthermore, 

F i g .  2 	–	 Systematic overview of the tradeoffs between yield and quality in the production of  
chemicals from LB59–61
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correlation analysis77 calculates correlation coeffi-
cients to identify relationships between features and 
the target variable, while filter methods use statisti-
cal techniques78 (e.g., chi-square test, mutual infor-
mation) to select features that have a strong rela-
tionship with the target variable. DTs are among the 
most straightforward methods for data categoriza-
tion because of their ease of interpretation and ap-
plication. DTs split the input space into sub-spaces 
associated with a classifier and can be used to rep-
resent numerical (ordered) or categorical (unor-
dered) properties79. RF may be applied to classifica-
tion and regression in ML. By using RF, the 
algorithm predicts a value or category through com-
bining results from a number of decision trees. It 
uses ensemble learning, the process of merging nu-
merous classifiers to solve a complicated issue and 
enhance the model’s performance80. GBDT involves 
converting a straightforward cut-based analysis into 
a multivariate method. The idea behind a GBDT is 
to not dismiss events that fail a criterion right away, 
but rather to see whether other criteria may assist to 
appropriately classify these occurrences81. SVM 
may be employed for either regression or classifica-
tion applications. The SVM algorithm’s objective is 
to achieve a hyperplane in an N-dimensional space 
(N = the number of characteristics) that effectively 
classifies the data points82,83. ANN are nonlinear 
models inspired by biological neural networks84. 
ANNs consist of interconnected neurons, where 
each neuron functions as a parallelized processor 
capable of extensive data processing and classifica-

tion85. In the same way that mammalian neurons 
learn from historical events and failures to attain 
goal outcomes, the structure of an ANN is altered 
depending on the data presented within the learning 
process. The ANN structure includes input, hidden, 
and output layers. Artificial neurons receive inputs 
and generate outputs that may be sent to numerous 
other neurons86. Over the years, specialized ANN 
architectures have emerged. Recurrent Neural Net-
works (RNN)87 such as Long Short-Term Memory 
(LSTM)88, for example, are particularly well-suited 
for processing sequential information. In contrast, 
applications in the areas of image processing often 
draw upon Convolutional Neural Networks (CNN)89 
since they excel in recognizing patterns within the 
input data.

CNNs have also been used to extend natural 
language processing models and speech processing90. 
Transformer-based architectures such as Bidirec-
tional Encoder Representations from Transformers 
(BERT)91, DistilBERT92, and Generative Pretrained 
Transformer 3 (GPT-3)93 allow unsupervised pre-
training on massive datasets, reducing the data re-
quired for supervised task-specific fine-tuning. 
They also consume the entire input sequence at 
once, and use an attention mechanism to contextu-
alize positions within the input sequence. Trans-
formers, therefore, address major shortcomings of 
RNN architectures, such as lower parallelization 
due to dependencies between computation steps, 
and the vanishing gradient problem.

F i g .  3  – Machine-learning algorithms classification
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The development of an ML model typically in-
cludes several phases, as shown in Fig. 4. The first 
phase, “Data Analysis” involves problem identifica-
tion, data collection, and feature analysis. This first 
phase is crucial as the quality of the model’s output 
depends on the input data18. It includes identifying 
missing values, data outliers, converting categorical 
data into numeric data, and selecting suitable prop-
erties that contribute to model accuracy. The second 
phase, “Building the ML Model”, involves dividing 
the data into training and testing sets, selecting an 
appropriate ML algorithm, and developing the ML 
model based on the training dataset. The third 
phase, “Tuning Model Parameters”, includes evalu-
ating the model’s applicability and hyperparameter 
tuning. It is important to mention that in the third 
step, feature engineering is not required for deep 
learning models. The process of selecting a set of 
ideal hyperparameters for a learning algorithm is 
known as hyperparameter tuning. A hyperparameter 
is a model parameter whose value is determined 
prior to beginning the learning process. The fourth 
phase of ML model development involves model 
selection based on performance metrics, and if the 
performance is not satisfactory, the process of build-
ing and tuning the model is repeated. Ensuring the 
accuracy and representativeness of a generalized 
machine learning model, while avoiding overfitting, 
involves a combination of good practices in model 
validation, evaluation, and monitoring94,95. Various 
techniques can be used to achieve this.

For example, k-fold cross-validation divides 
the dataset into k subsets. The model is trained k 
times, each time using k-1 subsets for training and 
the remaining subset for validation. This process 
ensures that every data point is used for both train-
ing and validation, providing a robust estimate of 
model performance96.

Holdout validation97 splits the dataset into three 
parts: training, validation, and test sets. The training 
set is used to build the model, the validation set is 
used to tune hyperparameters and for initial model 
evaluation, and the test set is used for the final eval-

uation of the model’s performance. The test set 
should not be used during model training or hyper-
parameter tuning.

Hyperparameter tuning is used to optimize the 
hyperparameters using techniques like grid search, 
random search, or Bayesian optimization, ideally in 
conjunction with cross-validation to avoid overfit-
ting on the validation set98.

Application of machine learning methods  
in biotechnology

Advancements in biotechnology increasingly 
rely on the significant use of big data gathered 
through sophisticated analytical equipment99–101. 
Coupling ML algorithms with available databases 
has shown considerable potential in identifying 
complex connections in biotechnological process-
es102. As extensively described by Mowbray et al. 63, 
ML algorithms have applications in bioreactor engi-
neering, optimization and control of microbial fuel 
cells, development of microfluidic and soft sensors, 
development of new biomaterials, modeling and op-
timization of biofuels and bioenergy processes, en-
vironmental engineering, metabolic engineering, 
and cell culture and protein engineering.

This review presents ML methods and their ef-
ficiency, used in metabolic engineering (Table 3), 
bioprocess development (Table 4), and environmen-
tal engineering (Table 5).

Due to their structure, ANNs are suitable for 
modeling highly nonlinear processes with even a 
small training dataset. Zhou et al.103 developed an 
ANN model to optimize heterologous b-carotene 
and violacein biosynthesis pathways in Saccharo-
myces cerevisiae, implementing the examination of 
a small fraction of combinatorial space to accurate-
ly adjust the expression level of each gene in the 
analyzed pathway. Similarly, Zhang et al.104 used 
genotype data, growth profiles, and biosensor data 
to optimize the aromatic amino acid tryptophan 
pathway in S. cerevisiae with the Automated Rec-
ommendation Tool (ART) and the EVOLVE algo-
rithm. Both methods were able to describe the train-

F i g .  4  – Development of ML models (adopted from99,100)
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ing set data with high precision. The authors 
reported that the ML tools enabled the engineering 
of the complex aromatic amino acid metabolism in 
yeast with a tryptophan titer increase of up to 74 % 
and a process productivity increase of up to 43 %.

However, despite the growing number of stud-
ies highlighting the advantages of ML, utilizing the 
data for further analysis can be challenging due to 
experimental conditions and the lack of metadata105. 
Tulsyan et al.106 presented an efficient Bayesian 

non-parametric approach for modeling and optimiz-
ing biopharmaceutical batch processes with limited 
data. Onel et al.107 applied Support Vector Ma-
chine-based selection algorithm to monitor the pen-
icillin production process based on big data gath-
ered through online measurements (fermentation 
volume, dissolved O2 concentration, dissolved CO2 
concentration, temperature in reactor, pH, feed rate, 
feed temperature, agitator power, cooling/heating 
medium flow rate, heating medium temperate, hot/

Ta b l e  3 	– 	Application of machine-learning methods in metabolic engineering

ML method* Application ML method efficiency Reference

1 ANN model coupled 
with YeastFAb

Optimization of beta carotene biosynthetic 
pathway in S. cerevisiae to produce 
violacein.

Model was developed and verified for the 
existence of a strain that showed a 2.42-fold 
titer improvement in violacein production 
among 3125 possible designs.

103

2 FNN Effects of culture media on gene regulation 
in E. coli.

Model predicts the effects of culture media 
(up to 10 nutrients) on gene regulation with 
accuracy of 0.867.

113

3 GNN Prediction of enzyme-substrate pairs. Model ensured enzyme-substrate pared 
selection accuracy above 91 %.

114

4 LG, RF, gradient-
boosted DT, and 
SVM

Prediction of enzyme activity for a set of 
bacterial nitrilases based on docking 
descriptors.

Each of the ML models performed similarly 
(average ROC = 0.9, average accuracy = ~82 
%).

115

5 RF Modeling of the human mesenchymal 
stromal cells expansion by predicting the 
population doubling time based on 
individual donor characteristics.

Mean absolute prediction errors range from 
0.8 to 0.99. 116

6 NB, K-NN, QDA, 
DT, AB, RF, and NN

Automatic classification of living and dead 
microalgae based on the multispectral 
fluorescence microscopy images.

RF model classifies the cells with 82 % 
accuracy. 117

7 LRM, RF, scalable 
TBS, NN, K-NN,  
and SVM with radial 
kernel

Classification of feed substrates (acetate, 
carbohydrates and wastewater) in microbial 
fluid cells based on genomic data divided 
into four groups.

NN model ensured data grouping with 
accuracy around 93 %. 118

8 MPLS and evolving 
PLS model

Prediction of end-point concentration of the 
monoclonal antibodies in CHO cell cultures 
based on metabolomics data of the culture.

PLS model with variables selection predicts 
the end point concentration of mAb with R2 
greater than 0.9.

119

9 TBDN Identification of small molecules for their 
mass spectrometric spectra.

53 % precision for molecules with a 
molecular mass of 500 Da or lower.

120

10 TNN Protein-specific de novo molecule design. Efficiency of the proposed method in terms of 
predicted binding affinity of generated ligands 
to the target protein, percentages of valid 
diverse structure, drug-likeness metrics and 
synthetic accessibility.

121

*Adaptive Boosting (AB); Artificial Neural Network (ANN); Decision Tree (DT); Feedforward Neural Network (FNN); Graph Neural 
Networks (GNN); K-Nearest Neighbors Algorithm (K-NN); Logistic Regression (LG); Logistic Regression Multiclass (LRM); 
Multiple Partial Least Squares Regression (MPLS); Naive Bayes (NB); Neural Network (NN); Partial Least Squares Regression 
(PLS); Quadratic Discriminant Analysis (QDA); Random Forest (RF); Support Vector Machine (SVM); Transformer Neural Network 
Approach (TNN); Transformer-Based Deep Neural Network (TBDN); Tree Boosting System (TBS).
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Ta b l e  4 	– 	Application of machine learning in bioprocess development

ML method* Application ML method efficiency Reference

1 ANN Optimization of acetic acid production 
considering glucose and ethanol 
concentrations and incubation period.

Optimal process conditions yield 4.88 g/100 
mL of acetic acid.

122

2 RF, Xgboost, K-NN, 
and ANN

Prediction of medium-chain carboxylic acid 
concentration and production rate based on 
environmental and operational parameters 
and genomic data.

RF model had the highest prediction accuracy 
of 0.83, 0.87, and 0.89 when the operational 
parameters, genomic data, and combined 
dataset were used as input parameters, 
respectively.

123

3 ELM, ANN, and RF Analysis and simulation of anaerobic 
digestion of dry fermentation.

ELM best predicted biogas production with R2 
of 0.9574 and MAE of 0.678.

124

4 Partly supervised 
reinforcement 
learning algorithm

Control of semi-continuous process of yeast 
fermentation (Input: substrate concentration 
in feed and the dilution rate; output: biomass 
and substrate concentration).

Mean square error of 1.5745 for biomass 
concentration prediction.

125

5 Asynchronous 
advantage actor-critic 
algorithm belonging 
to deep reinforcement 
learning strategy

Fed-batch control of the bioreactor for the 
production of cyanobacterial phycocyanin.

52.1 % increase in product yield and 20.1 % 
increase in cyanobacterial-phycocyanin 
concentration compared to reactor without 
control.

126

6 GBRM Evaluation of Candida antarctica growth 
kinetics for lipase production.

Reduction in time and resources by cca. 50 % 127

7 PCA and PLS Detection and quantification of harmful 
cyanobacterial species in microalgal 
bioreactor based on Low Resolution Raman 
Spectra.

Detection and quantification of algal and 
cyanobacterial species at concentrations of 
103 cells/mL.

128

8 PCA, PLS, NN, RF, 
SVM, and CR

Prediction of polyhidroxybutirate (PHB) 
concentration produced by Cupriavidus 
necator based on near-infrared spectra 
(NIR).

PLS performance showed the best prediction 
based on the raw spectra (R2 0.66 and 
RMSEP 0.38 g L–1).

129

9 SVM Identification of the flow regime in a bubble 
column reactor based on the data collected 
by optical probe (Inputs: dimensionless 
variance of bubble time and time scale).

Linear SVM model predicted the flow regime 
with 98.1 % accuracy.

130

10 K-NN Optimisation of mycophenolic acid 
production with Penicillium 
brevicompactum.

1.64-fold higher production efficiency. 131

11 MLR, MLP, and 
SMO

Modeling of ultrasound-mediated 
Escherichia coli cell disruption (Inputs: cell 
mass concentration, sonication time, duty 
cycle and acoustic power; Output: release of 
nitrilase and cytosolic proteins and extent of 
cell disruption.

Maximum cell disruption of 92 % was 
achieved under optimized process conditions.

132

12 DT classification Optimization of algal biomass productivity 
and lipid content.

DT method detected 11 combinations of input 
variables contributing to higher production 
yield.

133

*Artificial Neural Network (ANN); Cubist Regression (CR); Decision Tree (DT); Extreme Gradient Boosting (XGBoost); Extreme 
Learning Machine (ELM); Gradient Boosting Regression Model (GBRM); K-Nearest Neighbor (K-NN); Multi-layer Perceptron 
(MLP); Multiple Linear Regression (MLR), Neural Network (NN), Partial Least Squares Regression (PLS); Principal Component 
Analysis (PCA); Random Forest (RF); Sequential Minimal Optimization (SMO); Support Vector Machine (SVM).
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Ta b l e  5 	– 	Application of machine learning in environmental engineering (waste and wastewater treatment)

ML method* Application ML method efficiency Reference

1 Eight ML 
models

Simulation of micropollutants’ behaviour in 
forward osmosis.

ANFIS in forecasting micropollutants removal 
(R = 0.99; RMSE = 0.56 %).

134

2 CNN Development of the multivariable identification 
model based on a compacted cascade neural 
network to identify membrane fouling.

Models described membrane permeability, 
integrity, and life with accuracy > 99 %. 135

3 GA Prediction of effluent concentrations and biogas 
production in wastewater treatment processes.

Models described effluent and biogas 
concentrations with accuracy > 99 %.

136

4 Model based 
on HGSA and 
ANFIS

Simulation of electrochemical oxidation process 
(reaction time, pH, salt concentration, and 
voltage).

ANFIS model described COD and TOC 
removal efficiency with RMSE 2.63. 137

5 Feed-forward 
back-
propagation-
based ANN

Selenite removal based on influent selenite 
concentration and hydraulic retention time in 
fungal pelleted airlift bioreactor for wastewater 
treatment.

ANN model with high values of the 
correlation coefficient (0.96 ≤ R ≤ 0.98), low 
root mean square error (1.72 ≤ RMSE ≤ 2.81), 
mean absolute percentage error (1.67 ≤ 
MAPE ≤ 2.67).

138

6 DCCN Modeling and prediction of real municipal 
wastewater treatment in anaerobic membrane 
bioreactors

Accuracy rate of up to 97.44 %.
139

7 MLP NNM Prediction of ammonium, total phosphorus and 
total nitrogen removal in anaerobic-anoxic-oxic 
reactor.

R2 for ammonium removal were in the range 
from 0.763 to 0.876. 140

8 RNN Simulation of the long-term operation of an 
osmotic membrane bioreactor-clarifier.

RMSE of 3 % and 2 % of the average 
conductivity values for OMBR and OMBRC, 
respectively.

141

9 RNN Early prediction of osmotic membrane bioreactor 
system to reduce the environmental impacts of 
wastewater.

R2 of 0.92 and 0.93 for the prediction of water 
flux and membrane fouling simulations. 142

10 Combination 
of ANN, 
ANFIS, and 
SVR

Prediction of process parameters that describe 
biomass properties, operation parameters, and 
effluent properties of the biological nutrients 
removal wastewater treatment process.

Average correlation coefficient for the model 
outputs was 69 %. 143

11 NNM Prediction of nitrogen removal rate in multi-soil-
layering bioreactor at different loading rates.

R2 for nitrogen removal rate was greater than 
0.93.

144

12 Hybrid ML 
method based 
on RF and 
short-term MA

Redefending the key factors and improving the 
production of output data form the biogas plant.

20 % increased accuracy compared to 
traditional analytical models. 145

13 GBM, SVM, 
RF, AdaBoost

Modeling of hydrogen production from wastewater 
during dark fermentation based on Fe 
concentration.

R2 for used methods were 0.893, 0.885, 0.902 
and 0.889. 146, 147

14 SARIMAX, 
RF, SVM, 
GTB, ANFIS, 
LSTM

Prediction of total phosphorus concentration at the 
outflow from the wastewater treatment plant based 
on real-time gathered data (24 h x 365 days) for 
10 wastewater parameters.

SARIMAX showed the lowest mean square 
error and the highest coefficient of 
determination.

148

15 ANN, SVR, 
ANFIS

Prediction of the aerobic granulated sludge process 
performance based on the lab-scale reactors 
gathered data.

Model predicted process performance with R2 
= 95.7 %. 143

17 DNN, RTRF, 
ABR, and GBR

Modeling efficiency of membrane bioreactor for 
wastewater treatment.

The highest R2 (0.847, 0.792 and 0.851) were 
obtained for GBR.

149

18 Q-LA Optimization of the hydraulic retention times in 
anaerobic and aerobic reactions of biological 
phosphorous removal.

Stable output concentrations at optimum 
process conditions. 150

*Adaptive Boosting Regression (ABR); Adaptive Neuro-Fuzzy Inference System (ANFIS); Artificial Neural Networks (ANN); 
Cascade Neural Network (CNN); Densely Connected Convolutional Network (DCCN); Deep Neural Network (DNN); Genetic 
Algorithm (GA); Gradient Boosting Machine (GBM); Gradient Boosting Regression (GBR); Gradient Tree Boosting (GTB); Hunger 
Games Search Algorithm (HGSA); Long Short-Term Memory (LSTM); Multilayer Perceptron (MLP); Neural Network Model (NNM); 
Q-Learning Algorithm (Q-LA); Random Forest (RF); Recurrent Neural Network (RNN); Regression Tree (RT); Seasonal Autoregressive 
Integrated Moving Average (SARIMAX), Short-Term Memory Analysis (Short-Term MA); Support Vector Machine (SVM); Support 
Vector Regression (SVR).
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cold switch, base flow rate and acid flow rate). The 
fault and time-specific models were trained utiliz-
ing three separate period methods, and obtained re-
sults showing that the suggested methodology pos-
sessed potential for online diagnosis in batch 
operating processes.

In environmental engineering, ML methods are 
used for modeling and optimizing membrane biore-
actors108,109. When working with real-time applica-
tions of ML, i.e., membrane bioreactor technology, 
membrane fouling presents the biggest challenge, 
therefore significant efforts have been made in de-
veloping reliable and accurate membrane fouling 
models that can be used on the industrial scale. Ha-
medi et al.109 demonstrated the potential of artificial 
neural networks (ANNs), gene expression program-
ming (GEP), and least square support vector ma-
chine (LSSVM) modeling for prediction of the foul-
ing resistance. The obtained results showed that the 
LSSVM model was the most suitable for the predic-
tion of fouling resistance with the lowest mean 
squared error (0.0002), maximum absolute percent-
age error (3.18), minimum absolute percentage er-
ror (0.01), and the highest coefficient of determina-
tion (0.99). Chen et al.108 developed radial basis 
function ANN models for prediction of interfacial 
energy related to membrane fouling based on con-
tact angles of three probe liquids, zeta potential, and 
separation distance achieving high accuracy (R2 > 
0.99). Hazrati et al.110 used feed-forward ANN with 
a back propagation algorithm for predicting the 
chemical oxygen demand (COD) and transmem-
brane pressure in petrochemical wastewater treat-
ment in a membrane bioreactor. Mixed liquor sus-
pended solids, hydraulic retention time, and time 
were used as the modeling inputs, achieving a total 
correlation coefficient of 0.999, demonstrating that 
ANNs possess great potential for including multiple 
variables in highly nonlinear interactions, such as 
those occurring in membrane bioreactors during 
wastewater treatment. Bioreactors are also com-
monly used for the treatment of waste gases, and 
ML methodologies are employed for optimizing 
these processes. For instance, Baskaran et al.111 de-
veloped an efficient ANN model (R2 = 0.992) for 
predicting the performance of an airlift bioreactor 
used in the biological removal of trichloroethylene 
by Rhodococcus opacus. Similarly, Baskaran et al.112 
employed an ANN model (R2 = 0.992) for predict-
ing the efficiency of a continuous stirred tank biore-
actor in the biological removal of trichloroethylene 
by Rhodococcus opacus.

Application of machine learning  
in lignocellulose biorefineries

According to Wang et al.151, ML can be used 
for classification, regression, and optimization tasks 

within biorefinery operations. Ge et al.15 presented 
a comprehensive overview of various ML tech-
niques for analyzing LB, highlighting their use cas-
es, including advantages and challenges in fields 
such as high-value utilization transformation, chem-
ical characterization, process simulation, and the 
preparation of functional materials from lignocellu-
lose. Ascher et al.146 stressed the importance of con-
sidering correlated features to avoid losing critical 
variables, noting that both numerical and categori-
cal variables are essential. Reshmy et al.3 highlight-
ed the importance of fine-tuning biomass pretreat-
ment strategies to achieve optimal techno-economic 
feasibility. In general, ML tools have shown signif-
icant potential in predicting the chemical composi-
tion of LB, analyzing and optimizing LB pretreat-
ment and treatment processes, and in analyzing and 
optimizing the biofuel production process. This re-
view presents various ML methods, including their 
efficiency that are used for determining chemical 
composition, and optimizing pretreatment, treat-
ment and biofuel production from LB (Table 6).

While the predictive performance of most ML 
models are generally accurate (R2 > 0.85), interpret-
ing and comparing various models remains chal-
lenging, with no single model being universally sat-
isfactory. The data presented suggests that ANN 
modelling is the most common ML method used in 
various stages of LBRs. The application of ANN 
and ANFIS in modeling LCB valorization processes 
has been reviewed by Pradhan et al.152 The nonlin-
ear and adaptive nature of ML methods makes them 
well-suited for handling large databases. Recent de-
velopments show that novel and hybrid ma-
chine-learning algorithms are continuously being 
developed and refined to further improve predictive 
efficiency. Table 7 provides a brief overview of the 
data matrices used in ML modeling within lignocel-
lulose biorefineries, illustrating their size and com-
plexity. 

Conclusions and future perspectives

Machine learning (ML) offers numerous ad-
vantages across various applications, including lig-
nocellulosic biorefineries (LBRs). ML can identify 
patterns within data, forecast future trends, auto-
matically create new features, cluster data, and rou-
tinely detect outliers, all of which are essential for 
enhancing the efficiency and productivity of LBR 
processes. In the context of LBRs, the application 
of ML is crucial due to the multitude of variables 
that affect process efficiency. Highly nonlinear 
mathematical models are required for accurate de-
scription, prediction, in-silico analysis, and optimi-
zation. ML ensures a thorough analysis of large data
sets, although a comprehensive experimental dataset 
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Ta b l e  6 	– 	Application of machine-learning methods in lignocellulosic biorefinery

Step within  
lignocellulosic biorefinery ML method* ML method efficiency Reference

1 Chemical analysis: Non-
invasive analysis of cellulose, 
hemicellulose, and lignin 
concentrations in corn stover

CNN models with Bayesian training 
algorithm based on the FTIR absorption 
peak parameters.

CNN models with R2 = 0.98–0.99 and 
RMSE of 0.11. 153

2 Chemical analysis: Rapid 
analysis of cellulose and lignin 
concentrations in 30 crops

BiPLS with PCA and SVM for 
establishing concentrations based on 
NIR spectra.

Models with R2 = 0.91–0.99.
154

3 Chemical analysis: Analysis of 
cellulose, lignin, pentosane, and 
holocellulose concentrations in 
jute fibers

ANN models for predicting chemical 
composition of jute fibers based on 
FT-NIR spectra.

Prediction efficiency of ANN varied 
from 72–99 % for calibration, 
validation, and test datasets.

155

4 Chemical analysis: Analysis of 
cellulose, hemicellulose, and 
lignin in 178 samples of LB

ANN models for predicting cellulose, 
hemicellulose, and lignin concentration 
of LB based on proximate analysis data.

ANN model predicted all major 
biochemical components with R2> 0.96. 156

5 Chemical analysis: Analysis of 
hemicellulose and lignin in rice 
husk, redwood, pine wood, 
rubber wood biomass

PCA, PLS-DA, SVM, RBFNN, and 
ELM to quantitatively distinguish 
biomass pellets based on laser-induced 
breakdown spectroscopy data.

RBFNN model showed a 100 % 
average recognition accuracy in 
calibration and 96.8 % average 
recognition accuracy in prediction sets, 
respectively.

157

6 Chemical analysis: Estimation 
of holocellulose content

RR, LR, and ENR, classical ML 
algorithms (SVR, DT, and RF), and 
advanced GBM algorithms (LightGBM, 
CatBoost, and XGBoost) to build the 
holocellulose content based on the 
Raman spectra.

CatBoost and XGBoost could predict 
holocellulose content with high 
accuracy of test R2 above 0.93 and test 
RMSE less than 0.29 %.

158

7 Pretreatment: Pretreatment of 
mixed vegetable waste by 
organic and inorganic acid

ANN model for optimization of the 
mixed vegetable pretreatment.

ANN model with R2 = 0.997 and 
adjusted correlation coefficient 
(R2 = 0.987).

159

8 Pretreatment: Chemical 
pretreatment of cassava peels

ANN, RF and DT to model fermentable 
sugar concentration and combined 
severity factor index from pretreated 
starch-based LB-cassava peels.

For the fermentable sugar concentration 
R2 > 0.99 was achieved with DT. For 
the CSF index, R2 > 0.93 with ANN 
model.

160

9 Pretreatment: LB pretreatment 
with deep eutectic solvents

PCA, PLS, LG, OGB, ANN, and RF to 
analyze the mechanisms and interactions 
between LB and eutectic solvents.

The most significant effect on 
variations in lignin extraction were 
reaction temperature, hydrophilicity in 
the DES characteristic parameters, and 
the hemicellulose content of raw 
lignocellulose components.

161

10 Pretreatment: Enzymatic 
hydrolysis of rice straw

ANN and RSS for pretreatment and 
enzymatic hydrolysis of rice straw.

ANN model with R2 > 0.99 162

11 Pretreatment: Hydrothermal 
pretreatment of lignin from 
side-stream waste

BO to relate hydrothermal pretreatment 
conditions with lignin structural 
characteristics based on 2D NMR.

ML model predicted lignin yield with 5 
% error. 163

12 Pretreatment: Microwave-acid 
and enzymatic hydrolysis of LB

ANN and PSO for estimation of glucose 
and xylose yields.

Hybrid PSO-ANN model with R2 > 
0.99 for both glucose and xylose 
prediction.

164

13 Pretreatment: Enzymatic 
degradation of apple pomace 
using commercial enzymatic 
preparations

ANN model to predict release profiles 
of glucose and reducing sugars.

ANN model predicted output variables 
with R2 > 0.99 for validation dataset. 165

14 Pretreatment: LB pretreatment 
with ionic liquid solvents

RF algorithm to predict cellulose-rich 
materials production.

RF predicted output variables with R2 > 
0.9 for validation dataset.

166
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Step within  
lignocellulosic biorefinery ML method* ML method efficiency Reference

15 Pretreatment: Dilute inorganic 
acids hydrolysis of LB

ANN model for simultaneous prediction 
of the derived phenolic contents and 
glucose yield in corn stover hydrolysate 
before microbial fermentation.

ANN model predicted output variables 
with R2 > 0.9 for validation dataset. 167

16 Treatment: Hydrothermal 
liquefaction of wet biomass

RF, k-NN and extreme GB for 
prediction of biocrude yields.

Extreme GB model gave the best 
prediction accuracy. 168

17 Treatment: Gasification of LB ML methods to model biomass and 
waste gasification and predict syngas 
yield and composition, syngas lower 
heating value, and syngas tar content, as 
well as char yield.

R2 = 0.90 when averaged across ten 
key gasification outputs.

146

18 Treatment: Hydrothermal 
liquefaction of LB

NNR, GAM, SVR, and GPR to model 
hydrothermal liquefaction products 
based on biomass composition and 
reaction conditions.

GPR ensured the highest accuracy, with 
a correlation coefficient higher than 
0.926 and a mean absolute error lower 
than 0.031.

169

19 Treatment: Hydrothermal 
liquefaction of LB

SVMLK to evaluate the importance of 
hydration parameters on biocrudes 
production.

SVMLK efficiently predicted biocrudes 
composition. 170

20 Treatment: Pyrolysis of LB RF, K-NN, DT, Gaussian Naïve Bayes, 
GB, and MPC for classification of LB.

The K-NN classifier performed the best 
for classifications using raw mass 
spectroscopy data.

171

21 Treatment: Pyrolysis – 
prediction of pyrolytic products 
yields

RF, GBDT, XGBoost, and Adaboost 
algorithms applied to predict bio-oil 
yield during pyrolysis based on moisture 
content, carbon content, and final 
heating temperature.

RF ensured the highest precision for 
bio-oil yield, biochar, and pyrolytic gas 
yields. 13

22 Treatment: Pyrolysis – 
prediction of pyrolytic products 
yields for 46 different types of 
biomass

MLR, DT, RF, SVM, and K-NN to 
develop predictive models for estimating 
biochar yield and specific surface area 
based on agricultural LB content data 
and pyrolysis conditions data.

RF algorithm ensured the highest 
precision biochar yields and specific 
surface area of the produced biochar. 172

23 Treatment: Pyrolysis – biomass 
pyrolysis kinetics

Activation energy of biomass pyrolysis 
calculated via three frequently used 
model-free kinetic methods were 
collected from literature and modeled by 
ANN, RF, and SVM.

Optimized RF model presented 
satisfactory accuracy and significant 
potential for making a quick prediction 
of activation energy with R2 of 0.9110.

173

24 Biofuels production process 
from LB

New OERNN based prediction model 
for biofuel production prediction.

Model ensured biofuel production 
process enhancement by 50 %.

174

25 Bioethanol production process 
from sugarcane bagasse 
biomass

ANN, CT, RF to describe the effects of 
temperature, time, biomass, and 
inoculum size on ethanol fermentation 
by simultaneous hydrolysis and 
fermentation process.

ANN and RF models ensured R2>0.91 
for the validation dataset.

175

26 Bioethanol production from 
sugar cane lignocellulosic 
biomass

ANN model and PC Optimization 
algorithm to optimize industrial 
bioethanol production based on the 
dataset including 3400 experimental 
values.

ANN model predicted the bioethanol 
concentration at the end of the process 
with high accuracy. 176

27 Bioethanol production from LB RF, EGB, and ANN to predict the 
ethanol yield and NaOH consumption 
based on characteristics of the biomass 
before and after pretreatment, hydrolysis 
parameters, and fermentation 
parameters.

Models described ethanol yield with 
accuracy of ~0.85 and NaOH 
consumption with accuracy greater 
than 0.8

177
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Step within  
lignocellulosic biorefinery ML method* ML method efficiency Reference

28 Bioethanol production process 
based on different ionic liquid 
type, enzymatic preparation, 
enzyme dose, time and 
temperature of pretreatment, 
and type of yeast for 
fermentation

ANN and RF. Hybrid model with R2 of 0.96 for 
bioethanol concentration prediction.

178

29 Bioethanol production from LB 
based on the volatile 
composition of the LB

DNN. A six-layer DNN ensured good 
accuracy for learning and validation. 179

30 Methane production efficiency 
from LB

10 ML methods. The best model was KNN (R2 >0.75) 
with the leave-one-out method.

180

31 Methane production efficiency 
from LB

RF, XGBoost and K-NN. The best model was RF model for 
prediction of specific methane yields 
with R2 of 0.85 and RMSE of 0.06.

181

*Adaptive Boost (Adaboost); Artificial Neural Network (ANN); Backward Interval PLS (Bipls); Bayesian Optimization (BO); 
Classification Trees (CT); Convolutional Neural Network (CNN); Decision Tree (DT); Deep Neural Network Model (DNN); Extreme 
Gradient Boosting (EGB); Extreme Gradient Boosting (XGBoost); Extreme Learning Machine (ELM); Gaussian Process Regression 
(GPR); Generalized Additive Model (GAM); Gradient Boosting (GB); Multiple Linear Regression (MLR); Multilayer Perceptron 
Classifiers (MPC); Neural Network Regression (NNR); Optimal Elman Recurrent Neural Network (OERNN); Partial Least Squares 
(PLS); Linear Regression (LG); Optimized Gradient Boosting (OGB); Partial Least Squares Discrimination Analysis (PLS-DA); 
Particle Swarm (PC); Principal Component Analysis (PCA); Radial Basis Function Neural Network (RBFNN); Random Forest (RF); 
Gradient Boosting Decision Tree (GBDT); Response Surface Methodology (RSM); Support Vector Machine Linear Kernel Method 
(SVMLK); Support Vector Machines (SVM); Support Vector Regression (SVR).

Ta b l e  7 	– 	Information on datasets used in ML modeling within lignocellulose biorefineries

List of variables Number of 
samples

Availability  
of the dataset 
in open data 

frame

URL address for assessing data Reference

Input variables: trichloroethylene inlet 
concentration, residence time, trichloroethylene 
inlet loading rate
Output variable: trichloroethylene concentration 
at the inlet of continuous stirred tank reactor

77 No 112

Input variables: DNA sequences of a target gene 
and medium composition
Output variable: substrate for single enzymes

4389 No 113

Input variables: enzyme-substrate pairs
Output variable: direction of gene regulation

274,030 Yes https://github.com/AlexanderKroll/ESP 114

Input variables: multispectral fluorescence 
microscopy and flow cytometry
Output variable: alive or dead cell number 

Not specified No 117

Input variables: genomic data, temperature, HRT, 
OLR, waste type, pH and operation model
Output variable: medium-chain carboxylic acid

752 No 123

Input variables: microwave power, exposure time 
and solid loading
Output variable: glucose and xylose yields

54 No 164
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is still needed in this field. The potential of ML in 
biotechnology and its promising future for LBR de-
velopment can be harnessed in several key areas:

(i) Chemical and physical characterization: 
Fast and accurate methods for determining LB char-
acteristics can benefit both producers and buyers;

(ii) Pretreatment methods: Accurate prediction 
models for physical, chemical, biological, che-
mo-enzymatic, thermal, and chemo-thermal pre-
treatments can help select optimal methods for in-
creasing biomass surface accessibility and 
permeability, enhancing conversion rates without 
producing inhibitors;

(iii) Multi-product production: Models that pre-
dict the best multi-product revenue options can en-
sure economic viability;

(iv) Green solvents: Predictive models for ex-
tracting products using novel solvents like NADES 
can enhance process efficiency;

(v) Catalytic conversion: Models for the catalytic 
or biocatalytic conversion of polymers to targeted 
products and fermentable sugars can optimize yields;

(vi) Fermentation and chemical conversion: 
Accurate models for fermenting or chemically con-
verting fermentable sugars can lead to new product 
development; 

(vii) Techno-economic analysis: Predictive 
models for techno-economic analysis can guide in-
vestment and operational decisions182–184. 

Despite its advantages, ML has certain draw-
backs. The opacity of decision-making processes 
often labels ML algorithms as “black boxes,” mak-
ing it difficult to understand their judgments. Addi-
tionally, ML can introduce discrimination and bias, 
requires specialized knowledge in computer sci-
ence, mathematics, and statistics, and involves sub-
stantial investment in talent and technology. The 
lack of human involvement in automated tasks can 
also lead to detachment from the work. Understand-
ing ML’s impact on the three pillars of sustainabili-
ty—social, economic, and environmental—is essen-
tial for its effective application in LBRs. Assembling 
a strong interdisciplinary team with a clear vision is 
crucial182–184. The selection of optimal ML method-
ologies, tailored to specific process features, en-
sures detailed insights into critical process variables 
and their interactions, ultimately advancing the de-
velopment of lignocellulosic biorefineries.
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