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Coagulation is a critical step in water treatment, with polyaluminum chloride being 
a commonly used coagulant. Its main mechanisms are charge neutralization and sweep 
coagulation. Minimizing sweep coagulation, when appropriate, can reduce chemical use 
and improve sludge management. A Fuzzy Inference System (FIS) is an effective tool for 
handling uncertainties and is often used for simplified process modeling. In this study, a 
FIS was developed to estimate the contribution of the sweep mechanism using zeta po-
tential, insoluble aluminum content, and turbidity removal as inputs. The model used 
three input variables and nine rules, aiming for low computational demand. The highest 
estimated sweep contribution occurred at pH slightly basic and Al(s) concentration > 2 
mg L⁻1 in a natural low-turbidity water sample. The FIS enabled the integration of fre-
quent measured variables into a single numerical output estimation linked to coagulation 
mechanisms, supporting decision-making and enabling opportunities for automation and 
cost reduction.
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Introduction

Several physical and chemical processes are 
applied in water treatment for public supply purpos-
es, aiming to remove impurities and ensure safe wa-
ter quality for consumption. In a conventional water 
treatment plant (WTP), the main processes include 
coagulation-flocculation, sedimentation, filtration, 
and disinfection1. Disinfection is the primary opera-
tion related to biosafety, preventing waterborne ill-
nesses through the inactivation of microorganisms 
and viruses2. Coagulation-flocculation, in turn, is 
associated with the aggregation of particles into 
flocs, which are subsequently removed through sol-
id-liquid separation processes such as sedimentation 
and filtration3. Additional processes may also be in-
cluded, depending on the specific characteristics of 
the water. These may involve adsorption, used for 
the removal of natural organic matter4, metals, and 
microbes5; membrane separation, capable of remov-
ing bacteria, viruses, low molecular weight organic 
compounds, and ionic species6; and advanced oxi-
dation processes (AOPs), which have been reported 
to target emerging pollutants such as microplastics7, 
recalcitrant chemicals and endocrine disrupting 
compounds8.

Coagulation is a key process for drinking-water 
production, and is described as the step in which the 
destabilization of organic and inorganic particles in 
water occurs, facilitating their aggregation during 
the subsequent flocculation stage. The formation of 
dense, large, and heavy flocs is essential for effec-
tive separation in subsequent steps, such as sedi-
mentation, flotation, or filtration9,10, underscoring 
the importance of a successful coagulation-floccula-
tion process. Common chemical coagulants include 
iron and aluminum salts, such as ferrous sulfate, 
aluminum sulfate, and polyaluminum chloride 
(PACl)11. PACl is noted for its efficiency and com-
petitive price, which has led to its widespread use 
over other market options12.

The primary mechanisms involved in the coag-
ulation process with PACl are charge neutralization 
and the sweep mechanism13. The charge neutraliza-
tion mechanism reduces the electrostatic repulsion 
between colloidal particles, enabling their collision 
and aggregation. In contrast, the sweep mechanism 
relies on the extensive formation of insoluble hy-
droxides, such as Al(OH)3(s), under high PACl dos-
es and specific pH ranges, which physically enmesh 
and remove colloidal particles from the water14. The 
sweep mechanism, however, is associated with 
higher reagent costs due to the increased coagulant 
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dose and greater demand for alkalinizing agents for 
pH correction, compared to the charge neutraliza-
tion mechanism15. Additionally, zeta potential mea-
surement is used for charge control in water, and its 
values significantly influence the success of charge 
neutralization coagulation. On the other hand, the 
sweep mechanism is described as less dependent on 
zeta potential values16.

Determining the required coagulant dose is a 
highly non-linear process, as it depends on various 
factors and involves complex chemical interac-
tions17. To better understand this process, coagula-
tion mechanism diagrams have been developed, il-
lustrating a wide range of coagulant doses and pH 
levels, as well as presenting lines of insoluble for-
mation and suggesting zones where different mech-
anisms typically are observed, such as charge neu-
tralization, sweep mechanism, restabilization, and 
mixed mechanisms18. Simpler coagulation diagrams 
are also used in experimental results, relating coag-
ulant doses to pH and residual turbidity in treated 
water samples19,20. However, these conventional di-
agrams tend to better depict turbidity reduction 
zones without detailing the contributions of individ-
ual mechanisms. Given that each mechanism has 
distinct characteristics, advantages, and applicabili-
ty for specific scenarios, a more nuanced under-
standing of these contributions could lead to more 
informed decision-making regarding treatment effi-
ciency and cost reduction.

In this context, FIS have emerged as a promis-
ing and attractive alternative for managing a wide 
range of variables with inherent uncertainty. FIS 
combine fuzzy logic with expert systems, allowing 
for the use of subjective, vague, ambiguous, or in-
complete data21. This combination serves as a pow-
erful tool for interpreting and analyzing complex 
systems based on approximate relationships22, such 
as the non-linear coagulation process23. One of the 
advantages of this approach is the incorporation of 
expert knowledge into the modeling process, which 
enhances the precision and reliability of the re-
sults24. FIS are based on fuzzy rules and adopt an 
“if... then” structure, where the efficacy of the mod-
els depends on the accuracy of the parameters esti-
mated in the model16. The main types of FIS are the 
Mamdani, Sugeno, and Tsukamoto systems17. The 
Mamdani-type FIS, in addition to its known ability 
to handle complex processes that are difficult to 
model mathematically, is also recognized for being 
tractable and widely used in automatic control sys-
tems25.

In the field of water treatment for public sup-
ply, several studies have developed and applied 
fuzzy logic models to determine the optimal coagu-
lant dose and control the coagulation process17,22,26,27. 

These studies emphasize the advantages of mathe-
matical modeling over experimental approaches in 
coagulation studies, noting that experimental meth-
ods are often associated with higher costs and 
lengthy routines. Bressane et al.27 also argue that jar 
testing is ineffective for real-time adjustments, 
while Arpitha and Pani28 cite that automatic control 
is essential to aim process safety and quality en-
hancement, highlighting the benefits of data-driven 
technologies.

In the previously mentioned studies with FIS in 
water treatment coagulation, the number of input 
variables ranged from two to six, primarily related 
to raw water parameters, data from real treatment 
plants, or jar testing, and the number of fuzzy rules 
varied significantly. A common aspect among the 
studies was the integration of FIS with ma-
chine-learning approaches such as Adaptive Neu-
ro-Fuzzy Inference System (ANFIS) and other da-
ta-driven models. While such combinations may 
improve model robustness and accuracy, their utili-
zation often requires substantial computational re-
sources26. Another limitation noted by Salleh et 
al.29, is that ANFIS implementations are normally 
restricted to applications that offer large datasets for 
the training. Given that coagulation dosing in WTPs 
is often based on empirical knowledge and opera-
tors’ subjective judgment30, the use of highly com-
plex models may be disproportionate to the practi-
cal reality. In this context, a simplified model may 
offer a viable intermediate alternative by balancing 
modeling complexity, computational costs, while 
remaining suitable for real-world applications and 
facilitating the handling of the coagulation process.

This study aimed to develop a Mamdani-type 
FIS using zeta potential, insoluble aluminum con-
tent, and residual turbidity as input variables to esti-
mate the predominance of the sweep coagulation 
mechanism. The model was designed to be compu-
tationally efficient, relying on three input variables 
and nine fuzzy rules. The work includes experimen-
tal jar tests, modeling structure, membership func-
tion definitions and their limits, the logical premises 
adopted in rule construction, model application, and 
analysis of the obtained results.

Material and methods

The raw water sample used in this research was 
collected from the Cachoeira do França reservoir in 
São Paulo, a preserved water source that supplies 
the Metropolitan Region of São Paulo31. The same 
batch of water was used throughout the entire anal-
ysis, minimizing temporal variations in raw water 
quality and ensuring its homogeneity. The sample 
had a turbidity level below 10 NTU (Nephelometric 
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Turbidity Unit), indicating low-turbidity water, as 
defined by Cruz et al.32 The experiments were con-
ducted using a PoliControl Floc Control jar test ap-
paratus, which had six jars and a maximum rotation 
speed of 300 rpm. A total of 30 test runs were used 
to construct the coagulation diagram.

The coagulant used in the study was PAC Floc 
120 HT from Bauminas®, with an Al2O3 content 
ranging between 9 % and 11 %. The total aluminum 
content was measured using the Hach 8012 method, 
yielding a value of 4.92 %. The Al dose varied from 
0.88 to 3.52 mg L–1, while the pH ranged from 5 to 
8.3 adapting the diagrams developed by Bartiko and 
Julio20. The pH value was estimated in preliminary 
bench-scale studies, and the corresponding NaOH 
concentration for each point was added to the jars 
prior to the start of the experiment. For the physico-
chemical analysis of both raw and treated water, the 
following instruments were used: a Hach TU5200 
Turbidimeter, a Thermo Scientific Orion Dual Star 
pH meter, a Malvern Zetasizer Nano Series zeta po-
tential meter, and a Mettler Toledo UV5 spectro-
photometer.

The proposed FIS utilized zeta potential, the 
concentration of insoluble Al in the form of 
Al(OH)₃(s) (referred to as Al(s) concentration), and 
turbidity removal percentage as input variables. Al-
though pH is a known variable influencing coagula-
tion mechanisms, its effect was considered to be 
implicitly represented through the zeta potential and 
Al(s) concentration inputs. The system was imple-
mented using MATLAB® software using the Fuzzy 
Logic Designer tool. Membership functions for the 
input variables were either triangular or trapezoidal, 
depending on the characteristics of each linguistic 
variable. Their limits were defined based on trends 
observed in experimental data and information from 
the literature.

The output “sweep contribution” is represented 
by a triangular membership function with five equi-
distant fuzzy sets: very low, low, medium, high, and 
very high. These fuzzy sets, defined based on lin-
guistic terms, aim to simplify the uncertainty of the 
results and enable the aggregation of similar behav-
iors into a single output. The number of fuzzy sets 
for the linguistic variable in the output was chosen 
based on the number of results that allow for asso-
ciation without overlapping the “if...then” rules. 
Defuzzification was carried out using the centroid 
method, and the numeric output ranged from 0 to 
10, aiming to facilitate visualization. The rule base 
was constructed from six logical premises derived 
from coagulation process understanding, assuming 
equal weighting for Al(s) concentration and turbidi-
ty removal, which resulted in nine rules encompass-
ing all possible scenarios.

Results and discussion

The results are divided into three sections: (a) 
results of the jar test assays, (b) development of the 
fuzzy inference system, and (c) application of data 
to the system.

Jar test assays

The jar test assays revealed relationships be-
tween the variables, helping define the limits for the 
membership functions. Measurements were taken 
for pH, residual turbidity after sedimentation, and 
zeta potential. The physicochemical characteristics 
of the raw water and the hydraulic variables em-
ployed during the jar test assays are presented in 
Table 1.

Fig. 1 displays a contour diagram showing the 
distribution of residual turbidity values by Al dose, 
referred to as Altotal concentration, and pH. The dark 
blue zone indicates better turbidity reduction, with 
final values approaching 0 NTU for Al doses above 
2 mg L–1 and pH ranging from approximately 6.8 to 
8.5.

Further interpreting of a coagulation diagram 
focused on assessing the quantity of hydrolyzed 
precipitates that were formed for each point, as this 
is the main step of the sweep mechanism. Sweep 
coagulation is associated with higher turbidity re-
moval and is often used in lower-quality water or 
more complex treatments15. For cleaner water sourc-
es, minimizing the sweep mechanism is related to 
savings in reagents and reduced sludge production. 
According to a diagram of coagulation mechanisms 
described by Benson18, the data points within this 
pH and Altotal concentration span various mechanism 
ranges, from charge neutralization to zones of resta-
bilization, neutralization with Al(OH)₃(s) at zero 
zeta potential, coagulation with mixed mechanisms, 
and sweep flocculation. The presence of data in 
zones of uncertainty regarding the dominant mech-
anism supports the use of a FIS.

Ta b l e  1  –  Physicochemical characteristics of the raw water 
and hydraulic variables during jar test assays

Parameter Value

Turbidity 5.89±0.84 NTU

pH 6.80±0.05

Zeta potential –16.4±1.1 mV

Rapid mixing time 10 s

Rapid mixing velocity gradient 600 s–1

Slow mixing time 15 min

Slow mixing velocity gradient 35 s–1

Sedimentation time 7 min
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Fig. 2 illustrates the distribution of the samples 
on an Al solubility diagram by pH, using data from 
Xiao et al.33 It shows that all samples were above 
the Al(OH)₃(s) solubility curve, indicating the for-
mation of insoluble Al.

Calculations were performed to determine the 
percentage of Al(s) for the different doses, and the 
ratio of Al(s) to Altotal is shown in Fig. 3. The results 

indicate that only at pH levels below 6 and for dos-
es from 0.88 to 2.20 mg L–1 of Al does the fraction 
of insoluble aluminum comprise less than 75 % of 
the total aluminum.

In the zone where coagulation occurs mainly 
by charge neutralization, the predominance of solu-
ble hydrolyzed species is observed, and, therefore, 
it is below the Al(OH)₃(s) curve. Conversely, the 

F i g .  1  – Contour diagram of residual turbidity in NTU in a pH and total Al 
concentration coagulation diagram

F i g .  2  – Sample distribution on an aluminum solubility diagram
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points representing Al doses and pH used to con-
struct the work diagram are expected, according to 
the mechanisms diagram proposed by Benson18, to 
be primarily located in the zones of re-stabilization, 
charge neutralization with Al(OH)₃(s), mixed mech-
anisms, and sweep mechanisms. The re-stabiliza-
tion zone is associated with the absence of coagula-
tion, while charge neutralization with Al(OH)₃(s) 
and mixed mechanisms involve a combination of 
both main mechanisms, in zones of uncertainty of 
main contributions. The proposed FIS aimed to nu-
merically estimate the predominance of the sweep 
mechanism over the charge neutralization mecha-
nism based on the evaluated parameters.

Defining limits for membership functions

The input variables include zeta potential, Al(s) 
concentration, and turbidity removal percentage. To 
define the limits for the membership functions, data 
from the literature were adapted and interpreted 
alongside the experimental data.

For zeta potential, Fig. 4 shows the distribution 
of residual turbidity according to zeta potential. For 
values ranging from –15 mV to approximately 5 
mV, residual turbidity varied among samples, rang-
ing from nearly 0 NTU to as high as 4 NTU. This 
variation suggests that zeta potential and neutraliza-
tion mechanisms do not function in isolation. In 
contrast, unsatisfactory coagulation was observed at 
zeta potential values above +10 mV, where residual 
turbidity was close to that of the raw water (5.89 
NTU). Accordingly, this observation was taken into 
account when establishing the limits of the mem-
bership function.

The neutral zeta potential, or isoelectric point, 
is generally considered optimal for coagulation-floc-
culation through the charge neutralization mecha-
nism34. Additionally, while Sun et al.35 suggest a 
broad range of zeta potential from –10 mV to +10 
mV for effective coagulation, several authors report 
narrower ranges. For instance, Ghernaout et al.16, 
Sharp et al.36, and Mroczko and Zimoch37 observed 
effective coagulation within the range of –10 mV to 
+5 mV, while Saritha et al.38 proposed a range of –8 
mV to +5 mV, indicating that positive values should 
remain closer to the isoelectric point compared to 
the negative ones to avoid disturbing the coagula-
tion process. Consequently, the negative limit for 
zeta potential is set at values below –10 mV, while 
the positive limit is set above +7 mV, marking zones 
where zeta potential may not support, and could 
even hinder coagulation. The membership function 
for the zeta potential variable, reflecting these rang-
es, is shown in Fig. 5.

Regarding Al(s) concentration, studies have 
identified two distinct ranges of aluminum coagu-
lant doses: one within a lower concentration that 
provides satisfactory coagulation and another with a 
higher concentration that achieves greater coagula-
tion and higher turbidity reduction. Duan and Greg-
ory39, for instance, observed two effective coagula-
tion ranges at pH 7: one at a lower concentration of 
15 µM Al (0.41 mg L–1) and another at a concentra-
tion above 60 µM (1.62 mg L–1). Concentrations 
between these two points resulted in low turbidity 
reduction, likely due to re-stabilization. These two 
levels were referenced as “medium” and “high” for 
the membership function modeling. Table 2 pres-

F i g .  3  – Percentage of Al(s) relative to initial Al dose
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F i g .  5  – Membership function for the zeta potential variable

F i g .  4  – Residual turbidity (NTU) in relation to the zeta potential (mV) of the samples

Ta b l e  2  –  Altotal concentration in “medium” and “high” levels applied in coagulation assays and their Al(s) concentrations 

Source
Altotal  concentration (mg L–1)

pH
Al(s) concentration (mg L–1)

Medium High Medium High

Cruz et al.32 0.45 1.36 7.0 0.31 1.22

Duan and Gregory39 0.41 1.62 7.0 0.27 1.48

Lin and Ika40 0.81 2.43 7.5 0.67 2.29

Yan et al.41 0.54 2.16 7.0 0.41 2.02

Trinh and Kang42 1.35 3.51 7.5 1.21 3.37

He and Nan43 1.00 2.20 7.8 0.85 2.05

Ng et al.44 2.16 4.12 6.0 1.97 3.93
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ents the Al doses, Al(s) concentration, and pH of 
coagulation, while Fig. 6 shows the boxplot of Al(s) 
concentrations obtained.

The linguistic values for the membership func-
tion for Al(s) concentration were divided into “low,” 
“medium,” and “high” levels, with a domain rang-
ing from 0 to 3.52 mg L–1, the maximum dose used 
in the jar test experiment depicted in Fig. 1. As 
shown in Fig. 6, the upper whisker limit of the “me-
dium” Al(s) concentration level nearly overlaps 
with the lower whisker of the “high” level, indicat-

ing a possible uncertainty point between these lin-
guistic variables. Similarly, uncertainty for the 
“low” level was defined from 0 mg L–1 to the mini-
mum value of the “medium” Al(s) concentration 
level. Singala et al.45 reinforce that the ability of a 
single value to be associated with multiple aspects 
within a membership function is a key feature of the 
fuzzification and defuzzification processes, en-
abling linguistic variables to interact with numerical 
values. The resulting membership function is shown 
in Fig. 7, with the uncertainty ranging from 0 to 
0.36 for the ‘low’ value, and from 1.03 to 1.96 for 

F i g .  6  – Boxplot of Al(s) concentration data applied in coagulation 
assays, presented in “medium” and “high” levels

F i g .  7  – Membership function of the Al(s) concentration variable
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the ‘medium’ value, these limits approximate the 
pattern of overlapping whiskers observed in Fig. 6.

For turbidity removal, the data clustered into 
three well-defined groups: (1) samples where coag-
ulation did not occur, with removal less than 10 %; 
(2) samples with intermediate removal ranging from 
30 % to 60 %; and (3) samples with removal ex-
ceeding 80 %. This allowed the membership func-
tion to be adjusted according to the observed behav-
ior, with uncertainty accounted for in the spaces 
between these zones. The histogram of turbidity 
removal percentages is shown in Fig. 8, and the 
 corresponding membership function is depicted in 
Fig. 9.

The summary of the membership functions is 
presented in Table 3, including function type, lin-
guistic variables, and parameters.

The rules of a fuzzy inference model are cru-
cial for the effectiveness of the system, and it is 
necessary to define the appropriate rules and their 
quantity based on the problem’s nature46. The prem-
ises that guided the rules definition are detailed in 
the items listed below (i–vi), while Table 4 presents 
the nine fuzzy rules derived from these premises.
i) If the Al(s) concentration is low, a primary factor 

for sweep coagulation, or if the turbidity remov-
al is low, indicating ineffective coagulation, the 
sweep contribution will be very low.

F i g .  9  – Membership function for the turbidity removal variable

F i g .  8  – Histogram of turbidity removal percentages
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ii) The variables turbidity removal and Al(s) con-
centration carry equal weight.

iii) If both turbidity removal and Al(s) concentra-
tion are at the “medium” level, the sweep con-
tribution will be low or medium.

iv) If one variable, either turbidity removal or Al(s) 

concentration is at the “medium” level and the 
other at the “high” level, the sweep contribution 
will be medium or high.

v) If both turbidity removal and Al(s) concentra-
tion are at the “high” level, the sweep contribu-
tion will be high or very high.

vi) If the zeta potential is neutralized, the corre-
sponding sweep contribution will be assigned 
the lowest available value, as described in the 
previous premises.
The premises described result from the logical 

summation of turbidity removal and Al(s) concen-
tration influence, both assuming equal weight for 
both variables, along with the influence of the zeta 
potential. Premise “vi” assumes that when the zeta 
potential is neutralized, the neutralization mecha-
nism favors coagulation, thus leading to a lower 

value of the sweep contribution in the model. When 
the zeta potential is strongly negative or positive, 
the sweep mechanism must compensate these inter-
ferences to achieve consistent coagulation perfor-
mance, resulting in the higher values assigned to the 
sweep contribution.

Application of the model

The output obtained from the FIS ranged from 
0 to 10 after defuzzification by the centroid method. 
Fig. 10 presents the contour diagram of the sweep 
mechanism contribution, generated from the output 
of the proposed inference system in this study.

A well-defined zone of very low contribution is 
observed for dose ranges above 1.25 mg L–1 and pH 
levels below 6.5. Intermediate contribution zones 
are noted at lower doses and pH levels above 6.5, 
extending to sweep consolidation at pH levels above 
6.8 and doses above 1.75 mg L–1 of Al. The zones 
of highest contribution, where isolated points of 
very high contribution are indicated in dark red, are 
characterized by negative or positive zeta potential, 
high turbidity removal, and significant formation of 

Ta b l e  3  –  Summary of membership functions parameters

Variable Name Type Parameter

Zeta potential

Negative Trapezoidal [–20 –20 –10 0]

Neutralized Triangular [–10 0 7]

Positive Trapezoidal [0 7 25 25]

Al(s) concentration

Low Triangular [0 0 0.36]

Medium Trapezoidal [0 0.36 1.03 1.97]

High Trapezoidal [1.03 1.97 3.52 3.52]

Turbidity removal (%)

Low Trapezoidal [0 0 10 30]

Medium Trapezoidal [10 30 60 80]

High Trapezoidal [60 80 10 10]

Ta b l e  4  –  Rule base of the fuzzy system relating input variables at various levels and output values

Rule Sweep 
contribution

If turbidity removal is low OR insoluble Al concentration is low. Very low

If turbidity removal is medium AND insoluble Al concentration is medium AND Zeta potential is neutralized. Low

If turbidity removal is medium AND insoluble Al concentration is medium AND Zeta potential is negative OR positive. Medium

If turbidity removal is medium AND insoluble Al concentration is high AND Zeta potential is neutralized. Medium

If turbidity removal is high AND insoluble Al concentration is medium AND Zeta potential is neutralized. Medium

If turbidity removal is medium AND insoluble Al concentration is high AND Zeta potential is negative OR positive. High

If turbidity removal is high AND insoluble Al concentration is medium AND Zeta potential is negative OR positive. High

If turbidity removal is high AND insoluble Al concentration is high AND Zeta potential is neutralized. High

If turbidity removal is high AND insoluble Al concentration is high AND Zeta potential is negative OR positive. Very high
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insoluble substances. Al(s) concentrations in the 
“low” range were not employed, as verified in Fig. 
3, thus, the blue zone of low sweep contribution re-
sulted from ineffective coagulation, leading to low 
turbidity removal.

The result, when compared to regular coagula-
tion diagrams such as that of Arnaldos and Pagilla47, 
differs by providing exact values for estimating 
mechanism predominance rather than broad zones. 
This leads to more direct information that may fa-
cilitate automation commands and decision-making 
through simplified interpretation. Additionally, the 
numerical output enables a more precise identifica-
tion of zones where both mechanisms, charge neu-
tralization and sweep coagulation, occur simultane-
ously, by assigning specific conditions to each point 
instead of relying on an estimated functional divi-
sion within a proposed zone. As a zone of uncer-
tainty, this condition is addressed in the FIS through 
both the limits of the membership functions and the 
defuzzification process.

Fig. 4 illustrates that zeta potential values 
above 10 mV resulted in samples with low turbidity 
reduction. To confirm the influence zones of zeta 
potential, a contour diagram was created, plotting 
zeta potential across pH and Al dose ranges. Fig. 11 
presents the distribution of zeta potential across the 
pH and Al dose diagram.

Interpreting Figs. 10 and 11 simultaneously, the 
results are consistent, with the low sweep contribu-
tion zone entirely contained within the positive zeta 
potential zones above 10 mV, indicating where co-

agulation does not occur. Conversely, the high con-
tribution zone encompasses zeta potential values 
slightly positive (~+5 mV) to negative values below 
–10 mV. The highest sweep outputs are found at the 
extremes of this range. An expected discrete de-
crease was observed near zeta potential values close 
to 0 mV, around pH 7.25, which is indicative of the 
contribution of the charge neutralization mecha-
nism, in accordance with model premise (iv). Inter-
mediate sweep contribution zones are mainly char-
acterized by dose ranges below 1.5 mg L–1

 and pH 
levels from 6.5 to approximately 7.5, zones with 
intermediate turbidity removal as observed in Fig. 1.

While the diagram in Fig. 10 highlights the in-
fluence of pH on the sweep mechanism output, pH 
alone does not provide a reliable basis for predict-
ing coagulation performance. This is evident in the 
region of medium coagulation under acidic condi-
tions and Altotal concentrations below 1.5 mg L–1. In 
contrast, one of the primary effects of pH on coag-
ulation appears to be mediated through its influence 
on the zeta potential, as shown in Fig. 11. The 
non-coagulation zone under acidic pH was more 
precisely identified by high zeta potential values. 
This observation is supported by Nazari et al.48, 
who describe how shifts in the H⁺/OH⁻ balance in-
duced by pH changes disrupt the electrostatic stabil-
ity of colloidal particles, thereby influencing coagu-
lation mechanisms. These shifts can promote 
coagulation under conditions favorable to charge 
neutralization, while also delineating pathways such 
as sweep coagulation that are less dependent on 

F i g .  1 0  – Contour diagram of the sweep mechanism contribution in the coagulation process
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electrostatic parameters. These results support the 
strategy of implicitly incorporating pH effects 
through the input variables zeta potential and Al(s) 
concentration, given the mutual interference be-
tween pH and zeta potential, and the greater in-
formational relevance of zeta potential in charac-
terizing the electrostatic conditions governing co- 
agulation.

The proposed model opens opportunities to 
minimize the sweep mechanism contribution when 
the raw water is expected to be easier to treat, by 
maintaining the sweep coagulation output in the 
lower portion of the model’s range. A practical ap-
plication strategy for the model would involve 
tracking turbidity removal and comparing it with 
the sweep mechanism output. A zone with zero 
sweep output but measurable turbidity removal may 
indicate a region dominated by charge neutraliza-
tion without floc formation, which is ideal for direct 
filtration and reduced sludge generation32. Alterna-
tively, in conventional WTPs, an increase in sweep 
mechanism output can be desirable, particularly 
when driven or automated in response to a decline 
in turbidity removal efficiency or changes in raw 
water characteristics.

For the water source studied, for example, a 
control response, integrating continuous turbidity 
meters and zeta potential meters, can be adjusted to 
operate within the range of 1.25 to 3.75 of the 
mechanism, as shown in Fig. 10, with an Altotal dose 
of 1 to 1.5 mg L–1, and pH 5.5 to 6.5. This condition 
is the most economical in terms of PACl concentra-

tion. When the turbidity response indicates the need 
to increase the sweep mechanism, the output range 
from 3.75 to 6.5 would be preferred, representing 
Altotal concentrations from 1.25 to 1.75 mg L–1 and a 
pH range from 6.5 to 7.5.

The control of water and wastewater processes 
using fuzzy models has been observed in various 
studies49–51 and some authors highlight that linear 
Proportional-Integral-Derivative (PID) controllers, 
a highly applied control approach, have limitations 
when dealing with non-linear processes49,52. In a 
fuzzy system controlling the air supply in a waste-
water treatment plant, the fuzzy model was able to 
integrate the practical knowledge of expert opera-
tors with simple implementation in controller de-
sign49. The authors used a trial-and-error methodol-
ogy over a short period before continuous operation 
and evaluated the system’s stability and efficiency, 
observing a reduction in mean squared error (MSE) 
with a variable set point, in contrast to a linear con-
troller that oscillated significantly around a fixed set 
point. Similarly, Demirci et al.50 describe fuzzy 
models for control systems in wastewater electroco-
agulation treatment as robust and resistant to inter-
ference, utilizing human reasoning to control con-
ductivity and pH. They achieved increased color 
and turbidity removal efficiency with the fuzzy 
model. Fiter et al.51 also emphasize that fuzzy con-
trol models are easy to understand and are, there-
fore, better accepted by operating personnel com-
pared to conventional models.

While knowledge-based models such as FIS 
are promising for process control and incorporation 

F i g .  11  – Zeta potential in relation to Al dose (mg L–1) and pH



132 D. G. Marques et al., Fuzzy Inference System for Modeling the Contribution…, Chem. Biochem. Eng. Q., 39 (2) 121–134 (2025)

into Environmental Decision Support Systems 
(EDSS) and automated decision-making in facili-
ties53, concerns about computational limitations re-
main significant. For example, Ansari et al.54 em-
ployed a subtractive clustering method to obtain 
rules and membership functions due to its lower 
computational effort compared to the grid partition-
ing method. As stated previously, Bressane et al.27, 
highlighted that ANFIS suffers from limitations re-
lated to computational expense and the clarity of 
decision-making, advocating for a non-hybrid da-
ta-driven FIS. The use of a model with only three 
input variables and nine rules, as presented in this 
study, is therefore important from a computational 
efficiency perspective.

The focus on coagulation mechanisms in this 
model differs from typical FIS models used in water 
treatment, which often concentrate on raw water 
quality parameters53. This model, centered on coag-
ulation mechanisms, complements rather than re-
places the capabilities of raw water quality models. 
Further improvements to the model could explore 
this synergy or identify alternatives, such as cluster-
ing specific raw water conditions to optimize the 
estimated contribution of the sweep mechanism for 
efficient treatment.

As fuzzy models inherently involve subjectivi-
ty, especially in the definition of membership func-
tions, adapting the model to different samples may 
require recalibration of these functions based on the 
characteristics of each water sample or WTP. The 
limitations of the present model may be associated 
with the definition of membership limits, which 
were based on a combination of literature referenc-
es and trends observed in experimental data. This is 
particularly relevant for the turbidity removal vari-
able, which was defined solely based on observed 
trends; however, jar test results may differ from 
those observed in real WTPs under varying hydrau-
lic conditions. Additionally, the characteristics of a 
particular raw water source may also influence zeta 
potential behavior in varying pairs of pH and Al 
dose, as well as turbidity removal, consequently the 
output, indicating the need for studies in different 
water matrices for broader validation and suggest-
ing the need for potential model adaptations, espe-
cially regarding the membership function limits. 
Nevertheless, the simplicity of using three variables 
with three linguistic terms each facilitates easy ad-
aptation to the specific conditions of each WTP fol-
lowing an initial investigation.

Conclusion

This study developed a simplified Mamdani- 
type FIS to estimate the contribution of the sweep 
coagulation mechanism using three input variables: 
zeta potential, Al(s) concentration, and turbidity re-

moval. The model’s structure, based on a reduced 
set of linguistic terms and only nine rules, was in-
tentionally designed to offer a simplified estimation 
of a highly non-linear process. Beyond supporting 
decision-making, the FIS output enables rapid visu-
alization of parameter interdependence and the dy-
namics of coagulation behavior. Its ease of adapta-
tion to different water treatment conditions stems 
from its simplicity, allowing straightforward recali-
bration. By quantifying the sweep mechanism’s 
contribution, the model may guide strategies to re-
duce reagent use and sludge generation, offering a 
practical and adaptable tool for real-time monitor-
ing and potential automation in water treatment pro-
cesses.
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