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Accurate determination of enzyme kinetic parameters is critical for model-based 
design and intensification of biocatalytic processes, particularly in microscale systems. 
While Michaelis-Menten kinetics provides a foundational framework, its extension to 
reversible, multi-substrate, and inhibited reactions introduces significant challenges in 
parameter estimation-most notably, parameter sensitivity and non-uniqueness.

This study systematically investigates these challenges across three case studies of 
increasing complexity: (i) mono-substrate Michaelis-Menten kinetics, (ii) reversible en-
zymatic reactions with four parameters, and (iii) a six-parameter reversible mono-sub-
strate kinetic model with substrate and product inhibition. In the first two cases, we show 
that vastly different parameter sets can yield nearly indistinguishable model fits to exper-
imental data, exposing the limitations of classical graphical and nonlinear regression 
methods. In the mono-substrate case based on real experimental data, two parameter sets 
differing by nearly two orders of magnitude produce virtually identical model outputs, 
demonstrating practical non-uniqueness even for simple kinetic models.

For the six-parameter inhibited system, a theoretical and numerical analysis reveals 
intrinsic non-uniqueness of the parameter estimation problem, characterized by an in-
finite family of parameter vectors yielding identical solutions. These results demonstrate 
that parameter non-uniqueness is not merely a consequence of experimental noise, but a 
structural property of complex kinetic models, emphasizing the need for more robust and 
structurally informed modeling approaches in biocatalysis.
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Introduction

Accurate determination of kinetic constants for 
enzyme-catalyzed reactions is essential for the de-
sign and optimization of biocatalytic processes, es-
pecially in microreactor systems, where transport 
phenomena are often minimized, and the reaction 
rate becomes the dominant performance factor. In 
most cases, enzymatic reactions follow Michae-
lis-Menten kinetics, which provides a simplified yet 
powerful model to describe substrate saturation ef-
fects and to extract meaningful kinetic parameters.

However, as the complexity of biocatalytic sys-
tems increases—with reversible reactions, multiple 
substrates, and product or substrate inhibition—the 
classical Michaelis-Menten framework is no longer 
sufficient. It must be extended to account for bisub-
strate mechanisms), inhibition effects, and equilibri-
um constraints. Although such extensions are neces-

sary for accurate modeling, they introduce 
additional parameters and significantly complicate 
parameter estimation1,2.

Two principal approaches are traditionally used 
for kinetic parameter estimation: graphical plotting 
(GP) and nonlinear regression (NLR). Graphical 
methods rely on linearization of the rate equations 
under varying initial conditions (e.g., Lineweav-
er-Burk, Hanes, Dixon plots), whereas NLR tech-
niques use numerical optimization to minimize the 
deviation between experimental and simulated data. 
While GP methods are simple and intuitive, they of-
ten fail for complex models. NLR methods, al-
though more powerful, are prone to parameter sen-
sitivity and non-uniqueness, particularly in systems 
with four or more fitting parameters2,3.

Recent studies have demonstrated that in 
multi-parameter models – such as reversible reac-
tions with inhibition or bisubstrate formulations – 
many distinct t parameter combinations can yield 
nearly indistinguishable model outputs2. This be-
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havior indicates that the parameter estimation prob-
lem may be ill-posed: the objective function may 
lack a well-defined global minimum, or the Jacobi-
an matrix may exhibit near-zero eigenvalues, corre-
sponding to flat directions in parameter space3,4.

As emphasized by Woodley and co-workers1,2, 
the development of robust biocatalytic processes re-
quires not only accurate experimental data but also 
structurally informed modeling and parameter esti-
mation strategies that reduce ambiguity. Approach-
es such as initial rate analysis, perturbation meth-
ods, and Jacobian-based identifiability analysis are 
therefore becoming increasingly important in mod-
ern enzymology.

This paper addresses these challenges through 
three illustrative case studies of increasing com-
plexity. The first case examines a mono-substrate 
Michaelis-Menten system, focusing on parameter 
sensitivity under noise-free and noisy experimental 
conditions. The second case considers a reversible 
mono-substrate biotransformation described by a 
four-parameter kinetic model. The third case inves-
tigates a six-parameter kinetic model describing a 
reversible mono-substrate biotransformation with 
substrate and product inhibition and demonstrates 
intrinsic parameter non-uniqueness through null-
space analysis of the Jacobian matrix. Mechanisti-
cally related enzyme kinetic models, such as ping-
pong bi-bi formulations, share a similar rational 
structure and therefore exhibit the same non-unique-
ness behavior.

In micro(bio)reactor systems, reliable estima-
tion of kinetic parameters is particularly important 
because the selected kinetic model directly defines 
the reaction characteristic time, which—together 
with the residence-time and diffusion characteristic 
times—forms the basis for time-scale analysis and 
model-based design of microscale bioreactors. Our 
findings therefore emphasize the need for more ro-
bust and structurally informed modeling approaches 
in biocatalysis.

Sensitivity and non-uniqueness 
challenges in determining enzyme 
kinetic parameters

To systematically investigate how parameter 
sensitivity and non-uniqueness emerge in kinetic 
modeling, three representative enzymatic systems 
of increasing complexity were analyzed. Each case 
study builds upon the previous one—starting from 
the classical mono-substrate Michaelis–Menten 
model, extending to a reversible four-parameter 
mechanism, and culminating in a six-parameter re-
versible model with competitive inhibition. This 
stepwise approach allows direct comparison of the-

oretical and practical identifiability, illustrating how 
small increases in model complexity and experi-
mental noise can turn a well-posed estimation prob-
lem into an intrinsically ill-posed one.

Case 1: Sensitivity analysis of mono-substrate 
Michaelis-Menten kinetics

In this section, we perform a sensitivity analy-
sis on the classical Michaelis-Menten kinetic mod-
el, describing an irreversible, mono-substrate enzy-
matic biotransformation. The rate equation is given 
by:

	 max

m

V S
V

K S
×

=
+

	 (1)

where V represents the reaction rate (mol m–3 s–1), 
Vmax denotes the maximum reaction rate (mol m–3 s–1), 
S is the substrate concentration (mol m–3), and Km 
signifies the Michaelis constant (mol m–3).

To investigate the practical challenges of esti-
mating the two fundamental Michaelis-Menten pa-
rameters (Vmax and Km), a set of experiments was 
conducted in a stirred batch reactor using a model 
mono-substrate enzymatic biotransformation. The 
reaction was performed at a selected initial sub-
strate concentration under optimized conditions 
with respect to pH, temperature, buffer composi-
tion, and free enzyme concentration, ensuring that 
the process was kinetically controlled. The experi-
mental data analyzed in this first case study origi-
nate from a real laboratory investigation of the en-
zymatic reduction of acetophenone to 1-phenylethanol 
catalyzed by alcohol dehydrogenases (ADHs), pre-
viously conducted in our laboratory. All data points 
shown in Fig. 1 correspond to experimentally mea-
sured substrate concentrations, where each point 
represents the average of three independent mea-
surements with satisfactory experimental reproduc-
ibility. For the purpose of this work, only substrate 
depletion is considered, while product formation is 
not shown.

As a traditional method, we applied the Line-
weaver–Burk linearization to estimate kinetic pa-
rameters. This approach is applicable exclusively to 
the basic form of the Michaelis–Menten equation 
(Equation 1), which describes mono-substrate bio-
transformations under initial rate conditions. The 
parameters can be estimated from a single time-
course experiment, where a set of data points—
preferably selected from the steeper part of the ex-
ponential decay curve, before the plateau region—is 
transformed and fitted. Alternatively, and more 
commonly, the method is applied by determining 
initial rates at several different starting substrate 
concentrations, enabling a reliable construction of 
the double-reciprocal plot. This approach trans-
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forms the Michaelis-Menten equation into a linear  
 
form for variables 1
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For the given time-course measurement (in 
minutes) of substrate concentration at a selected ini-
tial substrate concentration, S0=8.0 [mM], we suc-
cessfully applied the Lineweaver–Burk linearization 
using the first five data points. This allowed for suf-
ficiently accurate estimation of both kinetic param-
eters, with the slope and intercept of the resulting 
double-reciprocal plot providing the values of Vmax 
and Km, respectively. It should be noted that the 
Lineweaver–Burk method is based on reciprocal re-
action rates, which are taken as the inverse of the 
initial rate of product formation; thus, all 1/V values 
plotted are positive, as shown in Fig. 1b. The result-
ing parameters, when used in the integrated form of 
the rate equation, adequately reproduce the experi-
mental trend (solid curve in Fig. 1a), demonstrating 
good agreement between the model and the mea-
sured substrate depletion (Fig. 1a).

To further refine the parameter estimates, we 
employed a nonlinear least-squares optimization 

method, fitting the model directly to the full time-
course data. For a given parameter pair (Vmax and 
Km), the solution S(t) of the initial value problem:

	 ( )
( )
( )
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m
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yielding the sum of squared deviations from the 
measured data ( ), ,  1, ,i it S i n= ¼ ,
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=
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where f(Vmax, Km) represents the error function used 
to quantify the deviation between the experimental 
data and model predictions.

The resulting best-fit parameters reduced the 
overall value of the error function slightly, and the 
corresponding model curve (dashed line in Fig. 1c) 
closely matched the experimental data. However, a 
surprising result emerged: the parameter set obtained 
via nonlinear regression differed by nearly a factor 
of one-hundred from that estimated using the Line-
weaver–Burk method, even though both model pre-
dictions were nearly indistinguishable throughout 
the entire reaction time course. This example of prac
tical non-uniqueness highlights the insensitivity of the 
model output to large variations in parameter values.

F i g .  1 	–	 Sensitivity analysis of mono-substrate Michaelis-Menten kinetics with two estimated parameters. 1a) Simulated time-con-
centration profile using kinetic parameters obtained from Lineweaver–Burk linearization. Experimental data points (black dots) lie 
close to the fitted curve. 1b) Lineweaver–Burk linearization of Michaelis-Menten kinetics. Black dots represent transformed measure-
ment data (first five points), and the line is the linear regression used for parameter estimation. 1c) Comparison of model fits using 
two different sets of kinetic parameters. Both curves closely follow the data, illustrating practical non-uniqueness despite significant-
ly different parameter values. 1d) Contour plot of the error function in the Vmax – Km parameter space. The narrow valley indicates a 
region of low error, confirming parameter insensitivity and the existence of infinite near-optimal solutions.



230	 M. Lakner and I. Plazl, Addressing Sensitivity and Non-Uniqueness in the Determination…, Chem. Biochem. Eng. Q., 39 (4) 227–236 (2025)

To visualize this effect more clearly, the error 
function f (Vmax, Km) – defined as the sum of squared 
deviations between the measured and simulated 
substrate concentrations – was evaluated over a 
wide range of parameter combinations. The result-
ing contour plot (Fig. 1d) shows a narrow, elongat-
ed, and apparently open valley of low error values, 
indicating that multiple parameter pairs yield simi-
larly good fits. This behavior reflects a strong cor-
relation between the parameters and the absence of 
a clearly defined global minimum – characteristic 
of structurally ill-posed estimation problems.

Such situations are particularly problematic 
when only a single experimental condition (i.e., one 
initial substrate concentration) is used. They under-
score the need for global parameter fitting across 
multiple conditions, as well as complementary tools 
such as sensitivity analysis and structural identifi-
ability assessment.

Case 2: Sensitivity analysis of a four-parameter 
kinetic model of a reversible enzymatic reaction

As a representative case illustrating near pa-
rameter non-uniqueness in more complex enzymat-
ic systems, we consider the reversible hydration of 
fumaric acid to l-malic acid catalyzed by fumarase 
in permeabilized S. cerevisiae cells. The reaction 
proceeds without observable enzyme deactivation 
over the experimental time window, and at the test-
ed substrate concentrations (≤ 10 mM), product in-
hibition was negligible. The kinetic model is given 
by the reversible Michaelis–Menten mechanism [5]: 
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where r1 and r2 (mol m–3 s–1) are the rates of fumaric 
acid hydration and l-malic acid dehydration, respec
tively, CF (mol m–3) is the concentration of fumaric 
acid, and CM (mol m–3) l-malic acid in batch exper-
iments with free permeabilized S. cerevisiae cells. 
Parameters Vmax1

 (mol m–3 s–1), k1 (mol kg–1 s–1) and 
KM,f (mol m–3) are maximal reaction rate, specific 
rate constant defined per biocatalyst mass, and Mi-
chaelis constant for fumaric acid hydration, respec-
tively, and Vmax2

 (mol m–3 s–1), k2 (mol kg–1 s–1) and 
KM,m (mol m–3) are the corresponding parameters for 
L-malic acid dehydration, while ɣ (kg m–3) is the 
biocatalyst (yeast cells) concentration.

The system thus involves four kinetic parame-
ters: Vmax1

, KM,f, Vmax2
, KM,m. These were estimated by 

simultaneous fitting of batch biotransformation 
time-courses for five different initial fumaric acid 
concentrations. Parameter estimation was performed 

using least squares minimization over all five batch 
time courses, where the parameters were first ap-
proximately located through interactive graphical 
exploration (using the Manipulate function in Wol-
fram Mathematica) and then optimized5.

Two different parameter sets provided nearly 
indistinguishable fits to all experimental data:

–  Set I (solid line in Fig. 2a):  
Vmax1

 = 0.0083 [mM s–1], 
KM, f = 0.986 [mM], 
Vmax2

 = 0.0078 [mM s–1], 
KM,m = 3.304 [mM]

–  Set II (dashed line in Fig. 2a):  
Vmax1

 = 0.0072 [mM s–1], 
KM, f = 1.634 [mM], 
Vmax2

 = 0.0263 [mM s–1], 
KM,m = 39.534 [mM].

Both sets resulted in good fits: Set I: absolute 
error = 0.07448; Set II: absolute error = 0.1081. 
Here, the absolute error is defined as the sum of 
squared deviations between the experimentally 
measured and simulated concentration profiles over 
the entire time course. Despite significant parameter 
divergence – particularly in Vmax2

 and KM,m – both 
models predicted nearly identical concentration tra-
jectories (Fig. 2a).

To better understand the cause of this practical 
non-uniqueness, an error function landscape was 
analyzed by varying the two Michaelis constants, 
KM,f and KM,m, while keeping other parameters fixed 
(Fig. 2b). The resulting least-squares error contours 
revealed a broad, flat valley with minimal error 
across a wide range of KM,m values. This is a clear 
manifestation of the structural ill-posedness of the 
parameter estimation problem in multi-parameter 
enzymatic models.

This example reinforces the insights from Case 
I. Even with multiple data sets and four parameters, 
practically indistinguishable model outputs may 
arise from widely different parameter sets. Such in-
sensitivity in model outputs can severely limit the 
utility of fitted parameters for mechanistic interpre-
tation or for predictive use outside the training con-
ditions.

However, in the case of two or four kinetic pa-
rameters, there theoretically exists a unique solution 
to the minimization problem, i.e., a global mini-
mum of the error function. 

Unfortunately, this holds true in practice only 
under “ideal” or synthetic experimental conditions, 
as demonstrated in the following example.

First, we select a previously determined param-
eter set obtained from real experimental data (e.g., 
Set I). Based on the kinetic model for the given bio-
transformation (Eq. 5), we then generate synthetic 
data for a wide range of experimental conditions. 
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These may include various initial substrate concen-
trations, and, in the case of a reversible reaction, 
different initial product concentrations. The key 
feature of such ideal or synthetic data is that they 
perfectly follow the proposed kinetic model equa-
tions – in other words, the expected absolute error 
between the generated data and the model predic-
tions is exactly zero. Naturally, it is unrealistic to 
expect real measurements to ever achieve this level 

of agreement, regardless of the precision of analyti-
cal methods or experimental execution.

As shown in Fig. 3a, the optimization success-
fully reconstructs the exact same parameter set that 
was originally used to create the synthetic data, 
with an absolute error of zero (Fig. 3b). This con-
firms the theoretical existence of a global minimum 
in the four-parameter kinetic model.

F i g .  2 	–	 a) Experimental data (mean of two measurements with indicated standard deviations) on the time course of the fumaric 
acid concentration in a batch process at various initial concentration indicated in the legend and at a given concentration of free cells 
together with mathematical model simulations comprising the reaction kinetics (Eq. 5) at two sets of kinetic parameters resulting in 
two model fits: [–] Set I; […] Set II. b) Graphical presentation of the parametric sensitivity of the two parameters out of four for 
second set […], namely KM,f and KM,m, shown as least square error isolines. [Reproduced with permission from5: © 2024 Elsevier B.V. 
All rights reserved. Licensed for reuse under permission from Elsevier (License Number: 1665601-1).
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Once the synthetic dataset is generated (Fig. 
3a), we intentionally disregard the original parame-
ter values used to generate them. We then apply the 
standard minimization procedure to refit the model 
and determine the parameters solely based on these 
synthetic data.

However, this behavior changes dramatically if 
we randomly or systematically perturb the synthetic 
data, shifting the data points away from the model 
curve by just a few percent (Fig. 4a). With such de-
viations – mimicking real experimental noise – the 
theoretical minimum disappears from the accessible 
parameter space, and we transition into a domain of 
“infinite valleys” or flat canyons in the error sur-

face. In this region, many very different parameter 
sets yield similarly low errors, but with significant-
ly different numerical values (Fig. 4b). This again 
clearly demonstrates the practical non-uniqueness 
and poor identifiability in multi-parameter enzymat-
ic models – especially in reversible systems and 
when experimental data are limited or noisy.

Case 3: Addressing non-uniqueness in the 
six-parameter reversible Michaelis–Menten 
model with competitive product inhibition

This section investigates the non-uniqueness is-
sue inherent in more intricate enzymatic reaction 
models. Specifically, we focus on the reversible 

F i g .  3 	–	 a) Comparison of synthetic data (red dots) with model simulations (solid lines) ob-
tained after re-fitting the model by the conventional least-squares method. The fitted curves 
exactly overlap with the synthetic data generated from the predefined parameter set (Set I: Vmax1

 
= 0.0083 [mM s–1], KM,f = 0.986 [mM], Vmax2

 = 0.0078 [mM s–1], KM,m = 3.304 [mM]). b) Contour 
plot of the least-squares error function in the parameter space of Vmax2

 and KM,m. The global 
minimum (red dot) coincides with the true parameter values used for generating the data, con-
firming that the optimization procedure reconstructs the exact parameter set with zero absolute 
error. This result demonstrates the theoretical existence of a unique global minimum in the 
four-parameter kinetic model.

F i g .  4  – a) Synthetic data perturbed by ±5 % random noise (blue dots) compared with model 
simulations obtained by least-squares fitting (solid lines). The fitted curves no longer coincide 
perfectly with the data, mimicking realistic experimental variability and analytical uncertainty. 
b) Corresponding contour plot of the least-squares error function in the parameter space of KM,m 
and Vmax2 . The previously sharp global minimum (see Fig.  3b) broadens into an extended flat 
valley of nearly constant error, revealing the disappearance of a unique solution and demon-
strating practical non-uniqueness under noisy conditions.
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Michaelis–Menten model extended with competi-
tive product inhibition, which involves six kinetic 
parameters:

	  

, ,
, ,

1 1

f rmax max

M S M P
i P i S

V S V P
V

P S
K S K P

K K
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where V is the overall reaction rate (mol m–3 s–1); S 
and P denote the concentrations of substrate and 
product, respectively (mol m–3); Vmaxf

 and Vmaxr
 are 

the maximum reaction rates in the forward and re-
verse directions (mol m–3 s–1); KM,S and KM,P are the 
corresponding Michaelis constants (mol m–3); and 
Ki,P and Ki,S represent the inhibition constants for 
the product and substrate in the competitive inhibi-
tion terms (mol m–3).

The kinetic equations for this model are more 
complex than in the previous cases and account for 
inhibition effects in both directions of the reversible 
reaction. We analyze the challenges associated with 
determining unique parameter values in such sys-
tems, considering the implications for biocatalytic 
reaction optimization and process design. It is worth 
noting that a similar problem of non-uniqueness 
would also arise if one considers the kinetic rate 
equations describing the Ping–Pong Bi–Bi mecha-
nism, which also typically involves six parameters.

To illustrate the problem of non-uniqueness in 
the six-parameter reversible Michaelis–Menten 
model with competitive inhibition (Eq. 6), we refer 
to a real laboratory case of a reversible mono-sub-
strate biotransformation exhibiting both substrate 
and product inhibition. From experimental data, six 
kinetic parameters corresponding to Eq. (6) were 
determined using a conventional least-squares opti-
mization. Using these parameters, synthetic (ideal) 
data were generated for an initial substrate concen-
tration of S0 = 5 [mM]. The time courses of substrate 
and product concentrations are shown in Fig. 5a, 

where the synthetic points are completely covered 
by the model fit.

Next, we intentionally “forgot” the original pa-
rameter set and re-estimated the six kinetic parame-
ters by applying the same least-squares procedure to 
the synthetic data. As expected for ideal data, the 
absolute sum-of-squares error equals zero. Remark-
ably, the optimization procedure yielded not a sin-
gle but several distinct parameter sextuples, all pro-
viding virtually identical fits to the data (Fig. 5a) 
and resulting in a relative numerical error indistin-
guishable from zero (Fig. 5b). The six parameter 
sets summarized in Table 1 represent a specific ex-
ample of distinct parameter sextuples that reproduce 
identical model fits. In the following section, we 
provide a mathematical proof demonstrating that, in 
fact, an infinite number of such sextuples can satis-
fy the same model equations and yield indistin-
guishable data fits.

The mathematical proof presented further here-
in demonstrates that the observed non-uniqueness is 
not accidental but inherent to the model structure. 
An infinite continuum of parameter sextuples can 
reproduce identical outputs for the reversible Mi-
chaelis–Menten kinetics with inhibition (Eq. 6). 

F i g .  5  – a) Simulated time-courses of substrate (S) and product (P) concentrations generated from the kinetic model (Eq. 6) using 
ideal synthetic data with S0 = 5 [mM]. The synthetic points are completely overlapped by the model fit, as multiple parameter sextu-
ples reproduce the same trajectories. b) Relative error profiles corresponding to six independently optimized parameter sextuples 
(listed in Table 1), showing only negligible numerical noise, thereby confirming perfect agreement with the synthetic data and demon-
strating non-uniqueness.

Ta b l e  1 	–	Six parameter sextuples obtained by independent 
optimization of Eq. (6) against the same synthetic data set. All 
sets yield identical model fits (absolute error = 0).

Vmaxf KM,S Ki,S Vmaxr KM,P Ki,P

12.40 71.48 59.72 3.633 21.64 13.60

17.96 105.8 219.6 4.897 30.91 14.76

36.75 221.6 219.6 4.897 30.91 16.28

36.75 221.6 475.0 5.294 33.82 16.28

92.02 562.3 489.3 2.906 16.31 31.93

93.49 571.5 603.4 5.374 34.41 17.27

… … … … … …

(6)
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The same principle extends to mechanistically relat-
ed systems, including the Ping–Pong Bi–Bi mecha-
nism, which also typically involves six kinetic pa-
rameters and exhibits the same intrinsic ambiguity.

It is important to note that classical statistical 
uncertainty quantification tools, such as bootstrap 
resampling or confidence interval estimation, are 
not suitable for addressing intrinsic non-uniqueness. 
These methods presuppose the existence of a unique 
optimum, whereas in structurally non-identifiable 
models the solution space forms a continuous man-
ifold of equivalent parameter sets.

Mathematical proof of non-uniqueness for the 
six-parameter Michaelis–Menten-based kinetic models

While searching for parameters, it was shown 
that a system with six parameters (without experi-
mental data and physical background) is non-unique 
– with different sets of parameters, the same (iden-
tical) solution to the given initial problem can be 
obtained. This non-uniqueness of the six parameters 
can also be proven.

We are solving the initial value problem:

	 ( ) ( )( ) ( )( )2, 1,p pS t R S t R S t-¢ = 	 (7)

	 ( ) 00S S= 	 (8)

where we have rational functions:
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and p is a parameter of ordered sextuple of numbers:

	 ( )1 2 3 4 5 6, , , , ,p p p p p p p= 	 (11)

If we obtain two parameters ( p1, p2, p3, p4, p5, p6 ) 
and ( q1, q2, q3, q4, q5, q6 ) for which the rational func-
tion ( ) ( )2, 1,p pR x R x-  is the same for all real x to 
the rational function ( ) ( )2, 1,q qR x R x- , then the ini-
tial problems:

  ( ) ( )( ) ( )( ) ( )2, 1, 0,      0p pS t R S t R S t S S= =¢ - 	 (12)

and

  ( ) ( )( ) ( )( ) ( )2, 1, 0,      0q qS t R S t R S t S S= =¢ - 	 (13)

will have the same solution.

Alternatively, expressed differently:

	 ( ) ( ) ( ) ( )2, 1, 2, 1,    

for all  
p p q qR x R x R x R x

x

- = -

Î
	 (14) 

or more concisely:

	 ( ) ( )   for all  p qQ x Q x x= Î 	 (15)

where:

	 ( ) ( ) ( )2, 1,p p pQ x R x R x= - 	 (16)

How can parameters p and q (two 6-tuples) be 
chosen so that equation (15) is satisfied? Consider 
any two parameters p and q and bring the difference  

( ) ( ) p qQ x Q x-  to the common denominator, plac-
ing them on the same side of the equation. This re-
sults in a fourth-degree polynomial in the numera-
tor, which must be equal to 0 for all real x (developed 
by Wolfram Mathematica):

	 2 3 4
0 1 2 3 4 0c c x c x c x c x+ + + + = 	 (17)

Coefficients c0, c1, c2, c3, c4 are polynomials in 
variables p1, p2, p3, p4, p5, p6, q1, q2, q3, q4, q5 and q6 . 
Equation (17) is satisfied for all real x only if all 
coefficients are equal to 0:

	 0 1 2 3 40,  0,  0,  0,  0c c c c c= = = = = 	 (18)

Fix an arbitrary parameter q and find all param-
eters p (to prove the existence) close to q for which  

( ) ( )p qQ x Q x=  for all real x, or equivalently, the 
equation (18) holds. Since we are looking for p 
close to q, we write:

	 p q u= + 	 (19)

where ( )1 2 3 4 5 6, , , , ,u u u u u u u=  is small.

We now have a function: 6 5 : f ®   defined 
by:

	 ( ) ( )1 2 3 4 5 6 0 1 2 3 4, , , , , , , , ,f u u u u u u c c c c c= 	 (20)

In each ci, the fixed  q1, q2, q3, q4, q5, q6 appear, 
and instead of p’s, we write  

i i ip q u= +  for indexes 1,2, ,6.i = ¼  It can be 
readily seen that: 

	 ( ) ( ) ( )00 0,  since  q qf Q x Q x+= = 	 (21)

We use the following theorem6:
If f: m n®   is a smooth function with constant 
rank of the Jacobian matrix in the neighborhood of 
0 and f(0) = 0, then the null space of the Jacobian 
matrix evaluated at the origin, J, i.e., the solution 
space of the corresponding homogeneous system 
Jh=0, is tangent to the zero set of the function f:

	 N = ( ){ } , 0 mu f uÎ = 	 (22)

In our original problem, it turns out (with the 
aid of Wofram Mathematica) that the dimension of 
the null space of the matrix J is 2; therefore, there 
exists a two-dimensional surface in 6  that has this 
two-dimensional plane as its tangent space.
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Discussion and perspectives

The results presented in this study provide a 
consistent picture of how parameter sensitivity and 
non-uniqueness emerge in enzyme kinetic model-
ing. As the kinetic description becomes more com-
plex—from simple mono-substrate reactions to re-
versible and inhibited systems—the confidence in 
estimated parameters decreases and the limitations 
of empirical rate equations become evident. This 
trend highlights the need for structurally informed 
modeling and experimental strategies that ensure 
both reliable parameter estimation and meaningful 
physical interpretation of kinetic constants.

A well-documented issue in multi-parameter 
kinetic modeling is the lack of uniqueness in pa-
rameter estimation. Even when the underlying mod-
el is structurally identifiable, the parameter space 
often contains elongated valleys of nearly constant 
error, where many parameter combinations fit the 
data equally well. This phenomenon, referred to as 
sloppiness, has been extensively described for bio-
logical and enzymatic systems7,8. In practice, mod-
els with six or more parameters – such as reversible 
Michaelis–Menten kinetics with inhibition or the 
Ping–Pong Bi–Bi mechanism – rarely yield a sin-
gle, well-defined global minimum, but rather sets of 
multiple parameters whose differences fall within 
numerical noise, with relative errors on the order of 
10⁻¹⁵ in terms of data fitting. These results highlight 
the importance of experimental design and multi-
condition global fitting to mitigate non-uniqueness9,10.

Another important aspect is that kinetic param-
eters such as Vmaxf

, KM, and Ki do not always retain a 
clear physical meaning under practical experimental 
conditions. While these parameters are theoretically 
well defined, their experimental estimates can lose 
interpretability when the assumptions underlying 
the Michaelis–Menten model (e.g., quasi-steady-
state, substrate excess, negligible product inhibi-
tion) are not strictly fulfilled. As shown by Schnell 
and Maini11, even small deviations from these as-
sumptions can lead to unreliable estimates of Vmaxf

, 
KM. Similarly, Choi et al.12 emphasized that KM and 
kcat often cannot be independently determined due 

to limited data quality, and Verheijen and Heijnen13 
noted that in vivo parameter estimation is strongly 
affected by multicollinearity. Thus, while parame-
ters such as Vmaxf

, KM are widely used as apparent 
measures of catalytic efficiency and substrate affin-
ity, their limited physical robustness in real systems 
further aggravates the non-uniqueness problem.

It is worth noting that enzymatic biotransfor-
mation mechanisms have, for almost a century, been 
described predominantly by empirical Michaelis–
Menten-type models. Because of their empirical or-
igin, these equations—formulated as rational func-
tions—tend to exacerbate parameter non-uniqueness. 
As a result, they often lack clear physical grounding 
for their kinetic constants. None of the parameters 
explicitly capture fundamental physicochemical 
properties such as the electrostatic potential, the dy-
namic surface charge distribution of an enzyme, or 
the charge characteristics of its substrate. This con-
ceptual gap underscores the empirical nature of 
conventional kinetic constants and explains why 
their estimation is so sensitive to experimental de-
sign and data variability.

Recent advances in computational chemistry 
and biophysics are paving the way toward a new 
generation of enzyme kinetic models that move be-
yond empirical Michaelis–Menten descriptions. 
Methods such as transition-state theory combined 
with Eyring’s equation provide kinetic parameters 
directly linked to activation enthalpies and entro-
pies, offering a clear physicochemical interpreta-
tion. Molecular dynamics (MD) simulations and 
hybrid quantum-mechanics/molecular-mechanics 
(QM/MM) approaches enable the analysis of sub-
strate binding, conformational flexibility, and reac-
tion-energy profiles at atomic resolution. In particu-
lar, the electrostatic preorganization model 
developed by Warshel and co-workers highlights 
the crucial role of internal electric fields in enzyme 
catalysis, directly connecting surface charge distri-
butions and electrostatic potentials with catalytic 
efficiency. Brownian dynamics and Poisson–Boltz-
mann formalisms further allow the inclusion of 
long-range electrostatic interactions in binding ki-
netics. Together, these developments suggest that 

Ta b l e  2 	– 	Challenges in enzyme kinetics

Problem Consequence Key references

Non-uniqueness and “sloppiness” in multi-parameter models Multiple parameter sets give indistinguishable fits; 
global fitting across conditions required 7–10

Loss of physical interpretability of kinetic parameters Vmax, Km, Ki not robust under real experimental 
conditions; unreliable estimates 11–13

Empirical nature of Michaelis–Menten formalism Rational functions intensify non-uniqueness; lack 
direct link to physicochemical properties 11

Toward mechanistic, physics-based models Transition state theory, QM/MM, MD, electrostatic 
preorganization, Brownian dynamics 14–16
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future enzyme kinetics will increasingly rely on 
mechanistic, physics-based models that capture mo-
lecular-level properties, thereby complementing or 
even replacing classical empirical formalisms14–16. 
The key conceptual and methodological challenges 
discussed are summarized in Table 2, which high-
lights how parameter non-uniqueness, empirical 
model limitations, and the search for mechanistic 
formulations collectively shape the future of en-
zyme kinetics research.

Conclusions

This study systematically examined the sensi-
tivity and non-uniqueness challenges encountered 
in determining enzyme kinetic parameters, covering 
systems of increasing complexity – from the classi-
cal two-parameter Michaelis–Menten model to re-
versible and inhibited multi-parameter mechanisms. 
The results clearly demonstrate that, even when 
models are structurally identifiable, parameter esti-
mates may remain practically non-unique, with 
multiple parameter combinations providing equally 
good fits to experimental data. In particular, param-
eter sets differing by up to two orders of magnitude 
were shown to yield nearly indistinguishable model 
outputs in experimentally based case studies.

A mathematical proof further confirmed that in 
six-parameter kinetic systems, an infinite family of 
parameter sextuples can yield identical model pre-
dictions, revealing that such non-uniqueness is in-
trinsic to the model structure itself and cannot be 
resolved by additional data or statistical refinement.

These findings emphasize the importance of 
combining multi-condition global fitting with sensi-
tivity and identifiability analysis to ensure meaning-
ful parameter estimation. They also highlight the 
need to move beyond empirical rate equations to-
ward mechanistically grounded, physics-based ki-
netic models that establish direct links between 
measurable molecular properties and catalytic func-
tion. Such approaches are essential for reliable 
model-based design and intensification of biocata-
lytic processes, particularly in microscale and mi-
croreactor systems.
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