Z. Yao et al., Cu/αβ-Mo_xC as a Highly Selective Catalyst..., Chem. Biochem. Eng. Q., 37 (4) 215–222 (2023)

$Cu/\alpha\beta$ -Mo_xC as a Highly Selective Catalyst for the Reverse Water-gas Shift Reaction

This work is licensed under a Creative Commons Attribution 4.0 International License

Z. Yao,^{a,*} S. Liu,^a Q. Rong,^{a,b} D. Liu,^a K. Wang,^c and N. Sun^{a,*} ^aSchool of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China ^bSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China ^cPetroChina Company Limited. Fushun

Petrochemical Company, Fushun, 113004, China

doi: https://doi.org/10.15255/CABEQ.2023.2231

Original scientific paper Received: July 6, 2023 Accepted: September 13, 2023

The Mo carbide has been widely studied as a promising catalyst system for reverse water-gas shift reaction (RWGS). In this study, a novel Cu-doped Mo carbide, denoted as Cu/ $\alpha\beta$ -Mo_xC, was synthesized through a resin-based carbothermal reduction method, and its structure was characterized using XRD, BET, SEM and TEM techniques. The catalyst's Mo carbide component consisted of α -MoC_{1-x} and β -Mo₂C phases, and the Cu/Mo molar ratios of 1/36, 1/22, 1/13, and 1/9 were considered. Among these catalysts, Cu/ $\alpha\beta$ -Mo_xC with a 1:22 Cu:Mo molar ratio exhibited the highest RWGS performance. It is worth noting that this catalyst also demonstrated significantly higher CO selectivity compared to previously reported Cu/ β -Mo₂C (97.6 % vs. 89.4 %) at lower temperatures (e.g., 250 °C), attributable to its reduced affinity with CO.

Keywords

Cu-doped Mo carbide, $Cu/\alpha\beta$ -Mo_xC, resin, carbothermal reduction, reverse water-gas shift reaction

Introduction

Global warming, primarily driven by anthropogenic emissions of CO₂ resulting from the combustion of fossil fuels in industrial processes, energy production, and transportation, has emerged as a serious challenge in the 21st century¹. Consequently, there is an urgent need for the development of techniques for CO₂ capture and storage, or catalytic conversion. To date, only a small fraction of emitted CO₂ has been recycled through processes such as urea, polycarbonate synthesis, and salicylic acid production². In the context of the carbon neutral concept, one pivotal aspect is the transformation of CO₂ waste through catalytic conversion into a useful feedstock. CO₂ reduction to CO using H₂ as a reducing agent, a reaction commonly known as the reverse water gas shift (RWGS) reaction (Eq. 1), stands out as one of the most promising CO₂ conversion processes for its ability to produce CO, which can further be converted into various liquid fuels and high-value oxygenates through methanol synthesis and downstream Fischer-Tropsch process³. Notably, there are two main competing reactions (Eqs. 2 and 3), that occur alongside the RWGS reaction. The RWGS and Bosch reactions (Eqs. 1

and 3) are endothermic, and they become more prominent at higher temperatures. In contrast, the methanation reaction (eq. 2) is exothermic, making lower temperatures preferable⁴.

$$CO_2 + H_2 \cong CO + H_2O$$
 (1)

$$CO_2 + 4H_2 \cong CH_4 + 2H_2O$$
 (2)

$$CO_2 + 2H_2 \Leftrightarrow C + 2H_2O$$
 (3)

However, catalysts can face deactivation due to coking and sintering under high reaction temperatures. Additionally, elevated temperatures raise equipment requirements and energy consumption, increasing the production costs, and thereby limiting the industrial application of the RWGS reaction⁵. Therefore, the development of an economical catalyst with high activity and selectivity is a prerequisite for the large-scale application of the RWGS reaction. Cu-based catalysts have been extensively studied in the context of the RWGS reaction owing to their excellent catalytic activity and low price. Some investigations have shown that the catalytic performance of copper-based catalysts was mainly determined by metal size⁶, promoters⁷, support type and size⁷⁻⁹. Pohar and co-workers synthesized copper-based catalysts with various supports (Al₂O₃, CeO₂, SiO₂, TiO₂, and ZrO₂) and found that the choice of support affected the catalytic pathway

^{*}Corresponding author: Zhiwei Yao (e-mail: mezhiwei@163.com) and Na Sun (e-mail: sunna@lnpu.edu.cn)

mechanisms⁷. Likozar and co-workers reported that the size of the active copper area on top of the SrTiO₃ perovskite catalyst support can affect activity, selectivity, and stability⁹.

After molybdenum carbide catalysts were discovered to exhibit unique catalytic performance similar to noble metals in CO₂ reforming of CH₄ and water-gas shift reaction^{10–13}, they have been employed as new catalysts for the RWGS reaction^{14–26}. It was observed that monometallic Mo₂C and bimetallic Co-Mo₂C were more active and selective for CO₂ conversion to CO than precious metal based bimetallic catalysts (PtCo/CeO₂ and PdNi/CeO₂)²³. In general, Cu-based oxide catalysts have been extensively studied in the context of the RWGS reaction owing to their excellent catalytic activity and selectivity²⁷⁻²⁹. However, traditional Cu catalysts, such as Cu/SiO₂, tend to deactivate dramatically under working conditions due to the segregation of supported Cu particles at temperatures exceeding 280 °C ³⁰. Notably, a Cu/ β -Mo₂C catalyst exhibited excellent catalytic activity, with mass specific rate about 5 times higher than that of the commercial Cu/ZnO/Al₂O₃ catalyst^{16,24}. Moreover, Cu/β-Mo₂C demonstrated stability not only under steady-state conditions but also under start-up cool-down conditions. This was attributed to the strong interaction between Cu and β -Mo₂C, which effectively promoted the dispersion of supported Cu and prevented the aggregation of Cu particles even at temperatures as high as 600 °C¹⁶. These results proved the superior stabilizing properties of β -Mo₂C as a support material compared to traditional supports. In this study, a type of Cu/ $\alpha\beta$ -Mo_cC catalyst was synthesized using a straightforward resin-based carbothermal reduction method. It was observed that the Cu/ $\alpha\beta$ -Mo_vC catalyst exhibited higher CO selectivity than Cu/β -Mo₂C when subjected to similar CO₂ conversion conditions in the RWGS reaction.

Experimental

Materials

The raw resin used was a D201×1 cinnamic strong alkali anion exchange resin (purchased from HangZhou YongZhou Water Treatment Technology Co., Ltd.). $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (AR) and $Cu(NO_3)_2\cdot 3H_2O$ (AR) were purchased from Sinopharm Chemical Reagent Co., Ltd.

Sample preparation

Firstly, the raw resin was washed with deionized water and dried at 110 °C for 12 h. Subsequently, it was ground into a fine powder. The resin powder (2.0 g) was stirred in $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ solution with a Mo atom concentration of 0.5 mol L⁻¹ for 5 h. Following this, the exchanged resin was washed with deionized water three times and dried at 110 °C for 12 h. The Mo content in the dry resin was determined by ICP-AES to be 28.4 wt%. The dry resin was then impregnated with Cu(NO₃)₂·3H₂O solution with a given Cu/Mo molar ratio of *R* (*R*=1/36, 1/22, 1/13, and 1/9), and subsequently dried overnight at 110 °C. The resulting precursors were heated from room temperature (RT) to 900 °C at a rate of 10 °C min⁻¹ under Ar (50 mL min⁻¹) and held at this temperature for 1 h. They were then cooled to RT under Ar, and then passivated in a 1 %O₂/Ar flow for 2 h.

Sample characterizations

X-ray diffraction (XRD) measurements were conducted using an X-ray diffractometer (X'Pert Pro MPD) equipped with a Cu Kα source. BET surface area data were obtained from a surface area analyzer (NOVA4200). The morphologies of the samples were characterized using scanning electron microscopy (SEM, Hitachi S-4800) equipped with energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM, Philips Tecnal 10). The Mo content in the dry resin was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). CO-temperature programmed desorption (CO-TPD) experiments were conducted in a quartz tube micro-reactor. Before the CO-TPD process, 0.1 g of catalyst was heated from RT to 900 °C in Ar and held at this temperature for 30 min. After cooling to RT, a stream of 1 %CO/He was introduced into the system for 30 min. Subsequent to CO adsorption, the gas flow was switched to He (30 mL min⁻¹) to remove physically adsorbed CO on the catalyst surface. Finally, the sample was heated from RT to 900 °C at a rate of 10 °C min⁻¹ in He (30 mL min⁻¹). The effluent gases were monitored using a GC thermal conductivity detector.

Catalyst performance tests

The catalytic activities of the catalysts for RWGS were evaluated in a micro-reactor with an inner diameter of 8 mm at atmospheric pressure. Prior to the reaction, the sample was preheated in Ar at 900 °C for 0.5 h. Following the pretreatment, a gas mixture ($H_2:CO_2=2:1$) was passed through the catalyst with a WHSV of 60000 cm³ g⁻¹ h⁻¹. The reaction temperature range and time were 250–600 °C and 1 h, respectively. The exit gas stream from the reactor passed through a cold trap to remove water. The flow rates were measured with a soap bubble flow meter. The gas-phase products were analyzed on-line by gas chromatography (GC) equipped with

a thermal conductivity detector and a TDX-01 (60– 80 mesh) packed column (300 mm×2 mm i.d.). Quantitative analysis was performed using the external standard method. A linear relationship was established between the peak area values and the volume concentration of gases in the range of 0.1– 100 vol.%. The molar fractions for the products and reactants were determined based on the peak area-volume concentration curve and were taken into account in the calculation of the conversion and product distribution. The conversion of CO₂ and the selectivities of CO and CH₄ were defined as follows¹⁶:

$$\begin{split} &\text{CO}_2 \text{ conversion (\%)=([CO_2]_{in}-[CO_2]_{out})/([CO_2]_{in}) \cdot 100} \\ &\text{CO selectivity (\%)=([CO]_{out})/([CO]_{out}+[CH_4]_{out}) \cdot 100} \\ &\text{CH}_4 \text{ selectivity (\%)=([CH_4]_{out})/([CO]_{out}+[CH_4]_{out}) \cdot 100} \end{split}$$

Results and discussion

Fig. 1 shows the XRD pattern of fresh Cu- and Mo-containing carbide catalysts prepared using the resin-based carbothermal reduction method. The main peaks at 2θ of 34.5, 38.1, 39.4 and 61.6° can be attributed to the (100), (002), (101) and (110) reflections of β -Mo₂C (JCPDS 35-0787). Additionally, the characteristic diffraction peaks associated with α -MoC_{1-x} (JCPDS 65-0280) were observed at 2θ of 36.6 and 42.4°, corresponding to (111) and (200) reflections, respectively. In addition to the patterns of Mo carbide, diffractions of metallic Cu crystallites appeared at 43.3, 50.4 and 74.1°, corresponding to (111), (200) and (220) reflections, respectively. It was evident that the peak intensity associated with Cu increased with an increase in

Fig. 1 – XRD patterns of fresh Cu- and Mo-containing carbide catalysts (a) Cu/Mo=1/36, (b) Cu/Mo=1/22, (c) Cu/Mo=1/13, and (d) Cu/Mo=1/9

Table 1 – Textural properties of the $Cu/\alpha\beta$ - Mo_xC catalysts obtained in this study

Sample	$S_{ m BET} \ ({ m m}^2~{ m g}^{-1})$	D _p (nm)	$V_{ m p} (m cm^{3} g^{-1})$
Carbonized resin	2.3	14.80	0.009
Cu/ $\alpha\beta$ -Mo _x C (1/36)	218.4	6.58	0.29
Cu/ $\alpha\beta$ -Mo _x C (1/22)	207.2	5.60	0.27
$Cu/\alpha\beta-Mo_{x}C(1/13)$	198.9	4.35	0.24
Cu/ $\alpha\beta$ -Mo _x C (1/9)	190.6	4.17	0.20

 $S_{\rm BET} = {\rm BET}$ surface area; $D_{\rm p} = {\rm Average}$ pore diameter; $V_{\rm p} = {\rm Total}$ pore volume.

Table 2 - SEM/EDX surface elemental analysis results

Sample	Cu (wt%)	Mo (wt%)	C (wt%)	O (wt%)	Cu/Mo atomic ratio
$Cu/\alpha\beta$ - Mo_xC (1/36)	1.25	70.22	20.52	8.01	1/37.2
$Cu/\alpha\beta-Mo_{x}C$ (1/22)	2.16	69.56	19.58	8.71	1/21.3
$Cu/\alpha\beta-Mo_{x}C$ (1/13)	3.15	62.78	25.12	8.95	1/13.2
$Cu/\alpha\beta$ - $Mo_{x}C$ (1/9)	4.95	65.13	21.31	8.61	1/8.7

Cu/Mo molar ratio ranging from 1/36 to 1/9. Based on the Cu/Mo molar ratio, these fresh catalysts were designated as Cu/ $\alpha\beta$ -Mo_xC (1/36), Cu/ $\alpha\beta$ -Mo_xC (1/22), Cu/ $\alpha\beta$ -Mo_xC (1/13), and Cu/ $\alpha\beta$ -Mo_xC (1/9), respectively. Subsequently, the textural properties of these Cu/ $\alpha\beta$ -Mo_xC catalysts were obtained and are listed in Table 1. It was evident that the S_{BET} , D_{P} , and V_{P} of the catalysts decreased monotonically with an increase in Cu/Mo molar ratio. The obtained high surface areas of Cu/ $\alpha\beta$ -Mo_xC were attributed to the intimate contact between particles and carbon species formed during the resin carbonization process³¹.

The morphologies of these $Cu/\alpha\beta$ -Mo₁C catalysts were investigated using SEM and TEM (Figs. 2 and 3). It was apparent that these $Cu/\alpha\beta$ -Mo₂C catalysts exhibited similar SEM or TEM images regardless of Cu/Mo molar ratio. Irregularly shaped particles were observed on the supports, which should be assigned to carbon, as previously suggested³¹⁻³³. The insets in Fig. 3 clearly depict the crystal lattices of Cu (111), α -MoC_{1-x} (111) and β -Mo₂C (002), confirming the presence of Cu, α -MoC_{1-x} and β -Mo₂C in these samples. These results are consistent with the observations in the XRD patterns (Fig. 1). Furthermore, EDX results (Table 2) indicated the presence of Cu, Mo, C and O elements in Cu/ αβ-Mo_xC (1/36), Cu/αβ-Mo_xC (1/22), Cu/αβ-Mo_xC (1/13), and Cu/ $\alpha\beta$ -Mo_vC (1/9), and their Cu/Mo atomic ratios were close to the expected ratios of 1/36, 1/22, 1/13 and 1/9, respectively. The size dis-

100 nm

200 nm

(b)

Fig. 2 – SEM images of (a) $Cu/\alpha\beta$ - $Mo_x C$ (1/36), (b) $Cu/\alpha\beta$ - $Mo_x C$ (1/22), (c) $Cu/\alpha\beta$ - $Mo_x C$ (1/13), and (d) $Cu/\alpha\beta$ - $Mo_x C$ (1/9)

Fig. 3 – TEM images of (a) $Cu/\alpha\beta$ - $Mo_x C$ (1/36), (b) $Cu/\alpha\beta$ - $Mo_x C$ (1/22), (c) $Cu/\alpha\beta$ - $Mo_x C$ (1/13), and (d) $Cu/\alpha\beta$ - $Mo_x C$ (1/9). The insets show the crystal lattices of Cu (111), α - MoC_{1-x} (111), and β - $Mo_2 C$ (002).

Fig. 4 – Particle size distributions in (a) $Cu/\alpha\beta$ - $Mo_x C$ (1/36), (b) $Cu/\alpha\beta$ - $Mo_x C$ (1/22), (c) $Cu/\alpha\beta$ - $Mo_x C$ (1/13), and (d) $Cu/\alpha\beta$ - $Mo_x C$ (1/9) samples

Fig. 5 – Catalytic performance of $Cu/\alpha\beta$ -Mo ^{*c*} Catalysts in the RWGS reaction (CO₂/H₂ =1/2, WHSV=60000 cm³ g⁻¹ h⁻¹, P= 1 atm, T=300–600 °C)

tributions of these nanoparticles in the Cu/ $\alpha\beta$ -Mo C (1/36), Cu/ $\alpha\beta$ -Mo C (1/22), Cu/ $\alpha\beta$ -Mo C (1/13), and Cu/ $\alpha\beta$ -Mo C (1/9) samples were determined by measuring particle size directly from TEM images (Fig. 3). It can be observed from Fig. 4 that the average particle size varied with Cu/Mo molar ratio. Specifically, it was 17.9 nm in Cu/ $\alpha\beta$ -Mo C (1/36), 27.8 nm in Cu/ $\alpha\beta$ -Mo C (1/22), 43.8 nm in Cu/ $\alpha\beta$ -Mo C (1/13), and 48.7 nm in Cu/ $\alpha\beta$ -Mo C (1/9), respectively.

The influence of Cu/Mo molar ratio on RWGS activity and selectivity is displayed in Fig. 5. Clearly, the activity followed the order of Cu/ $\alpha\beta$ -Mo_xC (1/22) > Cu/ $\alpha\beta$ -Mo_xC (1/36) > Cu/ $\alpha\beta$ -Mo_xC (1/13) > Cu/ $\alpha\beta$ -Mo_xC (1/9) across the entire temperature range. On the selectivity side, Cu/ $\alpha\beta$ -Mo_xC (1/22) also exhibited the highest CO selectivity and the lowest CH₄ selectivity. This can be attributed to the catalyst's combination of an appropriate Cu content with larger surface area and smaller particle size (Table 1 and Fig. 4). Notably, the CO selectivity first

Fig. 6 – Catalytic performance of $Cu/\alpha\beta$ -Mo₂C and Cu/β -Mo₂C catalysts in the RWGS reaction ($CO_2/H_2 = 1/2$, WHSV=60000 cm³ g⁻¹ h⁻¹, P = 1 atm, T=250-550 °C)

decreased and then increased in the temperature range of 300–600 °C. This was due to the enhancement of the side reaction (methanation) with a temperature rise from 300 to 350 °C. However, in the higher temperature range (>350 °C), the thermodynamic factors drove the decline in methanation activity, and CO desorption became faster, preventing

Fig. 7 – CO-TPD curves of $Cu/\alpha\beta$ -Mo_xC and Cu/β -Mo₂C catalysts

further hydrogenation to CH₄ on the catalyst surface²⁰. Additionally, Cu/ $\alpha\beta$ -Mo_xC (1/22) also demonstrated excellent catalytic stability. Under conditions of WHSV=60000 cm³ g⁻¹ h⁻¹ at 400 °C (not shown), it maintained ~27 % CO₂ conversion and ~99.5 % CO selectivity throughout the test period of 30 h. Cu/ $\alpha\beta$ -Mo_xC (1/22) exhibited the carbon balance value of about 99 % throughout, indicating minimal carbon deposition on the catalyst. Interestingly, there was no obvious increase in CO₂ conversion with the load at the starting period, likely due to the catalyst's induction period having concluded within the first hour. A similar phenomenon was observed on Mo carbide clusters in a previous study¹⁴.

Finally, the catalytic performance of $Cu/\alpha\beta$ -Mo₂C (1/22) obtained through the resinbased carbothermal reduction method in this work was compared with that of Cu/β -Mo₂C (with an optimized Cu loading of 1 wt%^{16,24}) under similar conditions (Fig. 6). It is evident that they exhibited similar CO₂ conversion in the temperature range of 250–550 °C, but Cu/ $\alpha\beta$ -Mo C displayed higher CO selectivity (lower CH_4 selectivity) compared to Cu/β -Mo₂C. Furthermore, the RWGS performance of Cu/ $\alpha\beta$ -Mo_vC (1/22) was compared with other catalysts reported in the literature. As shown in Table 3, the Cu/ $\alpha\beta$ -Mo_vC catalyst exhibited superior activity and selectivity compared to traditional Ptand Cu-based catalysts.

Generally, RWGS selectivity is directly associated with the CO adsorption properties of the catalyst³⁷. The CO adsorption properties of Cu/ $\alpha\beta$ -Mo_xC and Cu/ β -Mo₂C catalysts were estimated through CO-TPD, as presented in Fig. 7. It is evident that both catalysts exhibited desorption peaks in the CO-TPD curves. Clearly, the desorption peak temperature corresponding to Cu/ $\alpha\beta$ -Mo_xC (595 °C) was lower than that of Cu/ β -Mo_xC (730 °C), indicating

Catalyst	H ₂ :CO ratio	Temperature (°C)	WHSV $(cm^3 g^{-1} h^{-1})$	CO ₂ conversion (%)	CO selectivity (%)	Ref.
Cu/αβ-Mo _x C	2:1	300	60000	16.0	98.9	this work
	2:1	400	60000	27.2	99.2	this work
	2:1	500	60000	38.2	99.8	this work
	2:1	600	60000	47.9	100	this work
Cu-Zn-Al	2:1	500	300000	21.0	100	16
Pt-Al ₂ O ₃	1.4:1	400	12000	6.4	N/A	34
Pt-TiO ₂	1.4:1	400	12000	16.0	N/A	34
Cu-Al ₂ O ₃	1:9	500	12000	20.1	100	35
Ni-CeO ₂	1:1	400	120000	9.0	77	36

Table 3 – Comparison of CO_2 conversion and CO selectivity for $Cu/\alpha\beta$ - Mo_xC and the literature reported catalysts

that $Cu/\beta-Mo_2C$ exhibited a stronger affinity with CO. In other words, during the RWGS reaction, the CO product adsorbed on $Cu/\beta-Mo_2C$ could dissociate more easily and be further hydrogenated to CH_4 . This likely explains why $Cu/\beta-Mo_2C$ exhibited lower CO selectivity compared to $Cu/\alpha\beta-Mo_2C$.

Conclusions

A series of Cu-doped Mo carbide catalysts with varying Cu/Mo molar ratios (1/36, 1/22, 1/13, and 1/9) were synthesized using resin-based carbothermal reduction method. The resulting materials were characterized through XRD, BET, SEM, TEM and CO-TPD techniques. The S_{BET} , D_{P} , and V_{P} of the catalysts decreased monotonically with the increase in Cu/Mo molar ratio. The obtained high surface areas of Cu/ $\alpha\beta$ -Mo_vC were attributed to the intimate contact between particles and carbon species. The catalytic activities of these $Cu/\alpha\beta$ -Mo_vC catalysts were assessed using RWGS as the reaction probe. Among these catalysts, $Cu/\alpha\beta$ -Mo₂C (1/22) exhibited the best RWGS activity and selectivity, likely due to the fact that the catalyst combined an appropriate Cu content with larger surface area and smaller particle size. It is worth noting that $Cu/\alpha\beta$ -Mo_vC (1/22) also demonstrated significantly higher CO selectivity than the previously reported Cu/ β -Mo₂C (97.6 % vs. 89.4 %) at lower temperatures (e.g., 250 °C), primarily owing to its weaker affinity with CO.

ACKNOWLEDGMENTS

The work was supported by the National Natural Science Foundation of China (No. 21978125), the Project of Liaoning Province Department of Education (No. LJKZ0376) and Liaoning BaiQianWan Talents Program.

References

- González-Castaño, M., Dorneanu, B., Arellano-García, H., The reverse water gas shift reaction: A process systems engineering perspective, React. Chem. Eng. 6 (2021) 954. doi: https://doi.org/10.1039/D0RE00478B
- Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., Medina-Elizade, M., Global temperature change, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 14288. doi: https://doi.org/10.1073/pnas.0606291103
- Marchese, M., Buffo, G., Santarelli, M., Lanzini, A., CO₂ from direct air capture as carbon feedstock for Fischer-Tropsch chemicals and fuels: Energy and economic analysis, J. CO₂ Util. 46 (2021) 101487. doi: https://doi.org/10.1016/j.jcou.2021.101487
- Le Saché, E., Pastor-Pérez, L., Haycock, B. J., Villora-Picó, J. J., Sepúlveda-Escribano, A., Reina, T. R., Switchable catalysts for chemical CO₂ recycling: A step forward in the methanation and reverse water-gas shift reactions, ACS Sustainable Chem. Eng. 8 (2020) 4614. doi: https://doi.org/10.1021/acssuschemeng.0c00551
- 5. Zhou, G., Dai, B., Xie, H., Zhang, G., Xiong, K., Zheng, X., CeCu composite catalyst for CO synthesis by reverse water-gas shift reaction: Effect of Ce/Cu mole ratio, J. CO₂ Util. **21** (2017) 292. doi: https://doi.org/10.1016/j.jeou.2017.07.004
 - doi: https://doi.org/10.1016/j.jcou.2017.07.004
- Wu, H. C., Chang, Y. C., Wu, J. H., Lin, J. H., Lin, I. K., Chen, C. S., Methanation of CO₂ and reverse water gas shift reactions on Ni/SiO₂ catalysts: The influence of particle size on selectivity and reaction pathway, Catal. Sci. Technol. 5 (2015) 4154. doi: https://doi.org/10.1039/c5cy00667h
- Jurković, D. L., Pohar, A., Dasireddy, V. D. B. C., Likozar, B., Effect of copper-based catalyst support on reverse water-gas shift reaction (RWGS) activity for CO₂ reduction, Chem. Eng. Technol. 40 (2017) 973. doi: https://doi.org/10.1002/ceat.201600594
- Jurković, D. L., Prašnikar, A., Pohar, A., Likozar, B., Surface structure-based CO₂ reduction reaction modelling over supported copper catalysts, J. CO₂. Util. **41** (2020) 101234. doi: https://doi.org/10.1016/j.jcou.2020.101234
- Kopač, D., Likozar, B., Huš, M., How size matters: Electronic, cooperative and geometric effect in perovskite-supported copper catalysts for CO₂ reduction, ACS Catal. 10 (2020) 4092.
- doi: https://doi.org/10.1021/acscatal.9b05303
 10. Patt, J., Moon, D. J., Phillips, C., Thompson, L., Molybdenum carbide catalysts for water-gas shift, Catal. Lett. 65

(2000) 193. doi: https://doi.org/10.1023/a:1019098112056

- Zhang, L., Yang, Y., Yao, Z., Yan, S., Kang, X., Finding of a new cycle route in Ni/Mo₂C catalyzed CH₄-CO₂ reforming, Catal. Sci. Technol. **11** (2021) 479. doi: https://doi.org/10.1039/D0CY02428G
- Gao, H., Yao, Z., Shi, Y., Jia, R., Liang, F., Sun, Y., Mao, W., Wang, H., Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane, Inorg. Chem. Front. 5 (2018) 90. doi: https://doi.org/10.1039/C7QI00532F

- Gao, H., Yao, Z., Shi, Y., Wang, S., Improvement of the catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming, Catal. Sci. Technol. 8 (2018) 697. doi: https://doi.org/10.1039/C7CY02506H
- 14. Ma, Y., Guo, Z., Jiang, Q., Wu, K.-H., Gong, H., Liu, Y., Molybdenum carbide clusters for thermal conversion of CO₂ to CO via reverse water-gas shift reaction, J. Energy Chem. 50 (2020) 37.
 - doi: https://doi.org/10.1016/j.jechem.2020.03.012
- Reddy, K. P., Dama, S., Mhamane, N. B., Ghosalya, M. K., Raja, T., Satyanarayana, C. V., Gopinath, C. S., Molybdenum carbide catalyst for the reduction of CO₂ to CO: Surface science aspects by NAPPES and catalysis studies, Dalton Trans. 48 (2019) 12199. doi: https://doi.org/10.1039/C9DT01774G
- 16. Zhang, X., Zhu, X., Lin, L., Yao, S., Zhang, M., Liu, X., Wang, X., Li, Y.-W., Shi, C., Ma, D., Highly dispersed copper over β-Mo₂C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction, ACS Catal. 7 (2017) 912.

doi: https://doi.org/10.1021/acscatal.6b02991

- Heracleous, E., Koidi, V., Lappas, A. A., CO₂ conversion over Cu-Mo₂C catalysts: Effect of the Cu promoter and preparation method, Catal. Sci. Technol. **11** (2021) 1467. doi: https://doi.org/10.1039/D0CY02021D
- Dasireddy, V. D. B. C., Vengust, D., Likozar, B., Kovač, J., Mrzel, A., Production of syngas by CO₂ reduction through Reverse Water-Gas Shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires, Renewable Energy **176** (2021) 251. doi: https://doi.org/10.1016/j.renene.2021.05.051
- Marquart, W., Raseale, S., Prieto, G., Zimina, A., Sarma, B. B., Grunwaldt, J.-D., Claeys, M., Fischer, N., CO₂ reduction over Mo₂C-based catalysts, ACS Catal. 11 (2021) 1624.

doi: https://doi.org/10.1021/acscatal.0c05019

 Gao, J., Wu, Y., Jia, C., Zhong, Z., Gao, F., Yang, Y., Liu, B., Controllable synthesis of α-MoC_{1-x} and β-Mo₂C nanowires for highly selective CO₂ reduction to CO, Catal. Commun. 84 (2016) 147.

doi: https://doi.org/10.1016/j.catcom.2016.06.026

- Porosoff, M. D., Baldwin, J. W., Peng, X., Mpourmpakis, G., Willauer, H. D., Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO₂ conversion to CO, ChemSusChem. **10** (2017) 2408. doi: https://doi.org/10.1002/cssc.201700412
- 22. Posada-Pérez, S., Viñes, F., Ramirez, P. J., Vidal, A. B., Rodriguez, J. A., Illas, F., The bending machine: CO₂ activation and hydrogenation on δ-MoC(001) and β-Mo₂C(001) surfaces, Phys. Chem. Chem. Phys. 16 (2014) 14912. doi: https://doi.org/10.1039/C4CP01943A
- Porosoff, M. D., Yang, X., Boscoboinik, J. A., Chen, J. G., Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO₂ to CO, Angew. Chem. Int. Ed. 53 (2014) 6705. doi: https://doi.org/10.1002/anie.201404109
- 24. Zhang, Q., Pastor-Pérez, L., Jin, W., Gu, S., Reina, T. R., Understanding the promoter effect of Cu and Cs over highly effective β-Mo₂C catalysts for the reverse water-gas shift reaction, Appl. Catal., B. **244** (2019) 889. doi: https://doi.org/10.1016/j.apcatb.2018.12.023
- 25. Liu, X., Kunkel, C., Pilar Ramirez de la Piscina, P., Homs, N., Viñes, F., Illas, F., Effective and highly selective CO

generation from CO using a polycrystalline α -MoC catalyst, ACS. Catal. 7 (2017) 4323. doi: https://doi.org/10.1021/acscatal.7b00735

- Porosoff, M. D., Kattel, S., Li, W., Liu, P., Chen, J. G., Identifying trends and descriptors for selective CO₂ conversion to CO over transition metal carbides, Chem. Commun. 51 (2015) 6988. doi: https://doi.org/10.1039/C5CC01545F
- Porosoff, M. D., Yan, B., Chen, J. G., Catalytic reduction of CO₂ by H₂ for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities, Energy Environ. Sci. 9 (2016) 62. doi: https://doi.org/10.1039/C5EE02657A
- Gao, P., Li, F., Zhan, H., Zhao, N., Xiao, F., Wei, W., Zhong, L., Wang, H., Sun, Y., Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO₂ hydrogenation to methanol, J. Catal. **298** (2013) 51. doi: https://doi.org/10.1016/j.jcat.2012.10.030
- Arena, F., Mezzatesta, G., Zafarana, G., Trunfio, G., Frusteri, F., Spadaro, L., Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO₂ hydrogenation, J. Catal. **300** (2013) 141. doi: https://doi.org/10.1016/j.jcat.2012.12.019
- Yue, H., Zhao, Y., Zhao, S., Wang, B., Ma, X., Gong, J., A copper-phyllosilicate core-sheath nanoreactor for carbon– oxygen hydrogenolysis reactions, Nat. Commun. 4 (2013) 2339.

doi: https://doi.org/10.1038/ncomms3339

 Yao, Z., Tong, J., Qiao, X., Jiang, J., Zhao, Y., Liu, D., Zhang, Y., Wang, H., Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal- and phosphorus-containing resins, Dalton. Trans. 44 (2015) 19383.

doi: https://doi.org/10.1039/C5DT02464A

- 32. Yan, Z., Wang, H., Zhang, M., Jiang, Z., Jiang, T., Xie, J., Pt supported on Mo₂C particles with synergistic effect and strong interaction force for methanol electro-oxidation, Electrochim. Acta. **95** (2013) 218. doi: https://doi.org/10.1016/j.electacta.2013.02.031
- 33. Liang, P., Gao, H., Yao, Z., Jia, R., Shi, Y., Sun, Y., Fan, Q., Wang, H., Simple synthesis of ultrasmall β-Mo₂C and α-MoC_{1-x} nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane, Catal. Sci. Technol. 7 (2017) 3312. doi: https://doi.org/10.1039/C7CY00708F
- 34. Kim, S. S., Lee, H. H., Hong, S. C., A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts, Appl. Catal. A. 423 (2012) 100. doi: https://doi.org/10.1016/j.apcata.2012.02.021
- Chen, C., Cheng, W., Lin, S., Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al₂O₃ catalyst, Catal. Lett. 68 (2000) 45. doi: https://doi.org/10.1023/a:1019071117449
- Wang, L., Zhang, S., Liu, Y., Reverse water gas shift reaction over Co-precipitated Ni-CeO₂ catalysts, J. Rare Earths. 26 (2008) 66.
 161.000 (10.1016/ 1002.0721/000) (2020.2016)

doi: https://doi.org/10.1016/s1002-0721(08)60039-3

37. Zhao, Z., Wang, M., Ma, P., Zheng, Y., Chen, J., Li, H., Zhang, X., Zheng, K., Kuang, Q., Xie, Z.-X., Atomically dispersed Pt/CeO₂ catalyst with superior CO selectivity in reverse water gas shift reaction, Appl. Catal. B-Environ. 291 (2021) 120101.

doi: https://doi.org/10.1016/j.apcatb.2021.120101