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Accurate determination of enzyme kinetic parameters is critical for model-based
design and intensification of biocatalytic processes, particularly in microscale systems.
While Michaelis-Menten kinetics provides a foundational framework, its extension to
reversible, multi-substrate, and inhibited reactions introduces significant challenges in
parameter estimation-most notably, parameter sensitivity and non-uniqueness.

This study systematically investigates these challenges across three case studies of
increasing complexity: (i) mono-substrate Michaelis-Menten kinetics, (ii) reversible en-
zymatic reactions with four parameters, and (iii) a six-parameter reversible mono-sub-
strate kinetic model with substrate and product inhibition. In the first two cases, we show
that vastly different parameter sets can yield nearly indistinguishable model fits to exper-
imental data, exposing the limitations of classical graphical and nonlinear regression
methods. In the mono-substrate case based on real experimental data, two parameter sets
differing by nearly two orders of magnitude produce virtually identical model outputs,
demonstrating practical non-uniqueness even for simple kinetic models.

For the six-parameter inhibited system, a theoretical and numerical analysis reveals
intrinsic non-uniqueness of the parameter estimation problem, characterized by an in-
finite family of parameter vectors yielding identical solutions. These results demonstrate
that parameter non-uniqueness is not merely a consequence of experimental noise, but a
structural property of complex kinetic models, emphasizing the need for more robust and
structurally informed modeling approaches in biocatalysis.
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sary for accurate modeling, they introduce
additional parameters and significantly complicate
parameter estimation'~.

Two principal approaches are traditionally used
for kinetic parameter estimation: graphical plotting
(GP) and nonlinear regression (NLR). Graphical
methods rely on linearization of the rate equations
under varying initial conditions (e.g., Lineweav-
er-Burk, Hanes, Dixon plots), whereas NLR tech-
niques use numerical optimization to minimize the
deviation between experimental and simulated data.

Introduction

Accurate determination of kinetic constants for
enzyme-catalyzed reactions is essential for the de-
sign and optimization of biocatalytic processes, es-
pecially in microreactor systems, where transport
phenomena are often minimized, and the reaction
rate becomes the dominant performance factor. In
most cases, enzymatic reactions follow Michae-
lis-Menten kinetics, which provides a simplified yet
powerful model to describe substrate saturation ef-

fects and to extract meaningful kinetic parameters.
However, as the complexity of biocatalytic sys-
tems increases—with reversible reactions, multiple
substrates, and product or substrate inhibition—the
classical Michaelis-Menten framework is no longer
sufficient. It must be extended to account for bisub-
strate mechanisms), inhibition effects, and equilibri-
um constraints. Although such extensions are neces-

“Corresponding author: I. Plazl; igor.plazl@fkkt.uni-lj.si

While GP methods are simple and intuitive, they of-
ten fail for complex models. NLR methods, al-
though more powerful, are prone to parameter sen-
sitivity and non-uniqueness, particularly in systems
with four or more fitting parameters>”.

Recent studies have demonstrated that in
multi-parameter models — such as reversible reac-
tions with inhibition or bisubstrate formulations —
many distinct t parameter combinations can yield
nearly indistinguishable model outputs®>. This be-
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havior indicates that the parameter estimation prob-
lem may be ill-posed: the objective function may
lack a well-defined global minimum, or the Jacobi-
an matrix may exhibit near-zero eigenvalues, corre-
sponding to flat directions in parameter space’*.

As emphasized by Woodley and co-workers'?,
the development of robust biocatalytic processes re-
quires not only accurate experimental data but also
structurally informed modeling and parameter esti-
mation strategies that reduce ambiguity. Approach-
es such as initial rate analysis, perturbation meth-
ods, and Jacobian-based identifiability analysis are
therefore becoming increasingly important in mod-
ern enzymology.

This paper addresses these challenges through
three illustrative case studies of increasing com-
plexity. The first case examines a mono-substrate
Michaelis-Menten system, focusing on parameter
sensitivity under noise-free and noisy experimental
conditions. The second case considers a reversible
mono-substrate biotransformation described by a
four-parameter kinetic model. The third case inves-
tigates a six-parameter kinetic model describing a
reversible mono-substrate biotransformation with
substrate and product inhibition and demonstrates
intrinsic parameter non-uniqueness through null-
space analysis of the Jacobian matrix. Mechanisti-
cally related enzyme kinetic models, such as ping-
pong bi-bi formulations, share a similar rational
structure and therefore exhibit the same non-unique-
ness behavior.

In micro(bio)reactor systems, reliable estima-
tion of kinetic parameters is particularly important
because the selected kinetic model directly defines
the reaction characteristic time, which—together
with the residence-time and diffusion characteristic
times—forms the basis for time-scale analysis and
model-based design of microscale bioreactors. Our
findings therefore emphasize the need for more ro-
bust and structurally informed modeling approaches
in biocatalysis.

Sensitivity and non-uniqueness
challenges in determining enzyme
kinetic parameters

To systematically investigate how parameter
sensitivity and non-uniqueness emerge in kinetic
modeling, three representative enzymatic systems
of increasing complexity were analyzed. Each case
study builds upon the previous one—starting from
the classical mono-substrate Michaelis-Menten
model, extending to a reversible four-parameter
mechanism, and culminating in a six-parameter re-
versible model with competitive inhibition. This
stepwise approach allows direct comparison of the-

oretical and practical identifiability, illustrating how
small increases in model complexity and experi-
mental noise can turn a well-posed estimation prob-
lem into an intrinsically ill-posed one.

Case 1: Sensitivity analysis of mono-substrate
Michaelis-Menten kinetics

In this section, we perform a sensitivity analy-
sis on the classical Michaelis-Menten kinetic mod-
el, describing an irreversible, mono-substrate enzy-
matic biotransformation. The rate equation is given
by:

—_ Vmax ' S (1)
K, +S
where V represents the reaction rate (mol m= s7),
V' denotes the maximum reaction rate (mol m~s™),
S is the substrate concentration (mol m~), and K
signifies the Michaelis constant (mol m™).

To investigate the practical challenges of esti-
mating the two fundamental Michaelis-Menten pa-
rameters (V, —and K ), a set of experiments was
conducted in a stirred batch reactor using a model
mono-substrate enzymatic biotransformation. The
reaction was performed at a selected initial sub-
strate concentration under optimized conditions
with respect to pH, temperature, buffer composi-
tion, and free enzyme concentration, ensuring that
the process was kinetically controlled. The experi-
mental data analyzed in this first case study origi-
nate from a real laboratory investigation of the en-
zymatic reduction of acetophenone to 1-phenylethanol
catalyzed by alcohol dehydrogenases (ADHs), pre-
viously conducted in our laboratory. All data points
shown in Fig. 1 correspond to experimentally mea-
sured substrate concentrations, where each point
represents the average of three independent mea-
surements with satisfactory experimental reproduc-
ibility. For the purpose of this work, only substrate
depletion is considered, while product formation is
not shown.

As a traditional method, we applied the Line-
weaver—Burk linearization to estimate kinetic pa-
rameters. This approach is applicable exclusively to
the basic form of the Michaelis—Menten equation
(Equation 1), which describes mono-substrate bio-
transformations under initial rate conditions. The
parameters can be estimated from a single time-
course experiment, where a set of data points—
preferably selected from the steeper part of the ex-
ponential decay curve, before the plateau region—is
transformed and fitted. Alternatively, and more
commonly, the method is applied by determining
initial rates at several different starting substrate
concentrations, enabling a reliable construction of
the double-reciprocal plot. This approach trans-
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Fig. 1 — Sensitivity analysis of mono-substrate Michaelis-Menten kinetics with two estimated parameters. 1a) Simulated time-con-
centration profile using kinetic parameters obtained from Lineweaver—Burk linearization. Experimental data points (black dots) lie
close to the fitted curve. 1b) Lineweaver—Burk linearization of Michaelis-Menten kinetics. Black dots represent transformed measure-
ment data (first five points), and the line is the linear regression used for parameter estimation. 1c) Comparison of model fits using
two different sets of kinetic parameters. Both curves closely follow the data, illustrating practical non-uniqueness despite significant-

ly different parameter values. 1d) Contour plot of the error function in the V

— K parameter space. The narrow valley indicates a

max

region of low error, confirming parameter insensitivity and the existence of infinite near-optimal solutions.

forms the Michaelis-Menten equation into a linear

form for variables l and l:
14 S
1_ £ 1. 1
V Vmax S Vmax (2)

For the given time-course measurement (in
minutes) of substrate concentration at a selected ini-
tial substrate concentration, S=8.0 [mM], we suc-
cessfully applied the Lineweaver—Burk linearization
using the first five data points. This allowed for suf-
ficiently accurate estimation of both kinetic param-
eters, with the slope and intercept of the resulting
double-reciprocal plot providing the values of V
and K , respectively. It should be noted that the
Lineweaver—Burk method is based on reciprocal re-
action rates, which are taken as the inverse of the
initial rate of product formation; thus, all 1/} values
plotted are positive, as shown in Fig. 1b. The result-
ing parameters, when used in the integrated form of
the rate equation, adequately reproduce the experi-
mental trend (solid curve in Fig. 1a), demonstrating
good agreement between the model and the mea-
sured substrate depletion (Fig. 1a).

To further refine the parameter estimates, we
employed a nonlinear least-squares optimization

method, fitting the model directly to the full time-
course data. For a given parameter pair (V, and
K ), the solution S(¢) of the initial value problem:

e S0 s0)=5, @)

TS0y

yielding the sum of squared deviations from the
measured data (7,,S; ), i=1,...,n,
2
i=1
where AV ,K ) represents the error function used
to quantify the deviation between the experimental
data and model predictions.

The resulting best-fit parameters reduced the
overall value of the error function slightly, and the
corresponding model curve (dashed line in Fig. 1c)
closely matched the experimental data. However, a
surprising result emerged: the parameter set obtained
via nonlinear regression differed by nearly a factor
of one-hundred from that estimated using the Line-
weaver—Burk method, even though both model pre-
dictions were nearly indistinguishable throughout
the entire reaction time course. This example of prac-
tical non-uniqueness highlights the insensitivity of the
model output to large variations in parameter values.
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To visualize this effect more clearly, the error
function f(V, ,K )— defined as the sum of squared
deviations between the measured and simulated
substrate concentrations — was evaluated over a
wide range of parameter combinations. The result-
ing contour plot (Fig. 1d) shows a narrow, elongat-
ed, and apparently open valley of low error values,
indicating that multiple parameter pairs yield simi-
larly good fits. This behavior reflects a strong cor-
relation between the parameters and the absence of
a clearly defined global minimum — characteristic
of structurally ill-posed estimation problems.

Such situations are particularly problematic
when only a single experimental condition (i.e., one
initial substrate concentration) is used. They under-
score the need for global parameter fitting across
multiple conditions, as well as complementary tools
such as sensitivity analysis and structural identifi-
ability assessment.

Case 2: Sensitivity analysis of a four-parameter
kinetic model of a reversible enzymatic reaction

As a representative case illustrating near pa-
rameter non-uniqueness in more complex enzymat-
ic systems, we consider the reversible hydration of
fumaric acid to L-malic acid catalyzed by fumarase
in permeabilized S. cerevisiae cells. The reaction
proceeds without observable enzyme deactivation
over the experimental time window, and at the test-
ed substrate concentrations (< 10 mM), product in-
hibition was negligible. The kinetic model is given
by the reversible Michaelis—Menten mechanism [5]:

Vmaxlc v k
n=—-——— > max =rty
Ky +Cp ()
Vmaxz CM
r2=_K > max, :kZY
v T Cy

where 7, and », (mol m™ s™') are the rates of fumaric
acid hydration and L-malic acid dehydration, respec-
tively, C, (mol m™) is the concentration of fumaric
acid, and C,, (mol m) L-malic acid in batch exper-
iments with free permeabilized S. cerevisiae cells.
Parameters V o, (mol m= s, &k (mol kg™ s') and

(rnol m~) are maximal reactlon rate, specific
rate constant defined per biocatalyst mass, and Mi-
chaelis constant for fumaric acid hydration, respec-
tlvely, and ¥ (mol m~ s™), k, (mol kg s') and

,, (mol m 3) are the correspondmg parameters for
L mahc acid dehydration, while y (kg m?) is the
biocatalyst (yeast cells) concentration.

The system thus involves four kinetic parame-
ters: VKo Ve Ko These were estimated by
simultaneous ﬁttmg of batch biotransformation
time-courses for five different initial fumaric acid

concentrations. Parameter estimation was performed

using least squares minimization over all five batch
time courses, where the parameters were first ap-
proximately located through interactive graphical
exploration (using the Manipulate function in Wol-
fram Mathematica) and then optimized®.

Two different parameter sets provided nearly
indistinguishable fits to all experimental data:
— Set I (solid line in Fig. 2a):
Vm =0.0083 [mM s'],
=0.986 [mM],

Ky,
Ve, = 0.0078 [mM s71],

max:

K,,, = 3.304 [mM]

- et II (dashed line in Fig 2a):
m ., = 0.0072 [mM s ],
M f— 1.634 [mM],
Vo, = 0.0263 [mM s7'],

K, =39.534 [mM].

M,

Both sets resulted in good fits: Set I: absolute
error = 0.07448; Set II: absolute error = 0.1081.
Here, the absolute error is defined as the sum of
squared deviations between the experimentally
measured and simulated concentration profiles over
the entire time course. Despite significant parameter
divergence — particularly in ¥ and K, — both
models predicted nearly identical concentratlon tra-
jectories (Fig. 2a).

To better understand the cause of this practical
non-uniqueness, an error function landscape was
analyzed by varying the two Michaelis constants,

K, i and K, , while keeping other parameters fixed
(Fig. 2b). The resulting least-squares error contours
revealed a broad, flat valley with minimal error
across a wide range of K, values. This is a clear
manifestation of the structural ill- posedness of the
parameter estimation problem in multi-parameter

enzymatic models.

This example reinforces the insights from Case
1. Even with multiple data sets and four parameters,
practically indistinguishable model outputs may
arise from widely different parameter sets. Such in-
sensitivity in model outputs can severely limit the
utility of fitted parameters for mechanistic interpre-
tation or for predictive use outside the training con-
ditions.

However, in the case of two or four kinetic pa-
rameters, there theoretically exists a unique solution
to the minimization problem, i.e., a global mini-
mum of the error function.

Unfortunately, this holds true in practice only
under “ideal” or synthetic experimental conditions,
as demonstrated in the following example.

First, we select a previously determined param-
eter set obtained from real experimental data (e.g.,
Set I). Based on the kinetic model for the given bio-
transformation (Eq. 5), we then generate synthetic
data for a wide range of experimental conditions.
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Fig. 2 — a) Experimental data (mean of two measurements with indicated standard deviations) on the time course of the fumaric
acid concentration in a batch process at various initial concentration indicated in the legend and at a given concentration of free cells
together with mathematical model simulations comprising the reaction kinetics (Eq. 5) at two sets of kinetic parameters resulting in
two model fits: [-] Set I, [...] Set II. b) Graphical presentation of the parametric sensitivity of the two parameters out of four for
second set [ ...], namely K, y and K,, , shown as least square error isolines. [Reproduced with permission from’: © 2024 Elsevier B.V.
All rights reserved. Licensed for reuse under permission from Elsevier (License Number: 1665601-1).

These may include various initial substrate concen-
trations, and, in the case of a reversible reaction,
different initial product concentrations. The key
feature of such ideal or synthetic data is that they
perfectly follow the proposed kinetic model equa-
tions — in other words, the expected absolute error
between the generated data and the model predic-
tions is exactly zero. Naturally, it is unrealistic to
expect real measurements to ever achieve this level

of agreement, regardless of the precision of analyti-
cal methods or experimental execution.

As shown in Fig. 3a, the optimization success-
fully reconstructs the exact same parameter set that
was originally used to create the synthetic data,
with an absolute error of zero (Fig. 3b). This con-
firms the theoretical existence of a global minimum
in the four-parameter kinetic model.
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Fig. 3 — a) Comparison of synthetic data (red dots) with model simulations (solid lines) ob-
tained after re-fitting the model by the conventional least-squares method. The fitted curves
exactly overlap with the synthetic data generated from the predefined parameter set (Set I:
=0.0083 [mM s'], K, .= 0.986 [mM], V,,,. = 0.0078 [mM s'], K, = 3.304 [mM]). b) Contour
plot of the least—squares error function in the parameter space of ,and K, . The global
minimum (red dot) coincides with the true parameter values used for genemtmg the data, con-
firming that the optimization procedure reconstructs the exact parameter set with zero absolute
error. This result demonstrates the theoretical existence of a unique global minimum in the
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four-parameter kinetic model.
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Fig. 4 — a) Synthetic data perturbed by +5 % random noise (blue dots) compared with model
simulations obtained by least-squares fitting (solid lines). The fitted curves no longer coincide
perfectly with the data, mimicking realistic experimental variability and analytical uncertainty.
b) Corresponding contour plot of the least-squares error function in the parameter space of K, .
and V, The previously sharp global minimum (see Fig. 3b) broadens into an extended flat
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valley of nearly constant error, revealing the disappearance of a unique solution and demon-
strating practical non-uniqueness under noisy conditions.

Once the synthetic dataset is generated (Fig.
3a), we intentionally disregard the original parame-
ter values used to generate them. We then apply the
standard minimization procedure to refit the model
and determine the parameters solely based on these
synthetic data.

However, this behavior changes dramatically if
we randomly or systematically perturb the synthetic
data, shifting the data points away from the model
curve by just a few percent (Fig. 4a). With such de-
viations — mimicking real experimental noise — the
theoretical minimum disappears from the accessible
parameter space, and we transition into a domain of
“infinite valleys” or flat canyons in the error sur-

face. In this region, many very different parameter
sets yield similarly low errors, but with significant-
ly different numerical values (Fig. 4b). This again
clearly demonstrates the practical non-uniqueness
and poor identifiability in multi-parameter enzymat-
ic models — especially in reversible systems and
when experimental data are limited or noisy.

Case 3: Addressing non-uniqueness in the
six-parameter reversible Michaelis-Menten
model with competitive product inhibition

This section investigates the non-uniqueness is-
sue inherent in more intricate enzymatic reaction
models. Specifically, we focus on the reversible
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Michaelis—Menten model extended with competi-
tive product inhibition, which involves six kinetic
parameters:

Vmax - S Vmax ° P
y= , - : (6)
P S
Kyg+|1+——|+S K, ,+|1+—|+P
’ K p ’ Kis
where 7 is the overall reaction rate (mol m= s™'); §

and P denote the concentrations of substrate and
product, respectively (mol m‘3) Vmax and V  are
the maximum reaction rates in the forward and re-
verse directions (mol m~ s™'); K,  and K, , are the
correspondlng Michaelis constants (mol S %); and

K., and K, represent the inhibition constants for
the product and substrate in the competitive inhibi-
tion terms (mol m™).

The kinetic equations for this model are more
complex than in the previous cases and account for
inhibition effects in both directions of the reversible
reaction. We analyze the challenges associated with
determining unique parameter values in such sys-
tems, considering the implications for biocatalytic
reaction optimization and process design. It is worth
noting that a similar problem of non-uniqueness
would also arise if one considers the kinetic rate
equations describing the Ping—Pong Bi—Bi mecha-
nism, which also typically involves six parameters.

To illustrate the problem of non-uniqueness in
the six-parameter reversible Michaelis—Menten
model with competitive inhibition (Eq. 6), we refer
to a real laboratory case of a reversible mono-sub-
strate biotransformation exhibiting both substrate
and product inhibition. From experimental data, six
kinetic parameters corresponding to Eq. (6) were
determined using a conventional least-squares opti-
mization. Using these parameters, synthetic (ideal)
data were generated for an initial substrate concen-
tration of S, = 5 [mM]. The time courses of substrate
and product concentrations are shown in Fig. 5a,

— model fit

0 2 4 6 8 10 12 14
¢ [min]

Table 1 — Six parameter sextuples obtained by independent
optimization of Eq. (6) against the same synthetic data set. All
sets yield identical model fits (absolute error = 0).

9 P S W W
12.40 71.48 59.72 3.633 21.64 13.60
17.96 105.8 219.6 4.897 30.91 14.76
36.75 221.6 219.6 4.897 30.91 16.28
36.75 221.6 475.0 5.294 33.82 16.28
92.02 562.3 489.3 2.906 16.31 31.93
93.49 571.5 603.4 5.374 34.41 17.27

where the synthetic points are completely covered
by the model fit.

Next, we intentionally “forgot” the original pa-
rameter set and re-estimated the six kinetic parame-
ters by applying the same least-squares procedure to
the synthetic data. As expected for ideal data, the
absolute sum-of-squares error equals zero. Remark-
ably, the optimization procedure yielded not a sin-
gle but several distinct parameter sextuples, all pro-
viding virtually identical fits to the data (Fig. 5a)
and resulting in a relative numerical error indistin-
guishable from zero (Fig. 5b). The six parameter
sets summarized in Table 1 represent a specific ex-
ample of distinct parameter sextuples that reproduce
identical model fits. In the following section, we
provide a mathematical proof demonstrating that, in
fact, an infinite number of such sextuples can satis-
fy the same model equations and yield indistin-
guishable data fits.

The mathematical proof presented further here-
in demonstrates that the observed non-uniqueness is
not accidental but inherent to the model structure.
An infinite continuum of parameter sextuples can
reproduce identical outputs for the reversible Mi-
chaelis—Menten kinetics with inhibition (Eq. 6).

b)

210718
4107"%

0

relative error

-210718
0 2 4 6 8 10 12 14
¢ [min]

Fig. 5 — a) Simulated time-courses of substrate (S) and product (P) concentrations generated from the kinetic model (Eq. 6) using
ideal synthetic data with S, =5 [mM]. The synthetic points are completely overlapped by the model fit, as multiple parameter sextu-
ples reproduce the same trajectories. b) Relative error profiles corresponding to six independently optimized parameter sextuples
(listed in Table 1), showing only negligible numerical noise, thereby confirming perfect agreement with the synthetic data and demon-
strating non-uniqueness.
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The same principle extends to mechanistically relat-
ed systems, including the Ping—Pong Bi—Bi mecha-
nism, which also typically involves six kinetic pa-
rameters and exhibits the same intrinsic ambiguity.

It is important to note that classical statistical
uncertainty quantification tools, such as bootstrap
resampling or confidence interval estimation, are
not suitable for addressing intrinsic non-uniqueness.
These methods presuppose the existence of a unique
optimum, whereas in structurally non-identifiable
models the solution space forms a continuous man-
ifold of equivalent parameter sets.

Mathematical proof of non-uniqueness for the
six-parameter Michaelis-Menten-based kinetic models

While searching for parameters, it was shown
that a system with six parameters (without experi-
mental data and physical background) is non-unique
— with different sets of parameters, the same (iden-
tical) solution to the given initial problem can be
obtained. This non-uniqueness of the six parameters
can also be proven.

We are solving the initial value problem:

S (=R, ,(S)-R,(5() (7)

S(0)=35, 3
where we have rational functions:
R, (x)=——F= ©)
’ ( Sy —x
D1+ +x
De

Rz’p (x): p4 ( 0 x) (10)

1+ (-0

D

and p is a parameter of ordered sextuple of numbers:
p=(p1,p2,p3,p4,p5,p6) (11)

If we obtain two parameters (p,p,, PP, P D)
and (¢,,9,,9,.9,-95,4,) for which the rational func-
tion R, , fx —R,, x3 is the same for all real x to
the rational function R, , (x)- R, (x), then the ini-
tial problems:

S'(t)=R,,(S(t))- R, (S(2)),
and
S'(t)=R,,(S(t)- R, (1)),

will have the same solution.

S(0)=5, (12)
5(0)=5, (13)
Alternatively, expressed differently:

R,,(x)=R ,(x)=R,,(x)=R,(x) (14)
forall x€R

or more concisely:

0,(x)=0,(x) forall x€ER (15)

where:
0,(x)=R, ,(x)-R,,(x) (16)

How can parameters p and ¢g (two 6-tuples) be
chosen so that equation (15) is satisfied? Consider
any two parameters p and ¢ and bring the difference
o, (x)—Qq (x) to the common denominator, plac-
ing them on the same side of the equation. This re-
sults in a fourth-degree polynomial in the numera-
tor, which must be equal to 0 for all real x (developed
by Wolfram Mathematica):

cotexte,x’ +ex +e,xt=0 17

Coefficients c,c,,c,c,,c, are polynomials in
Varlables p1’p29p3’p4’p55p69 qp qZ’ q3’ q45 Q5 and q6 °
Equation (17) is satisfied for all real x only if all

coefficients are equal to 0:
¢,=0,¢,=0,¢,=0,c;,=0,¢c,=0  (18)

Fix an arbitrary parameter ¢ and find all param-
eters p (to prove the existence) close to g for which
0,(x)=0,(x) for all real x, or equivalently, the
equation (18) holds. Since we are looking for p
close to ¢, we write:

p=q+u (19)
where u=(u1,u2,u3,u4,u5,u6) 1s small.

We now have a function: f :R® =R’ defined
by:

f(ulﬂu2>u3’u4=u5>u6):(60501502903504) (20)

In each c, the fixed ¢,,9,.9,,9,,95 9, appear,
and instead of p’s, we write
p;,=q; tu, for indexes i=1,2,...,6. It can be
readily seen that:

f(0)=0, since Q,,,(x)=0,(x) @21
We use the following theorem®:

If £ R" - R" is a smooth function with constant
rank of the Jacobian matrix in the neighborhood of
0 and f{0) = 0, then the null space of the Jacobian
matrix evaluated at the origin, J, i.e., the solution
space of the corresponding homogeneous system
Jh=0, is tangent to the zero set of the function f:

N={ueRr", f(u)=0} (22)

In our original problem, it turns out (with the
aid of Wofram Mathematica) that the dimension of
the null space of the matrix J is 2; therefore, there
exists a two-dimensional surface in R® that has this
two-dimensional plane as its tangent space.
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Discussion and perspectives

The results presented in this study provide a
consistent picture of how parameter sensitivity and
non-uniqueness emerge in enzyme kinetic model-
ing. As the kinetic description becomes more com-
plex—from simple mono-substrate reactions to re-
versible and inhibited systems—the confidence in
estimated parameters decreases and the limitations
of empirical rate equations become evident. This
trend highlights the need for structurally informed
modeling and experimental strategies that ensure
both reliable parameter estimation and meaningful
physical interpretation of kinetic constants.

A well-documented issue in multi-parameter
kinetic modeling is the lack of uniqueness in pa-
rameter estimation. Even when the underlying mod-
el is structurally identifiable, the parameter space
often contains elongated valleys of nearly constant
error, where many parameter combinations fit the
data equally well. This phenomenon, referred to as
sloppiness, has been extensively described for bio-
logical and enzymatic systems’®. In practice, mod-
els with six or more parameters — such as reversible
Michaelis—Menten kinetics with inhibition or the
Ping—Pong Bi—Bi mechanism — rarely yield a sin-
gle, well-defined global minimum, but rather sets of
multiple parameters whose differences fall within
numerical noise, with relative errors on the order of
107** in terms of data fitting. These results highlight
the importance of experimental design and multi-
condition global fitting to mitigate non-uniqueness”'.

Another important aspect is that kinetic param-
eters such as VW/, K, and K. do not always retain a
clear physical meaning under practical experimental
conditions. While these parameters are theoretically
well defined, their experimental estimates can lose
interpretability when the assumptions underlying
the Michaelis—Menten model (e.g., quasi-steady-
state, substrate excess, negligible product inhibi-
tion) are not strictly fulfilled. As shown by Schnell
and Maini", even small deviations from these as-
sumptions can lead to unreliable estimates of Vmux/,
K, Similarly, Choi et al.'> emphasized that K, and
k_, often cannot be independently determined due

ca

Table 2 — Challenges in enzyme kinetics

to limited data quality, and Verheijen and Heijnen"
noted that in vivo parameter estimation is strongly
affected by multicollinearity. Thus, while parame-
ters such as V, . K, are widely used as apparent
measures of catafytic efficiency and substrate affin-
ity, their limited physical robustness in real systems
further aggravates the non-uniqueness problem.

It is worth noting that enzymatic biotransfor-
mation mechanisms have, for almost a century, been
described predominantly by empirical Michaelis—
Menten-type models. Because of their empirical or-
igin, these equations—formulated as rational func-
tions—tend to exacerbate parameter non-uniqueness.
As a result, they often lack clear physical grounding
for their kinetic constants. None of the parameters
explicitly capture fundamental physicochemical
properties such as the electrostatic potential, the dy-
namic surface charge distribution of an enzyme, or
the charge characteristics of its substrate. This con-
ceptual gap underscores the empirical nature of
conventional kinetic constants and explains why
their estimation is so sensitive to experimental de-
sign and data variability.

Recent advances in computational chemistry
and biophysics are paving the way toward a new
generation of enzyme kinetic models that move be-
yond empirical Michaelis—Menten descriptions.
Methods such as transition-state theory combined
with Eyring’s equation provide kinetic parameters
directly linked to activation enthalpies and entro-
pies, offering a clear physicochemical interpreta-
tion. Molecular dynamics (MD) simulations and
hybrid  quantum-mechanics/molecular-mechanics
(QM/MM) approaches enable the analysis of sub-
strate binding, conformational flexibility, and reac-
tion-energy profiles at atomic resolution. In particu-
lar, the electrostatic preorganization model
developed by Warshel and co-workers highlights
the crucial role of internal electric fields in enzyme
catalysis, directly connecting surface charge distri-
butions and electrostatic potentials with catalytic
efficiency. Brownian dynamics and Poisson—Boltz-
mann formalisms further allow the inclusion of
long-range electrostatic interactions in binding ki-
netics. Together, these developments suggest that

Problem

Consequence Key references

Non-uniqueness and “sloppiness” in multi-parameter models

Loss of physical interpretability of kinetic parameters

Empirical nature of Michaelis—Menten formalism

Toward mechanistic, physics-based models

Multiple parameter sets give indistinguishable fits;
global fitting across conditions required 7-10

V.. K, K, not robust under real experimental

conditions; unreliable estimates 11-13

Rational functions intensify non-uniqueness; lack
direct link to physicochemical properties 1

Transition state theory, QM/MM, MD, electrostatic
preorganization, Brownian dynamics 14-16
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future enzyme kinetics will increasingly rely on
mechanistic, physics-based models that capture mo-
lecular-level properties, thereby complementing or
even replacing classical empirical formalisms!#'6,
The key conceptual and methodological challenges
discussed are summarized in Table 2, which high-
lights how parameter non-uniqueness, empirical
model limitations, and the search for mechanistic
formulations collectively shape the future of en-
zyme kinetics research.

Conclusions

This study systematically examined the sensi-
tivity and non-uniqueness challenges encountered
in determining enzyme kinetic parameters, covering
systems of increasing complexity — from the classi-
cal two-parameter Michaelis—Menten model to re-
versible and inhibited multi-parameter mechanisms.
The results clearly demonstrate that, even when
models are structurally identifiable, parameter esti-
mates may remain practically non-unique, with
multiple parameter combinations providing equally
good fits to experimental data. In particular, param-
eter sets differing by up to two orders of magnitude
were shown to yield nearly indistinguishable model
outputs in experimentally based case studies.

A mathematical proof further confirmed that in
six-parameter kinetic systems, an infinite family of
parameter sextuples can yield identical model pre-
dictions, revealing that such non-uniqueness is in-
trinsic to the model structure itself and cannot be
resolved by additional data or statistical refinement.

These findings emphasize the importance of
combining multi-condition global fitting with sensi-
tivity and identifiability analysis to ensure meaning-
ful parameter estimation. They also highlight the
need to move beyond empirical rate equations to-
ward mechanistically grounded, physics-based ki-
netic models that establish direct links between
measurable molecular properties and catalytic func-
tion. Such approaches are essential for reliable
model-based design and intensification of biocata-
lytic processes, particularly in microscale and mi-
croreactor systems.
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