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Effect of surfactant addition on persulfate-assisted electrokinetic remediation of 
pyrene-spiked soil was studied. The influence of effective factors including voltage, sur-
factant addition, moisture content, and persulfate concentration on the removal of initial 
pyrene concentration of 200 mg kg–1 were investigated. A complete pyrene removal  
was observed for voltage of 1 V cm–1, saturated conditions, Tween 80 concentration of 
20 mL kg–1, and persulfate concentration of 100 mg kg–1 after 24 h, corresponding to 
pyrene mineralization of 61 %, based on TPH analysis. The experimental results were 
best fitted with pseudo-first-order kinetic model with correlation coefficient of 0.968 and 
rate constant of 0.191 min−1. The main intermediates of pyrene degradation were benzene 
o-toluic acid, acetic, azulene, naphthalene and decanoic acid. Finally, an unwashed 
 hydrocarbon-contaminated soil was subjected to persulfate-assisted electrokinetic 
 remediation, and a TPH removal of 38 % was observed for the initial TPH content of  
912 mg kg–1, under the selected conditions.
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Introduction

Pyrene is a polycyclic aromatic hydrocarbon 
(PAH) which may be produced commercially to be 
utilized as an intermediate in the production of pig-
ments or it can be found in emissions of incomplete 
combustion of kerosene and diesel. The crystalline 
structure of pyrene (C16H10) is a four-ring PAHs that 
is solid at room temperature due to different neu-
trons1,2. The long-term and continuous emission of 
PAHs into the environment can pose a serious threat 
to human health and environment through air pollu-
tion or soil contamination pathways, e.g., through 
industrial discharges and some agricultural tradi-

tions and improper practices of waste disposal3,4. 
Thus, the quick and effective removal of PAHs from 
the environment as well as reducing their adverse 
effects seems to be necessary. Three- and four-ring 
PAHs are in particular associated with soil particles, 
and due to their low aqueous solubility and high 
sorption properties, their removal from subsurface 
environments using traditional technologies, such 
as soil washing, conventional chemical oxidation or 
bioremediation, is inefficient5. In fact, their removal 
from fine soil particles is still a major challenge for 
geo-environments, because of the high variation in 
their hydraulic conductivity, a lot of specific con-
taminants, environmental and dynamic conditions, 
reversible geochemical processes, and the interac-
tions between soil particles and contaminants6,7. *Corresponding author: sahand369@yahoo.com
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 Until now, different physicochemical, thermal, and 
biological methods have been applied for decon-
tamination of polluted soils. However, these meth-
ods are often costly and energy-intensive, and are 
almost ineffective and could, in turn, remain sec-
ondary toxic materials, which are potentially harm-
ful to the environment8–11. Thus, electrochemical 
removal has been considered as a reliable technolo-
gy for the remediation of contaminated soils12,13. 
The main advantages of electrokinetic remediation 
(EK remediation) of soil contaminated with petro-
leum hydrocarbons is that the procedure can be per-
formed as an in-situ or ex-situ technology, in soils 
with heterogeneous texture and low permeability, or 
in saturated and unsaturated soils. It is also possible 
to use electrochemical oxidation for simultaneous 
removal of heavy metals, radionuclides, and organic 
pollutants. Flexibility of this technology, high ener-
gy efficiency, and cost-effectiveness are also merit-
ed14,15. EK remediation includes the flow of electri-
cal current in the soil, liquid pole electro-osmotic 
migration, electrical migration of ions, charged par-
ticles and colloids, electrolysis of water in the soil 
in the vicinity of the electrodes, migration of hydro-
gen and hydroxide ions into the soil resulting in 
temporary changes in soil pH, gas production at the 
electrodes, development of the non-uniform electric 
field, as well as the production of electro-osmotic 
flow16,17. In EK decomposition of water reactions, 
oxygen and hydrogen ions (H+) are produced due to 
oxidation at the anode, while hydrogen gas and hy-
droxide ions (OH–) are made because of the reduc-
tion in cathode18,19. One of the problems in EK re-
mediation of soil contaminated with organic 
compounds is that PAHs are hydrophobic, thus re-
ducing the efficiency of the process. One of the ap-
proaches in order to enhance the solubility of PAHs 
is the application of intermediate facilitating fac-
tors, such as surfactants20,21. Addition of these fac-
tors leads to creation of some changes in the fluid 
properties, such as dielectric constant, pH, fluid vis-
cosity, as well as changes in surface properties of 
soil particles22,23. Among the surfactants, non-ionic 
materials have been widely used for transferring 
non-polar organic substances by electro-osmotic 
flow. Indeed, surfactants have lower dielectric con-
stant and higher viscosity than water. Consequently, 
the addition of these facilitators not only reduces 
the electro-osmotic flow, but also increases the sol-
ubility of PAHs24. Another problem concerning EK 
remediation is the great amount of time required to 
remove contaminants from the soil. This problem 
could be solved in the EK remediation process us-
ing other oxidations. The application of persulfate 
as an oxidizing agent can improve the efficiency 
and significantly reduce the required time for soil 

decontamination25,26. The process of oxidation by 
means of activated persulfate is a promising ap-
proach, due to stability, reactivity, solubility, oxidiz-
ing properties, and high amount of organic matter 
degradation27. Persulfate (S2O8

2–), with standard ox-
idation potential of E0 = 2.01 V, is a novel approach 
applied in chemical oxidation, and has been consid-
ered a promising remediation technique of recalci-
trant organics. Moreover, S2O8

2– activation leads to 
production of sulfate radical (SO4

– •, E0 = 2.7 V), as 
a strong oxidant for the degradation of organic mat-
ter, even at neutral pH values, and acts more selec-
tively for destruction of compounds with carbon–
carbon double bonds and benzene rings28,29. 
Persulfate activation would be carried out via dif-
ferent approaches, such as heat, metal and base 
transition (elevated pH>11), UV-radiation, elec-
tron-beam and ultrasonication30. For soil remedia-
tion, UV irradiation is not capable of penetrating 
the soil matrix, and alkaline activation requires high 
quantities of alkaline substances. Furthermore, tran-
sition of metal-catalyzed activation (e.g., Fe2+) ex-
hibits best results in strict pH value range of 2–4, 
and metal can act as a radical scavenger31. Thermal-
ly activated persulfate is known as a green source of 
sulfate radicals and has been previously applied to 
remove organic pollutants32. Thermal activation of 
persulfate also has many benefits, like the enhance-
ment of solubility of slightly soluble PAHs, increase 
in efficiency of reaction and mineralization, and the 
consumption of fewer chemical substances33. Be-
cause of the heat generation through EK remedia-
tion, persulfate activation can be accomplished at 
the same time.

Integrated EK remediation with persulfate can 
be used to overcome limitations of conventional EK 
remediation and facilitate the distribution of persul-
fate in soils with low permeability. At the same 
time, it can directly cause oxidation-reducting reac-
tions in the soil34. This study is intended to remedi-
ate pyrene-contaminated soil using persulfate-as-
sisted EK remediation, and to use its results for the 
unwashed real hydrocarbon-polluted soils.

Materials and methods

Chemicals

All chemicals applied in the present research, 
including pyrene, sulfuric acid, soda, methanol, 
n-hexane, acetone, Tween 80, acetonitrile and sodi-
um persulfate were analytical-grade purchased from 
Merck, Germany, and all solutions were prepared 
with deionized water and kept at 4 °C, prior to ex-
periments.
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Soil sample

All soils were obtained from an oil manufactur-
ing district in southern Iran. The soil samples were 
collected from the upper layers (0–40 cm) by soil 
cores, air-dried, and passed through a 2-mm sieve. 
The process of homogenization of soil grains was 
then performed by a shaker, followed by washing 
thrice with acetone, autoclaving, and storing in non- 
reactive plastic bags at 4 °C. Since the washed soil 
still contained pyrene, a determined amount of pyrene 
was dissolved in n-hexane and added to the soil  
to achieve a final soil concentration of 200 mg kg–1 
in all samples. It was mixed vigorously and left  
under hood for 24 h until the n-hexane evaporated. 
The pyrene stock solution was added to a shaker for 
1 minute before spiking35. Also, an unwashed soil 
sample of the same origin and without washing was 
used as naturally contaminated soil. The X-ray dif-
fraction (XRD) patterns of the soil sample were re-
corded by X-ray diffractometer (Model: GNR-
MPD3000) using Cu anode at λ = 0.15060 nm, 
voltage = at 40 kV, and current intensity = 30 mA. 
X-ray Fluorescence (XRF) was applied for finding 
the chemical substances of soil particles. The pyrene 
and its degradation metabolites were also deter-
mined by GC-MS (Model: Agilent 7890, USA) with 
HP-5MS capillary column (30 m × 0.25 mm × 0.25 
µm film thickness, 5 % Phenyl – 95 % Methyl Si-
loxane phase). The carrier gas (helium) was fed 
with a fixed 1 mL min–1 flow rate. The oven tem-
perature was fixed to 40 °C for 1 min, followed by 
an enhancement to 300 °C at 5 °C min–1 and kept 
constant for 3 min. Ultimately, the sample was 
poured in instrument with 10:1 splitting ratio. Mass 
spectra were obtained by electron impact (EI) at 70 
eV with the full scan mode.

Lab-scale experimental setup

The reactor was a cube Plexiglas chamber 
(Supplementary file S1) consisting of 10 houses, 
each with a length of 30 cm, width of 10 cm, and 
height of 20 cm, divided into 10 completely equal 
sections using nine separating walls in the longitu-
dinal sector. Other facilities in the reactor included 
2 pairs of graphite electrodes with a thickness of 4 
mm, width of 4 cm, and length of 15 cm for each 
section, and a DC power supply (Model: Zx 200). 
The voltage was adjustable between 0–100 V cm–1.

Experimental procedure

All the experiments were carried out in batch 
mode operation. In fact, for determination of the 
optimum conditions of the experimental factors, 
such as voltage (0.3 – 1.5 V cm–1), moisture content 
(10 – 100 %), effect of Tween 80 as a chemical sur-
factant (0 – 40 mL kg–1), effect of sodium persulfate 

(0 – 100 mg kg–1) and reaction time (0–120 h) on 
pyrene removal, were investigated consecutively 
based on one factor at a time experimental design. 
Additionally, an unwashed soil sample was subject-
ed to persulfate-assisted EK remediation based on 
the selected conditions.

Analytical methods

The remaining concentrations of pyrene in the 
soil samples were extracted using an ultrasonic in-
strument based on EPA method 3550B36. Briefly, 
the sample was put in a special tube containing 
n-hexane and acetone with 1:1 v/v ratio. With com-
pletion of extraction, the process of centrifugation 
of sample was carried out for 10 min at 6000 rpm, 
followed by filtration using polytetrafluoroethylene 
(PTFE). A specific amount of filtered solution was 
separated in order to perform the analysis. The 
pyrene concentration was obtained using gas chro-
matography (GC) system (Chrompack CP 9001) 
equipped with a flame ionization detector (FID) us-
ing (HP-5) capillary column (30 m, 0.32 mm i.d. 
and 0.2 µm film thickness). Nitrogen was used as 
carrier gas at a rate of 2 mL min–1. The temperature 
program was as follows: column temperature was 
held at 120 °C for 1 min, and then raised to 240 °C 
at a rate of 20 °C min–1, then held for 1 min. The 
temperatures of injector and detector were fixed at 
250 and 300 °C, respectively. Removal was ana-
lyzed through quantifying initial and final pyrene 
concentration according to Eq. (1):

  (1) 
 

0

0

(%) ( ) 100tC CR
C
−

= ⋅

where, C0 and Ct are the initial and residual pyrene 
concentrations (mg L–1). Pyrene recovery rate was 
about 85 % immediately after spiking. Considering 
the value of 15 % as a non-extracted portion of 
pyrene from the soil, we multiplied all raw data by 
a factor of 1.15. Soil moisture, EC, and pH were 
analyzed based on ASTM (D4972-13)37. The soil 
texture was determined according to the method de-
scribed by ASTM (D6913M-17)38.

Results and discussion

Soil analysis

Some selected chemical and physical charac-
teristics of the soil are presented in Table 1. Accord-
ingly, the studied soil with 32 % clay was of the 
clay-loam. SiO2 and CaO also accounted for most 
of the mineral parts of the soil. LOI of 22 % made 
a significant portion of the soil mass. This was be-
cause the soil was contaminated with different types 
of petroleum compounds. Furthermore, the pres-
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ence of 5.7 wt % of chloride ions indicated severe 
salinity of the studied soil. According to the results 
of XRD analysis (results are not presented and can 
be found in supplementary files), the dominant 
crystalline phases of soil samples included calcite 
(CaCO3), quartz (SiO2), halite (NaCl), dolomite 
(CaMg (CO3)2, gypsum (CaSO4 ⋅ 2H2O) and clays.

EK remediation

The results indicated that any changes in the 
applied voltage directly affected the electro-osmotic 
flow in a way that, with an increase in voltage, the 
electro-osmotic flow increased. Voltage changes, 
however, have the maximum effect on the soil geo-
chemical characteristics that critically affect the 
electro-osmotic flow. Moreover, the voltage of  
1 V cm–1 promotes the development and mainte-
nance of the electro-osmotic flow during the reac-
tion39,40. Effect of voltage in the range of 3.0 to 1.5 
V cm–1 on the efficiency of the EK remediation pro-
cess in  removing pyrene from soil was examined. 
All the other variables, including natural soil pH 
equal to 7 ± 0.3, reaction time of 120 h, initial 
pyrene concentration of 200 mg kg–1, humidity of 
50 %, and zero concentrations of Tween 80 and per-
sulfate were kept constant. Pyrene removal efficien-
cy increased as the voltage increased, but no signif-
icant difference was observed between the voltages 
1 and 1.5 V cm–1 (p value >0.05). Pyrene removal 
efficiencies in 0.3, 0.5, 0.7, 1, and 1.5 V cm–1 were 
28, 31, 40, 46 and 47.5 %, respectively (Fig. 1a).  

At the beginning of the reaction, due to the move-
ment of the electro-osmotic flow from the anode 
towards the cathode, ionic migration of the contam-
inants exhibited an increasing trend41,42. In fact, due 
to the stronger electric field and the resulting higher 
current density through the electrodes, most of the 
processes associated with the removal of contami-
nants, such as electro-osmosis and electrical migra-
tion, occur more efficiently and thus more contami-
nants are eliminated43.

In effect, the high natural EC in loamy soils 
contributed to the high electro-osmotic flow at the 
beginning of the reaction. After the maximum 
streaming, access of water pole and moving ions 
(H+ and OH–), due to the electrolysis of water mol-
ecules and deposition of ions in the area of the cath-
ode, decreased and resulted in reduced electric cur-
rent and constant amount of pollutant removal44. In 
this study, due to lower power consumption and 
non-significant difference (p value > 0.05) in re-
moval efficiency of voltages 1 and 1.5 V cm–1, we 
alternatively selected voltage of 1 V cm–1 for the 
rest of the experiments. In addition, pseudo-first-or-
der degradation rate constants were 0.0045 and 
0.0046 h–1 for voltages of 1 and 1.5 V cm–1, respec-
tively, indicating a non-significant difference be-
tween them (Fig. 1b).

Effect of moisture content

In the selected conditions including voltage of 
1 V cm–1, and the other variables, such as pyrene 
concentration of 200 mg kg–1, reaction time of 120 
h, natural soil pH equal to 7±0.3, zero concentration 
of Tween 80 and sodium persulfate, the effect of 
moisture content in the range of 10 %, 25 %, 50 % 
and 100 % on the efficiency of the EK remediation 
for pyrene removal were studied. Pyrene removal 
efficiency for moisture contents of 10, 25, 50 and 
100 % were 15, 29, 45, and 64 %, respectively (Fig. 
1c). The higher the moisture content, the greater is 
the electrical current established, and thus the more 
H+ ions are produced45. When an electric field is es-
tablished in moist soils, electrolysis of water mole-
cules occurs, which reduces the moisture content of 
the soil. Changes in moisture content took place in 
the cathode, due to the electro-osmotic flow of wa-
ter molecules from the anode to the cathode. Al-
though the electro-osmotic streaming reduces with 
increasing pH and ion concentration in the liquid, 
the higher the current, the more efficient is the con-
taminants removal process44. Rather than removal 
efficiency, which was the highest in moisture con-
tent of 100 %, the reaction rate constant was much 
higher for saturation condition (0.0087 h–1) com-
pared to moisture content of 50 % (0.0043 h–1) (Fig. 
1d). Therefore, the moisture content of 100 % was 
selected for the rest of the experiments.

Ta b l e  1  – Characteristics of the soil sample along with XRF 
results

Characteristic Value (%)

Clay 32
Silt 37
Sand 31
Moisture 27.8
EC (µS cm–1) 76000
pH 6.8
Na 4.4
TiO2 0.28
MgO 4.8
Cl 7.5
Fe2O3 3.3
Al2O3 4.5
K2O 1.5
L.O.I 22.6
SiO2 26.5
CaO 24.3
La and Lu 1>
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F i g .  1  – Effect of operating parameters on pyrene removal through EK remediation; initial pyrene: 200 mg kg–1, pH: 7 ± 0.5, 
 reaction time: 120 h, a) effect of voltage variations, and b) pseudo-first-order kinetic modeling, Tween 80: 0 mg kg–1, persulfate:  
0 mg kg–1, moisture: 50 %, c) effect of moisture content, and d) pseudo-first-order kinetic modeling, Tween 80: 0 mg kg–1, persulfate: 
0 mg kg–1, voltage: 1 V cm–1, e) effect of Tween 80, and f) pseudo-first-order kinetic modeling, persulfate: 0 mg kg–1, voltage:  
1 V cm–1, moisture content: 100 %, g) effect of persulfate addition, and h) pseudo-first-order kinetic modeling, Tween 80: 20 mL kg–1, 
voltage: 1 V cm–1, moisture content: 100 %
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F i g .  1  – Continued.

 

y = 0.0013x + 0.0189
R² = 0.8936

y = 0.0028x + 0.0591
R² = 0.8986

y = 0.0043x + 0.2129
R² = 0.6612

y = 0.0087x + 0.2063
R² = 0.8105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

L
n 

C
0
/C

Time (h)
Moisture 10 % Moisture 25 % Moisture 50 % Moisture 100 %

 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

C
/C

0

Time (h)

Tween 80: 0

Tween 80 = 20 mL kg–1

Tween 80 = 40 mL kg–1

y = 0.0087x + 0.2063
R² = 0.8105

y = 0.0112x + 0.4309
R² = 0.6836

y = 0.0113x + 0.5122
R² = 0.6443

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

L
n 

C
0
/C

Time (h)

Tween 80: 0

Tween 80: 20 mL kg–1

Tween 80: 40 mL kg–1

 

(d)

(e)

(f)



M. Abtahi et al., A Novel Combination of Surfactant Addition…, Chem. Biochem. Eng. Q., 32 (1) 55–69 (2018) 61

Effect of Tween 80 addition

In the selected experimental conditions as men-
tioned previously, the effect of adding Tween 80 
concentrations of 20 and 40 mL kg–1 in pyrene re-
moval using EK remediation was investigated. 
Pyrene removal efficiency for Tween 80 concentra-
tions of 20 and 40 mL kg–1 were 76 and 78 %, re-
spectively (Fig. 1e), compared to 64 % removal 
without surfactant addition. Surfactant used in the 
EK process was affected by chemical oxidation and 
reduction, and thus decomposed with pyrene and 
became harmless or low-risk material. In general, 
surfactant enhanced the water solubility of pyrene. 
Higher concentration of surfactant than the critical 
concentration of its micelle increases the mobility 
of the polycyclic aromatic hydrocarbons within the 
aqueous phase, and therefore increases the pyrene 
removal efficiency46. Results of several studies have 

shown that without addition of surfactant, contami-
nant decomposition was limited47. Adding a small 
amount of Tween 80 can facilitate the decomposi-
tion of endosulfan contamination by using bacteria. 
In effect, increasing the concentration of Tween 80 
will not make a significant difference in removal ef-
ficiency48. Since an insignificant difference was ob-
served between the removal efficiency as well as 
the reaction rate constant in Tween 80 concentra-
tions of 20 mL kg–1 and 40 mL kg–1 (Fig. 1f), the 
value of 20 mL kg–1 was selected due to less usage 
of chemical.

EK remediation is based on various mutual 
mechanisms, but the principal electron transfer re-
actions that occur at electrodes during the process is 
the electrolysis of water upon electric field applica-
tion. Water decomposition (electrolysis reactions) 
occurs at the electrodes. The electrolysis reactions 

F i g .  1  – Continued.
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produce oxygen gas and hydrogen ions (H+) derived 
from oxidation at the anode, and produce hydrogen 
gas and hydroxyl (OH−) ions because of the reduc-
tion at the cathode, as illustrated in Eqs. 2 and 3:

At anode (oxidation):

   (2)  
 

2 2(gas) (aq)

0

2H O O 4H 4e

1.229 V (anode)E

+ +→ + +

= −

At cathode (reduction):

  
(3)

 
 
 

2 2(gas) (aq)

0

4H O 4e 2H 4OH

0.828 V (cathode)E

− −+ → +

= −

Effect of persulfate addition

In the selected experimental conditions includ-
ing voltage of 1V cm–1, saturated moisture, Tween 
80 concentration of 20 mL kg–1, pyrene concentra-
tion of 200 mg kg–1, reaction time of 120 h, natural 
soil pH equal to 7 ± 0.3, and the effect of sodium 
persulfate in two concentrations of 50 and 100 mg kg–1 
on EK remediation of pyrene was studied. Pyrene 
removal efficiencies for sodium persulfate concen-
tration of 50 mg kg–1 and 100 mg kg–1 were 100 % 
that were obtained after the reaction time of 96 and 
24 h, respectively (Fig. 1g and h). Firstly, persulfate 
moves to the soil by the electrical or electro-osmot-
ic migration, and then it is activated by temperature 
and pH49,50. For activation of persulfate, it is neces-
sary to make sure that the temperature is 45 oC. 
These conditions can be achieved in an electric 
field. As a result of high-voltage gradient, soil heats 
and acid is produced in the anode, which causes soil 
acidification and, thus, higher removal efficiency is 
obtained51.

In an electric field, the incomplete solubility of 
salt deposits, and the mobility of sodium persulfate 
ions leads to the production of higher amounts of 
ion concentration in water. On the other hand, the 
amount of electrical current is reduced over time, 
due to the electrical migration of ions towards the 
electrodes. However, with addition of sodium per-
sulfate, the electrical current significantly increased, 
as a result of increasing interstitial fluid concentra-
tion45,52,53. Persulfates have a high potential without 
activation, as shown in Eq. (4):

 2
2 8 4 0S O 2e 2SO 2VE− − •−+ → =  (4)

Persulfate provides more oxidation potential 
when it is activated via an activator like heat or Fe 
ions. Since the studied soil contained Fe2O3 iron ox-
ides, based on XRF analysis, a possible pathway of 
persulfate activation is iron-based activation. The 
mechanism of persulfate activation through iron is 
as follows (Eq. (5)), which yields sulfate radicals 

with higher oxidation potential, in comparison to 
persulfate.

 2 2 3
2 8 4 0S O 2Fe 2SO 2Fe 2 VE− + •− ++ → + =  (5)

Thermal activation of persulfate in EK oxida-
tion is also a possible mechanism, due to increasing 
temperature. The mechanism of persulfate oxidation 
via heat catalysts, which caused sulfate radicals 
generation to remove pyrene, can be expressed via 
Eqs. (6–10) as follows54:

  2
2 8 4S O Heat 2SO− •−+ →  (6)

 2
4 2 4SO H O SO HO H•− − • ++ → + +   (7)

 4 4SO R SO R•− •−+ → −   (8)

 2
4 4SO R SO R•− − •− → +  (9)

 HO R OH R• − •+ → +  (10)

Based on Eq. 6, persulfate can be catalyzed by 
heat which caused production of free radicals of 
SO4

−• 55. The production of sulfate radicals in solu-
tion could cause the production of the hydroxyl rad-
ical (HO•, Eo = + 2.7 V) through radical inter-con-
version reactions56. According to Eqs. 9 and 10, 
both SO4

−• and HO• radicals are responsible for oxi-
dation of recalcitrant organic matter in the heat-ac-
tivated persulfate oxidation process.

Variations of soil pH

The soil pH of the lab-scale EK setup varied as 
expected. The soil pH near the anode was 3.82, 
while the pH near the cathode was about 10.22. The 
produced protons (H+) and hydroxyl (OH−) ions via 
electrolysis reactions (Eqs. 1 and 2) transported to 
the electrodes with different charges. In general, the 
mobility of protons is two times greater than hy-
droxyl ions, so the protons dominate the system and 
an acid front moves across the soil until it meets the 
hydroxyl front in a district close to cathode, where 
the ions may recombine to generate water. There-
fore, the soil sample is separated in two different 
parts having various pH values, namely, high and 
low pH zones close to cathode and anode, respec-
tively. The certain amounts of soil pH are highly 
dependent on the intensity of protons and hydroxyl 
transport, as well as soil geochemical features57.

Kinetic study

Pseudo-first-order and pseudo-second-order 
models were applied for kinetic studies of pyrene 
degradation via plotting −ln (C0/Ct) and 1/Ct versus 
time, respectively (Fig. 2a and b), in the selected 
experimental conditions such as pH value of 7 ± 0.3, 
persulfate concentration of 100 mg kg–1, pyrene con-
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centration of 200 mg kg–1, Tween 80 concentration 
of 20 mL kg–1, reaction time of 24 h, voltage of  
1 V cm–1, and moisture content of 100 %. The equa-
tions of each kinetic model (Eq. (11), pseudo 
first-order and Eq. (12), pseudo second-order) are 
as follows58,59:
 0 1ln / tC C k t=  (11)

 0 21 / 1 /tC C k t− =  (12)

where, C0 and Ct are the initial and residual pyrene 
concentrations (mg kg–1), respectively, t is the reac-
tion time (min), and kn is the corresponding rate 
constants (n = 1 and 2). The reaction kinetics of 
pyrene removal through the persulfate-assisted EK 
remediation of pyrene-contaminated soil was best 
fitted for pseudo first-order reaction with the regres-
sion coefficient of 0.968 and rate constant of 0.191 
min−1.

Mineralization and intermediates  
of pyrene degradation

Intermediates of persulfate-assisted EK remedi-
ation of synthetically pyrene-contaminated soil 
were studied in selected experimental conditions 
and time intervals 4 and 24 h. A GC-MS analysis 
was performed exactly 4 h after beginning of the 
reaction (Fig. 3b). The main intermediate metabo-
lites at this time were obtained as benzene (C6H6), 
o-toluic acid (C8H8O2), acetic acid (C2H4O2), cyclo-
penta cycloheptene (azulene) (C10H8), 1,3-cyclopen-
tadiene (C5H6), 2-ethyl-pyridine (C7H9N), naphtha-
lene (C10H8), decanoic acid (C10H20O2), 1-chloro pyrene 
(C16H9Cl) and pyrene (C16H10). It is obvious that 
pyrene degradation had been preceded and simpler 
compounds and aliphatic hydrocarbons had formed. 
In addition, the presence of 1-chloropyrene can be 
attributed to the binding of Cl– produced from elec-
trolysis reaction of saline soil and pyrene. It was 
found from Fig. 3c that the main final products of 
pyrene degradation through persulfate-assisted EK 
remediation were benzoic acid (C7H6O2), dimethyl 
phosphinic azide (C2H6N3OP), methoxyacetic acid 
(C3H6O3), and hexadecane (C16H34). Similar to the 
quantitative analysis, pyrene was fully removed af-
ter 24 h and converted to aliphatic and simpler com-
ponents. Results indicated high mineralization rate, 
based on TPH analysis using Eq. 13:

 Mineralization (%) = 0 0/ 100P TPH P− ⋅  (13)

where, P0 is initial pyrene concentration and TPH 
represents the residual total petroleum hydrocar-
bons after oxidation. Based on the experimental re-
sults, TPH content of remediated soil sample was 
92 mg kg–1, corresponding to mineralization rate of 
61 % in selected experimental conditions (Fig. 4).

Energy consumption

One of the most important issues in EK pro-
cesses is the energy consumption, which affects the 
scale-up and full scale applications of this technolo-
gy, since the high cost of energy is a limiting factor. 
Upon selecting the operating conditions in the lab-
scale study, the energy consumption (P, kWh kg–1) 
was calculated using Eq. (14):

 / 1000P V I t M= ⋅  (14)

where, V is the cell voltage (V cm–1), I is the aver-
age cell current (A), t is the electrolysis time (h) and 
M is the remediated soil mass60–62. Energy consump-
tion was calculated in the selected experimental 
conditions, such as initial pH value of 7 ± 0.3, volt-
age of 1 V, current intensity of 0.8 A, initial pyrene 

F i g .  2  – Kinetic analysis for persulfate-assisted EK of 
pyrene: 200 mg kg–1, Tween 80: 20 mL kg–1, pH: 7± 0.3, reac-
tion time: 24 h, voltage: 1 V cm–1, moisture content: 100 %

y = 0.0061x – 0.0159
R² = 0.8128

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 3 6 9 12 15 18

1/
C

Time (h)

 

y = 0.1912x – 0.3028
R² = 0.9683

0

0.5

1

1.5

2

2.5

3

3.5

4

0 3 6 9 12 15 18

–L
n 

C
0/

C

Time (h)

(a)

(b)

https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwi48vDhs_LTAhVFL1AKHauECeEQFgg7MAQ&url=http%3A%2F%2Fpubchem.ncbi.nlm.nih.gov%2Fsummary%2Fsummary.cgi%3Fcid%3D537992&usg=AFQjCNEtBCH7casokjer-EWJjRID5JMqYg
https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjA4vP0s_LTAhWIZ1AKHQVFDDoQFgg6MAE&url=https%3A%2F%2Fpubchem.ncbi.nlm.nih.gov%2Fcompound%2Fmethoxyacetic_acid&usg=AFQjCNHpwJFJlc0T2MR9Ejot4LWfC80uxg


64 M. Abtahi et al., A Novel Combination of Surfactant Addition…, Chem. Biochem. Eng. Q., 32 (1) 55–69 (2018)

F i g .  3  – GC-MS analysis of a) unwashed soil, b) persul-
fate-assisted EK remediation within 4 h, and c) persulfate-as-
sisted EK remediation within 24 h under the selected conditions 
(Tween 80: 20 mL kg–1, pH: 7 ± 0.3, voltage: 1 V cm–1, moisture 
content: 100 %, persulfate: 100 mg kg–1)

concentration of 200 mg kg–1, persulfate concentra-
tion of 100 mg kg–1, Tween 80 content of 20 mL kg–1, 
reaction time of 24 h, soil mass of 0.5 kg, moisture 
content of 100 %. According to the obtained results, 
an energy consumption of 0.11 kWh kg–1 was calcu-
lated for remediation of the studied soil to obtain a 
complete pyrene removal. This finding is in line 
with literature63.

Synergetic and scavenging effect

The synergetic effect of persulfate-assisted EK 
system was determined at selected experimental 
conditions using synergy index (Eq. (15)):

 ( )

( ) ( ) ( ) ( )
PTEK

PEK TEK EK P

K
SI

K K K K
=

+ + +
 (15)

where, SI is the synergy index, K is the pseu-
do-first-order kinetic constant of pyrene removal in 
all experimented processes (PTEK: Persulfate-as-
sisted EK+ addition of Tween 80, EK: electrokinet-
ic remediation, PEK: electrokinetic remediation + 
persulfate addition, TEK: electrokinetic remedia-
tion+ addition of Tween 80, P: oxidation through 
persulfate). The removal efficiency of various stud-
ied processes are presented in Fig. 5a. It is obvious 
that persulfate-assisted EK remediation was signifi-
cantly more efficient compared to individual pro-
cesses, which can be attributed to synergetic effect 
of all processes. This can be verified by calculation 
of synergy index (Fig. 5b), in which the highest val-
ue of 1.99 was obtained for persulfate-assisted EK 
remediation process. This significant synergy index 

F i g .  4  – Comparison of pyrene and TPH removal using per-
sulfate-assisted EK remediation in the same selected conditions 
(Tween 80: 20 mL kg–1, pH: 7 ± 0.3, voltage: 1 V cm–1, moisture 
content: 100 %, persulfate: 100 mg kg–1)
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probably can be associated with the de-
composition of pyrene molecules due to 
solubility enhancement effect of Tween 
80, oxidation influence of persulfate, as 
well as the oxidation function of EK re-
actions. These findings are in accor-
dance with literature64.

In persulfate-assisted EK system, it 
is believed that the production of H2O2, 
SO4

•−, Cl2 and heat are responsible for 
pyrene destruction. Scavenging effect 
of non-target organics on the function 
of produced oxidants was investigated 
through addition of tert-butyl alcohol 
(t-BuOH), benzoquinone (BQ), sodium 
thiosulfate (ST) and iso-propanol (IPA) 
as scavenger and effective quenching 
agent for oxidants (Cl2, H2O2) and SO4

•− 

radicals65. It was observed that the deg-
radation efficiency of pyrene reduced 
from 100 % to 63.6 %, 70.28 %, 52.3 % 
and 82.59 %, respectively, in the pres-
ence of IPA, t-BuOH, ST and BQ agents 
(Fig. 6). Results of scavenging experi-
ments demonstrated that pyrene degra-
dation was in direct relation with all the 
oxidation agents.

EK remediation of unwashed soil

Reliability of the persulfate-assist-
ed EK remediation was also evaluated 
in the remediation of a real unwashed 

contaminated-soil, based on TPH analysis. In addi-
tion, the types of different hydrocarbons were also 
determined via GC-MS analysis. Initial TPH con-
tent of 912 mg kg–1 decreased to 560 mg kg–1 (38 % 
removal) in the selected conditions like those pre-
sented in this work. The unwashed soil sample was 
mainly contaminated with octadecane, hexadecane, 
nonadecane, eicosane, heneicosane and similar 
compounds (Table 2). The production of various al-
iphatic intermediates, such as comphene, docecane, 
tetradecane, etc., are clear from GC-MS analysis 
(Fig. 7 a and b). The high cumulative concentration 
of different hydrocarbons is also the main reason 
for lower removal efficiency of the persulfate- 
assisted EK remediation of the unwashed soil sam-
ple. These results are in good agreement with our 
previous study on soil remediation with the modi-
fied Fenton oxidation66 as well as with the litera- 
ture on remediation of hydrocarbon-contaminated 
soil67,68.

F i g .  5  – a) Pyrene removal efficiency, and b) Synergy indices 
in various studied processes in selected conditions (Tween 80: 
20 mL kg–1, voltage: 1 V cm–1, moisture content: 100 %, persul-
fate concentration: 100 mg kg–1)

F i g .  6  – Comparison of the effect of different scavengers on 
the performance of persulfate-assisted EK remediation of 
pyrene contaminated soil in selected conditions
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F i g .  7  – GC-MS analysis of a) unwashed hydrocarbon-contaminated soil, and b) hydrocarbon-contaminated soil after remediation 
with persulfate-assisted EK remediation under the selected conditions (Tween 80: 20 mL kg–1, initial pH: 7 ± 0.3, reaction time: 24 h, 
voltage: 1 V cm–1, moisture content: 100 %, persulfate: 100 mg kg–1)

(a) (b)

Ta b l e  2  – GC-MS analysis of the unwashed real hydrocarbon-contaminated soil before and after the persulfate-assisted EK 
 (voltage: 1 V cm–1, time: 24 h, pH: not adjusted, Tween 80: 20 mL kg–1, persulfate: 100 mg kg–1) 

Initial contaminant in unwashed soil Products of persulfate-assisted EK remediation

RT (min) Substance Chemical formula RT (min) Substance Chemical formula

8.377 Tricosyl trifluoroacetate C25H47F3O2 8.414 Camphene C10H16

9.092 Heptadecane C17H36 15.778 Dodecane C12 H26

9.127 Pentadecane C15H32 21.174 Tetradecane C14H30

9.499 Heptadecane C17H36 26.015 Hexadecane C16H34

9.664 Octadecane C18H38 30.369 Octadecane C18H38

9.727 Hexadecane C16H34 34.329 Eicosane C20H42

10.048 Nonadecane C19H40 41.281 Tetracosane C24H50

10.380 Octatriacontyl  pentafluoropropionate C41H77F 44.359 Heneicosane C21H44

11.038 Eicosane C21H44 47.220 Octacosane C28H58

11.759 Heneicosane C21H44

12.354 Docosane C22H46

12.892 Tricosane C23H48

13.464 Tetracosane
C24H50

14.540 1,2-Benzenedicarboxylic acid C8H6O4

15.112 Hexadecane C16H34

15.713 Heptacosane C27H56

16.365 Pentacosane C25H52

18.556 Propiophenone C9H10O

19.266 Benz[b]-1,4-oxazepine-4(5H)-thione C11H13NOS

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C11H13NOS&sort=mw&sort_dir=asc


M. Abtahi et al., A Novel Combination of Surfactant Addition…, Chem. Biochem. Eng. Q., 32 (1) 55–69 (2018) 67

Conclusions

Synthetically pyrene-spiked and naturally hy-
drocarbon-contaminated soil samples were subject-
ed to persulfate-assisted EK remediation in the lab-
scale experimental setup. A total pyrene removal of 
76 % was obtained for initial pyrene concentration 
of 200 mg kg–1, voltage of 1 V cm–1, natural pH, and 
saturated conditions in a reaction time of 120 h. The 
addition of persulfate (100 mg kg–1) significantly 
enhanced the removal efficiency, and a complete re-
moval was obtained in a much shorter reaction time 
of 24 h. In addition, moisture was also a key factor 
in the enhancement of pyrene degradation, and de-
sirable results were found to be in higher moisture 
contents. A removal efficiency of 29 % in a low 
moisture content of 25 % and a reaction time of 120 h 
indicated the desired ability of the studied process 
to be operated in soils with low moisture contents. 
The initial TPH concentration of 912 mg kg–1 de-
creased to 560 mg kg–1 in the same conditions, as 
determined for pyrene removal in the synthetically 
contaminated soil, for a naturally hydrocarbon-con-
taminated soil sample. Although the removal (38 %) 
was lower, the total mass of removed hydrocarbon 
was considerable. Based on the results of this re-
search, it is obvious that persulfate-assisted EK re-
mediation is a viable, reliable, and efficient alterna-
tive for remediation of hydrocarbon-contaminated 
soil in lab-scale conditions. However, further exper-
iments are needed to optimize the operating param-
eters for full-scale applications.
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