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This review presents data on the chemical composition of harvest residues and food 
industry by-products as widely abundant representatives of lignocellulosic waste bio-
mass. Pretreatment methods, with special emphasis on biological methods, are presented 
as an important step in utilization of lignocellulosic waste biomass for the production of 
sustainable biofuels and high-value chemicals. Special attention was paid to the methods 
of lignin isolation and its possible utilization within lignocellulosic biorefinery. The ob-
jectives of circular bioeconomy and the main aspects of lignocellulosic biorefinery are 
highlighted. Finally, current data on industrial, pilot, and research and development 
plants used in Europe for the production of a variety of bio-based products from different 
feedstocks are presented.
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Introduction

Lignocellulosic biomass (LB) comes from nat-
ural sources or processes that are constantly being 
replenished. Mostly, it is used for bioenergy, but in 
recent years considerable attention is given to LB as 
a source for the production of high-value chemicals. 
Thus, LB is considered as a renewable, abundant, 
and economical alternative to fossil resources.1

LB is found in large quantities almost every-
where in the world. It is estimated that 181.5 billion 
tonnes of LB are produced annually on Earth. Only 
8.2 billion tonnes are currently used, of which 7 bil-
lion tonnes are mainly produced from dedicated ag-
ricultural, grass, and forest land.2 In contrast, 
non-renewable sources, such as oil, gas, and coal, 
can be found only in a certain number of countries 
in the world. Their exploitation causes pollution and 
climate change accompanied by gradual depletion. 
Although LB can be used for the production of sus-
tainable biofuels, chemicals, and materials, the ma-
jority of the world’s energy sources and material 
products, especially chemicals, still come from fos-
sil fuels, mainly oil and natural gas.3 Sustainable 
processes of LB utilization to produce bio-based pro-
 ducts that achieve “zero concept” waste must be es-
tablished.4 For that purpose, the concept of biorefin-
eries has been proposed.3 The goal of the biorefinery 
is to transition to a more sustainable economic sys-
tem that uses resources more efficiently, reduces 

overall waste generation, and allows the recycling 
of unavoidable waste as a source for the production 
of new products. However, finding efficient and, at 
the same time, sustainable technologies is a deman-
 ding task.

There are different biorefinery pathways from 
feedstock to product, depending on the composition 
and availability of the feedstock, the conversion 
technologies applied, and the production of the de-
sired products.1 Several technological, logistical, 
and economical aspects should be solved before LB 
finds large application for sustainable biofuels and 
high-value chemicals production. A significant ef-
fort is dedicated to biological pretreatment methods 
by the use of white-rot fungi.5 Additionally, novel, 
eco-friendly, and natural deep eutectic solvents are 
explored for LB fractionation, lignin isolation, ex-
traction of value-added products from lignin, and 
biotransformation.6–8

This review focuses on the general chemistry 
of LB and the chemical composition of typical rep-
resentatives of the widely abundant lignocellulosic 
waste biomass, such as harvest residues and food 
industry by-products. The objective of this review is 
to increase understanding of the chemical complex-
ity of LB waste resources, their availability, and 
challenges for potential lignocellulosic biorefinery 
applications. Recent research on the use of lignocel-
lulosic waste biomass is discussed and divided into 
the following parts: LB pretreatment methods, lig-
nin isolation methods, and the use of lignin in the 
production of various bio-products.*Corresponding author: E-mail: marina.tisma@ptfos.hr
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Lignocellulosic biomass chemistry

Lignocellulosic biomass is mainly comprised 
of lignin, cellulose, and hemicellulose, which are 
present in varying amounts and ratios, depending 
on the origin of the biomass. It also contains small 
amounts of pectin, protein, extractives, and inorgan-
ic compounds.9 The schematic representation of lig-
nin, cellulose, and hemicellulose as the main com-
ponents of LB is presented in Fig. 1.

Cellulose is the most abundant component of 
LB. It is a linear polymer of hundreds to over ten 
thousand glucose molecules linked by β-1,4 glyco-
sidic bonds. The repeating unit of cellulose is cello-
biose. Hydroxyl groups in cellulose are involved in 
several intra- and intermolecular hydrogen bonds, 
which result in various ordered crystalline arrange-
ments. Unlike the crystalline region, the amorphous 
region of cellulose is easily degradable.10,11 Hemi-
cellulose is a heteropolymer consisting of short, lin-
ear, and highly branched chains of different hexoses, 
pentoses, and sugar acids.12 Common hemicellulo-
ses are galactans, xylans, mannans, and arabans. 
Hemicelluloses can be more easily enzymatically 
degraded compared to cellulose. However, certain 
oligomeric structures are recalcitrant due to the 
complex branching and acetylation patterns.11

Lignin is a complex, amorphous, and structur-
ally diverse aromatic heteropolymer, with cross-
linked racemic macromolecules, and is relatively 
hydrophobic. It fills the space between hemicellu-
lose and covers the cellulose skeleton making ligno-
cellulosic matrices.1 Predominant structural compo-

nents of lignin are monolignols (phenylpropanoid 
aryl-C3 units): p-coumaryl alcohol (H, 4-hydroxyl 
phenyl), coniferyl alcohol (G, guaiacyl), and sina-
pyl alcohol (S, siringyl) linked by C–O and C–C 
bonds. These three units differ in the number of me-
thoxy groups in their phenolic rings. Their ratio 
within the polymer varies among different plants, 
wood tissues, and cell wall layers.13 For example, 
grass contains all three subunits (H, G and S), hard-
wood contains G and S subunits, while softwood is 
mostly comprised of G subunits.1 The G unit con-
tains monomethoxy phenoxide, the S unit contains 
dimethoxy phenoxide, and the H unit contains the 
non-substituted phenoxide moiety. Predominant 
linkages in lignin are β-aryl ether (β-O-4) bonds. 
The other linkages are phenylcoumaran (β-5), bi-
phenyl (5-5), 1,2-diaryl ether (4-O-5), β-β linked 
structures, structures condensed in 2- or 6- posi-
tions, glyceraldehyde-2-aryl ether.13 These linkages 
are formed by the addition of the phenol group of 
one monolignol to the propyl chain of the second 
monolignol. Monolignols not only possess anti-in-
flammatory and antinociceptive activities, but also 
carry a functional allyl alcohol species that have 
been evaluated as lignin-derived platform chemicals 
for the synthesis of natural products, pharmaceuti-
cals, and functional materials.14

Lignin can be classified as natural, which is de-
scribed previously, and technical or industrial lig-
nin. Industrial lignin has diverse macromolecular 
structures due to various chemical modifications, 
and contains impurities depending on the applied 
LB treatments.13

F i g .  1  – Schematic representation of lignin, cellulose, and hemicellulose as the main components of lignocellulosic biomass



M. Tišma et al., Bio-based Products from Lignocellulosic Waste Biomass…, Chem. Biochem. Eng. Q., 35 (2) 139–156 (2021) 141

Harvest residues and food industry by-products

Knowledge of the chemical composition of the 
LB is very important because the selection of pre-
treatment method depends on the type and compo-
sition of biomass.15 Generally, in modern bioenergy 
systems, LB supply chain can be divided into forest 
biomass (treetops, branches, and unmerchantable 
stems, wood processing residues such as wood 
chips, sawdust, and shavings), harvest residues, 
food or feed processing residues, energy crops (in-
cluding food crops such as sugar cane, oil palm, 
corn), waste of biological origin (manure) and 
household, commercial or municipal organic 
waste.16 In this paper, the possibility of using har-
vest residues and food processing residues (food 
industry by-products) in biorefineries is considered. 
Therefore, the literature data on the lignin, cellu-
lose, and hemicellulose content in different harvest 
residues and food industry by-products are reviewed 
and shown in Table 1 and Table 2, respectively. For 
those materials, the combined term “agro-food 
waste” is also often found in literature. As seen 
from the composition of polymers (Table 1 and Ta-
ble 2), they differ for the same type of material. 
Plant variety, agronomic measures of cultivation, 
weather conditions, harvesting methods, and stor-
age conditions are all factors that influence the 
chemical composition of harvest residues.17 In the 
case of food industry by-products, in addition to the 
aforementioned, industrial process conditions also 
contribute to the chemical composition of the re-
sulting waste or by-products. A good example is the 
chemical composition of brewer’s spent grains, 
which is strongly influenced by the brewing pro-
cess, which depends on the type of beer produced 
and the specific brewing processes, unique to each 
brewery.

Lignocellulosic biomass pretreatment 
methods and lignin isolation

The best way to utilize LB is a cascade process, 
since it considers the composition characteristics 
and the nature of cellulose, hemicellulose and lig-
nin.1 To achieve cascade utilization, the pretreat-
ment step is required. After pretreatment, the con-
ventional separation methods (extraction, 
regeneration, centrifugation, filtration, distillation, 
drying) are used. Separation is followed by the pro-
cess of producing high-value chemicals from the 
individual components.1 Cellulose is mainly hydro-
lyzed to glucose, which can be further converted to 
different chemicals of biofuels, while hemicellulose 
is mainly hydrolyzed to xylose and converted to xy-
litol. Regarding lignin, no efficient approach or pro-
tocol has yet been developed to ensure high conver-
sion of lignin into desired products. Much research 
has been devoted to the separation of lignin and its 
use for a variety of useful products by chemical, 
thermochemical or biochemical routes.67–69

Generally, LB pretreatment methods can be di-
vided into physical, chemical, physicochemical, bi-
ological methods, performed alone or in various 
combinations.68–71 However, not all of those meth-
ods are eco-friendly or sustainable. Most of them 
have a negative influence on the environment due 
to a large amount of chemicals used in the process, 
and/or are energy-intensive. Physical methods are 
mechanical (grinding, milling, chopping), sonica-
tion, mechanical extrusion, freezing, ozonolysis, 
pyrolysis, and more recently, pulsed-electric field 
pretreatments.71–73 Physical pretreatment methods 
require high energy utilization, and are therefore ex-
pensive for large-scale implementation.1 Among 
chemical methods, acid and alkali pretreatment are 

Ta b l e  1  – Chemical composition of different harvest residues

Harvest residue Cellulose, %DM Hemicellulose, %DM Lignin, %DM

Barley straw18–23 37.7 – 40.1 22.2 – 26.7 5.5 – 19.4

Canola straw24 44.0 6.2 14.7

Corn stalk22,25 35.0 – 39.0 16.8 – 42.0 7.0 – 7.3

Corn stalk, maize stover22,25 37.5 – 40.4 16.5 – 42.0 8.3

Oat straw19,22,23,28,29 31.7 – 39.4 23.4 – 28.2 4.1 – 23.6

Rice husk24 17.3 37.7 19.7

Rice straw20,22,30–33 19.6 – 40.2 19.0 – 50.4 1.8 – 14.7

Rye straw22,29,34 37.4 – 37.6 30.5 19.0 – 30.8

Soya stalks35 34.5 24.8 19.8

Soybean straw24 51.7 9.5 10.2

Spelt straw36 38.3 24.3 14.8

Sunflower stalks22,37 38.5 – 42.1 29.7 – 33.5 13.4 – 17.5

Wheat straw18–20,22,38–40 8.9 – 37.0 32.9 – 49.8 20.5 – 25.5
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the most commonly used. Although they can achieve 
high solubilization of cellulose and hemicellulose, 
and removal of lignin, those methods cause a high 
environmental burden. The other chemical methods 
are oxidative and organosolv pretreatment,76,77 ozon-
lysis, the use of ionic liquids73 and novel natural 
deep eutectic solvents.6,78,79 Physicochemical pre-
treatment methods include ammonia fiber explosion, 
ultrasonication, autohydrolysis, liquid hot water, 
wet oxidation, and CO2 explosion pretreatment.73 
Biological pretreatment methods are described in 
the next chapter.

Based on the applied method of lignin isolation, 
various types of industrial lignin can be produced. 
Organosolv and soda lignin are produced during the 
sulfur-free pulping process, while lignosulfonate 
and Kraft lignin are produced in the sulfur-contain-
ing pulping process. All of these processes are based 
on the application of chemicals and/or high tem-
peratures, and therefore could not be considered 
sustainable or environmentally friendly.

Kraft lignin represents 85 % of the world’s in-
dustrial lignin. It is obtained in the chemical process 
of pulping wood and non-wood pulp with sodium 
sulfide (Na2S) and sodium hydroxide solution 
(NaOH) at a temperature of 160–180 °C and pH 
9–13.5. Kraft lignin is soluble at pH > 10 and has a 
lower sulfur content (up to 3 %) compared to ligno-
sulfonate lignin (4–8 %), which is obtained by pulp-
ing only a certain wood in the presence of bisulfite 
ions (HSO3

–) at 120–150 °C and pH 2–12 for 1–5 h. 
Lignosulfonate lignin has high ash content and 
needs to be purified before further use for the pro-

duction of energy or chemicals. It is soluble in ac-
ids, alkali, and polar solvents. Lignosulfonates can 
be used in the prevention of scaling in hot and cool-
ing waters, and as solvent for micronutrients in liq-
uid fertilizers.80 Soda lignin is formed in the process 
of soda pulping non-wood materials such as agri-
cultural waste (straw, bagasse, grass, etc.) using 
13–16 % sodium hydroxide solution at a tempera-
ture of 150–200 °C and pH 9.5–13. This type of 
lignin does not contain sulfur, which makes it suit-
able for the production of adhesives according to 
environmentally friendly principles. Organosolv 
lignin is like sulfur-free lignin, and is obtained by 
pulping fibrous wood residues and food industry 
residues using organic solvents (mixture of water / 
ethanol or methanol, acetic acid, etc.) at a tempera-
ture of 150–200 °C.13,81,82 The properties of Organo-
solv lignin differ from other industrial lignin be-
cause it contains fewer impurities, has a lower 
molecular weight, and is water insoluble.

Biological pretreatment methods

Biological pretreatments can be performed by 
selected microorganism, microbial consortium or 
enzyme(s).73 A comprehensive review on valoriza-
tion of harvest residues and food-processing indus-
try by-products by solid-state fermentation using 
various microorganisms was recently published by 
Šelo et al.17 The majority of research has been ded-
icated to fungal-based solid-state pretreatment, par-
ticularly to the use of white-rot fungi from the class 
of Basidiomycetes. White-rot fungi improve the 

Ta b l e  2  – Chemical composition of different food industry by-products

Industrial by-products Cellulose, %DM Hemicellulose, %DM Lignin, %DM

Apple pomace41,42 47.5 27.8 14.8 – 22.4

Barley husk43,44 39.0 12.0 22.0

Brewer’s spent grain45–49 12.0 – 40.2 28.4 – 40.0 11.5 – 27.7

Corn cob22,50 33.7 31.9 6.1

Flax oil cake51 8.2 4.6 6.0

Grape pomace52,53 9.2 – 14.5 4.0 – 10.3 11.6 – 41.3

Hemp oil cake51 22.5 14.2 16.7

Hull-less pumpkin oil cake51 4.4 6.7 0.7

Olive mill waste54,53 24.8 – 33.8 13 – 16.3 13.3 – 15.8

Rapeseed cake56 15.9 12.5 6.6

Rice bran57 34.0 28.2 24.8

Rye bran43,58 5.0 – 6.0 ND 3.5 – 4.4

Sugar beet pulp59–61 21.5 30.0 3.9

Sugarcane bagasse62,63 36.9 – 45.7 25.6 – 29.6 18.9 – 26.1

Wheat bran64–66 9.0 – 12.0 38.9 3.0 – 5.0

ND – not determined
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biodegradability of lignocellulose by increasing the 
pore size of the material through penetration of the 
mycelium, and breaking the bonds between poly-
saccharides and lignin, removing lignin, releasing 
cellulose, and reducing the degree of polymeriza-
tion of cellulose.

However, this method has several drawbacks, 
such as long duration, loss of organic matter during 
the treatment, technical challenge for the scale-up, 
and possible contamination.83,84 Although white-rot 
fungi break down lignin, they are unable to utilize it 
as an energy source; therefore, it is assumed that 
they degrade lignin to access the cellulose.83 To de-
grade the lignin, white-rot fungi produce ligninolyt-
ic enzymes (LEs). LEs are produced in small 
amounts and their optimal activities can be achieved 
through optimization of the media composition by 
supplementation with salts, low molecular weight 
phenolic compounds, and nutrition sources. Howev-
er, the mechanism of LEs function is not complete-
ly known. Major LEs are laccase (Lacc), lignin per-
oxidase (LiP), manganese peroxidase (MnP), and 
versatile peroxidase (VP).85 The catalytic mecha-
nism of Lacc in oxidation of phenolic and nonphe-
nolic substrates is presented in Fig. 2a, while the 
catalytic mechanisms of LiP and MnP are presented 
in Figs. 2b and 2c, respectively.86

Laccase (benzenediol: oxygen oxidoreductase, 
EC 1.10.3.2) can be considered as the key enzyme 
involved in lignin oxidation, modification or degra-
dation. Laccases have high redox potential and are 
active towards a variety of substrates (phenolic and 
nonphenolic compounds), they can accept molecu-
lar oxygen, without the need for costly cofactors.87,88 
Oxidation of phenolic substrates involves removal 
of one electron from the phenolic hydroxyl groups 
to form phenyl hydroxyl radicals. With nonphenolic 
substrates, the use of mediators is essential. The 
most efficient laccase mediators are 1-hydroxyben-
zotriazole (HBT), N-hydroxyphthalimide (HPI), 
violuric acid (VLA), N-hydroxyacetanilide (NHA), 
N-hydroxyacetanilide (HAA) and 2,2,6,6-tetrameth-
yl-1-piperidinyloxy (TEMPO).13 There have been 
many reviews in the last few years on laccase appli-
cation for analytical, industrial, and environmental 
purposes.89–93

While laccases are involved in the degradation 
of lignin, cellulose and hemicellulose are degraded 
by cellulases and hemicellulases, respectively (Figs. 
3a and 3b). The product of depolymerization of cel-
lulose is glucose, whereas the degradation of hemi-
celluloses releases a mixture of different hexoses 
and pentoses.11 There are three types of cellulases 
(Fig. 3a), namely, endoglucanases (carboxymethyl 

F i g .  2  – Catalytic mechanism of (a) laccase, (b) lignin peroxidase, (c) manganese peroxidase
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cellulase), exoglucanases (cellobiohydrolase), and 
β-glucosidase.94 To completely hydrolyze cellulose 
to glucose, all three enzymes are required. Endoglu-
canases randomly dissociate amorphous parts of 
cellulose, whereas exoglucanases extract cellobiose 
from crystalline parts of cellulose. β-glucosidases 
transform cellobiose to glucose, which can be used, 
e.g., for bioplastics and biofuels production.95 How-
ever, the high cost and low efficiency of cellulases 
are the major issues in industrial-scale LB enzymatic 
degradation.

Large amounts of enzymes are required to pro-
duce concentrated glucose solutions due to substrate 
and product inhibition. Thermally stable cellulases 
and the immobilization of enzymes on solid sup-
ports have been investigated to improve the eco-
nomics of cellulose degradation.95 Additionally, 
protein engineering and directed evolution are pow-
erful technologies to improve enzyme properties 
such as increased activity, decreased product inhibi-
tion, increased thermal stability, improved perfor-
mance in nonconventional media, and pH stability.96

Hemicellulases include a group of enzymes in-
volved in the hydrolysis of galactans, xylans, man-
nans, and arabans. The major hemicellulases are 
endoxylanase (1,4-β-d xylan xylanohydrolase), 
which hydrolyzes β-d-xylano pyranosyl linkages of 
xylan to form xylo-oligosaccharides, and β-d xylo-
sidase (xylobiase), which catalyzes hydrolysis of 
xylobiose or xylo-oligosaccharides from the nonre-
ducing end, releasing d-xylose in the hydrolysates 
(Fig. 3b). Xylose is a low-calorie sweetener and 
versatile feedstock for xylitol production. Many cel-
lulases and hemicellulases that act on insoluble sub-
strates have catalytic domain connected by a flexi-
ble peptide linker to a carbohydrate-binding module, 
which anchors the enzyme to the solid substrate. 
Carbohydrate-binding modules assist biomass hy-
drolysis by effectively increasing the concentration 
of their enzymes near the substrate surface and, de-
pending on amino acid sequence and resulting 
shape, provide specificity to a certain substrate or 
substrate region (such as reducing or nonreducing 
ends).97,98

F i g .  3  – Enzymes involved in cellulose and hemicellulose degradation
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Lignocellulosic biorefinery in 
sustainable development and  
circular bioeconomy

The concept and objectives of the circular 
economy and the bioeconomy overlap, hence the 
combined term circular bioeconomy is introduced.99 

The circular bioeconomy is based solely on the use 
of natural sources, and enables greater environmen-
tal sustainability compared to the use of fossil re-
sources. It promotes human imitation of natural 
processes and activities, and seeks to make all pro-
cesses circular by reusing the waste produced and 
using all outputs as inputs to other processes. Bio-
economies are highly dependent on the availability 
of resources and logistics. Therefore, the develop-
ment of bioeconomies may depend on strong coop-
eration between regions that are rich in bioresources 
and regions that have appropriate technology but 
insufficient resources.100 Effective biomass utiliza-
tion through the strategic use of resources is essen-
tial for the production of valuable products, sustain-
able development, and the maximization of 
environmental and socioeconomic benefits.99

Biorefineries are industrial processes that aim 
to produce multiple value-added industrial prod-
ucts, fuels, and chemicals from various feed-
stocks.101 Biorefineries are generally developed in 
response to the instability of the petrochemical in-
dustry, and out of concern for sustainable energy 
development and climate change. Biorefinery oper-
ations can be made more competitive by using lig-
nocellulosic feedstocks and integrating multiple 
revenue streams, which is then referred to as ligno-
cellulosic biorefineries.102 In lignocellulosic biore-
fineries no single microorganism can catalyze all 
process steps. By combining specific strains and 
targeting multiple products, full biomass valoriza-
tion could be achieved.103 It is important to empha-
size that lignocellulosic biomass as a feedstock in 
lignocellulosic biorefineries can only be considered 
after intensive evaluation of production costs, avail-
ability, and market value.9 Although various ligno-
cellulosic energy crops are often used in biorefiner-
ies, much effort is dedicated to the use of 
lignocellulosic waste biomass. In order to develop a 
sustainable biorefinery, it is important to take an in-
tegrated approach to biofuel production and the pro-
duction of high value-added chemicals, which is 
explained further herein, where high value-added 
chemicals refer to those produced from lignin.

Biofuels from lignocellulosic biomass

Considering the feedstock and technologies 
used for biofuel production, both liquid (bioethanol, 
biobutanol, biodiesel) and gas biofuels (biogas, hy-

drogen, syngas) are classified into four genera-
tions.104 The 1st generation biofuels come from bio-
mass which is also a food source, which is the main 
drawback. The 2nd generation biofuels come from 
non-food biomass, the 3rd generation fuels use al-
gae, and the 4th generation biofuels are the result of 
developments in plant biology and biotechnology 
(metabolic engineering) in carbon capture and stor-
age technology.

Lignocellulosic waste biomass is a non-food 
biomass and is used as a feedstock for 2nd genera-
tion biofuel production. There are still some techni-
cal and economic hurdles to overcome before 2nd 
generation of biofuels becomes more positioned at 
an industrial scale. The first challenge is related to 
the availability, storage, and transport of lig-
nocelullosic waste biomass to the biofuel plant, in 
case it is not available near the plant. The second 
problem is technological, due to lignocellulose re-
calcitrant structure resistant to degradation. Most of 
the efficient pretreatment methods are not environ-
mentally friendly, while those that are, suffer from 
some disadvantages as described previously. To 
solve the first challenge, harvesting, transporting, 
storing, and delivering large volumes of high-quali-
ty LB throughout the whole year to a biofuel plant 
requires careful logistical analysis before plant in-
vestment and construction. Transportation of a mas-
sive volume of feedstock in an energy-saving man-
ner to the biorefineries is a challenge.104 To solve 
the second problem, technological, integration of 
the process of biofuel production together with the 
production of other products (e.g. feed or high-val-
ue chemicals) should be considered to be located at 
one place in lignocellulosic biorefineries.9

High-value lignin-based products

Due to the high content of carbon (up to 80 %), 
hydrogen (up to 6 %), and high C/O ratio, lignin is 
a potential source of highly-valued aromatic com-
pounds (phenols, vanillin, polymer building blocks), 
synthetic gas (syngas), and hydrogen. It can be used 
as an additive/binder in the production of cement 
and biofuels.1,81,105–106 Furthermore, lignin can be 
used in the development of packaging materials 
(e.g., food packaging), in the production of poly-
mer, and bioplastics. It can also be used for thera-
peutic purposes due to its antioxidant, antimicro-
bial, and anticancer effects.80,105

The conversion of lignin into value-added 
products involves three steps: isolation, depolymer-
ization and final upgrading of the obtained platform 
chemicals.76 However, the isolation of lignin from 
lignocellulose is not easy due to its complex struc-
ture, poor solubility, and unclear reactivity. There-
fore, the industrial use of lignin for the production 
of value-added products is still limited, and almost 
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all industrial lignin is combusted to produce heat 
and electricity, whereas only 1–2 % of lignin is 
chemically transformed for industrial application.107

Industrial lignin is mostly produced by ex-
traction from lignocellulosic biomass or industrial 
by-products using mechanical, chemical, or enzy-
matic methods.80,108 In paper production and wood 
processing, after the separation of cellulose and 
hemicellulose, considerable amounts (10–50 %) of 
black (spent) fluid remain as a by-product, from 
which industrial lignin can be extracted. There are 
different types of black liquor (Kraft spent liquor, 
soda spent liquor, neutral sulfite semi-chemical 
spent liquor, etc.) depending on the raw material, 
the pulping process, and the cooking method used 
in the paper production. The properties of black li-
quor have influence on the further production pro-
cess of desired products.

A schematic overview of lignin isolation to-
gether with the potential products is presented in 
Fig. 4.13,107,109–111

Although industrial lignin can be used directly 
in the production of certain chemicals (e.g., poly-
ols), lignin must be modified or fragmented (by de-
polymerization or modification of functional or 
 hydroxyl groups) for better use in the production of 
high-value products, as this increases the reactivity 
of lignin and creates new active sites. The most 
common methods for modifying lignin are oxida-
tion, pyrolysis, hydrogenation, hydrolysis, gasifi-
cation, and microbial transformation (Fig. 
5).13,81,82,103,108,112

One of the most important products of lignin 
modification are aromatic compounds, such as ben-
zene, toluene, xylene, and phenolic compounds, 
which are precursors of various highly-valued lig-
nin-based products, such as resins, polyesters, nylon 
fibers, and polyesters, among others.113

The best known aromatic compound obtained 
with lignin modification by oxidation or microbial 
transformation, is vanillin. Vanillin is a precursor 
for the synthesis of various polymers.113,114 Microbi-
al conversion offers a novel, inexpensive route to 
the production of high-value products, but the valo-
rization of lignin in this way can be hindered by the 
tendency of the degraded lignin fractions to under-
go repolymerization and condensation reactions.106

Kraft lignin and lignosulfonate lignin have the 
highest commercial application. Kraft lignin prod-
ucts are shown in Fig. 4. They include lignosulfon-
ates, technical carbons, bioplastics and coatings, 
binders and adhesives, and low-molecular weight 
compounds such as vanillin, quinines, aldehydes, 
etc.107,109 The important high-value products made 
from Kraft lignin are carbon fibers. They are char-
acterized by high strength, low mass, high thermal 
and chemical stability, and corrosion resistance. 
Therefore, they are suitable for the manufacture of 
sports equipment and composite materials. They 
find their application in the automobile and aircraft 
industries. The advantage of lignin in the produc-
tion of carbon fibers over nonrenewable materials 
such as polyacrylonitrile (PAN) and pitch, is its 
non-toxicity, lower melting point, and faster stabili-

F i g .  4  – Type of lignin based on the methods of isolation and potential bioproducts from lignin
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zation. For the production of lignin-derived carbon 
fibers, it is necessary to extrude the isolated lignin 
into fibers, stabilize the fibers by oxidation, and fi-
nally pyrolyze them. 113,115,116

Among the possibilities for lignin utilization is 
the application of lignin in the production of plas-
tics and new composites. Lignin-based plastics can 
be obtained by chemically modifying lignin by 
changing its properties such as viscosity and elastic-
ity or by mixing lignin with certain polymers, e.g., 
with poly(ethylene oxide) or with acrylonitrile buta-
diene, which is used as a thermoplastic resin in the 
automotive industry, in the manufacture of toys, etc. 
The main limitation in the preparation of plastics 
using lignin is the immiscibility of lignin with most 
polymers, as the interactions between them are 
weak compared to the interactions between lignin 
molecules due to the large number of polar func-
tional groups of lignin. However, by adding various 
coupling agents (e.g. polyalkylene oxide, polyvinyl 
alcohol, ethylene vinyl-acetate copolymer, etc.), it 
is possible to improve the dispersion and mixing of 
lignin with a particular polymer.

Kraft lignin can be used as a dispersant (e.g., in 
the manufacture of pesticides, cement, ceramics) 
and coagulant (e.g., in the removal of dyes from 
solvents in the textile industry), but with prior mod-
ification to lignosulfonates to increase its solubility 
in aqueous medium and increase charge density.117 
Some of the modification processes are carboxy-
methylation,118 sulfomethylation,119 phenolation fol-

lowed by sulfonation with sulfuric acid and sodium 
sulfite.120 Since lignin contains phenolic units in its 
structure, it can be used as a substitute in the com-
mercial synthesis of phenol-formaldehyde- based 
adhesives. Moreover, pine Kraft lignin has been 
shown to contribute to better water absorption and 
mechanical properties such as strength, elasticity, 
etc. in the synthesis of lignin-phenol-formaldehyde 
compared to phenol-formaldehyde resin.121

Lignosulfonate lignin is most commonly used 
as a dispersant and binder in the manufacture of ce-
ment and concrete mixes to reduce the water con-
tent and increase the rate of hardening. In general, 
the term dispersant is often used for surfactants, 
plasticizers or emulsifiers, depending on the field of 
application.113

The dispersibility of lignosulfonates depends 
on the balance between molecular weight and spe-
cies, and the number of functional groups. Various 
modifications of lignosulfonate lignin alter the 
properties of lignin. For example, oxidation or ni-
tration of lignosulfonate increases the plasticizing 
ability in concrete. Reducing the sulfur content in 
lignosulfonate lignin increases hydrophobicity, and 
thus improves dispersibility. The same effect is 
achieved by increasing the molecular weight of lig-
nosulfonates (10,000 – 50,000 g mol–1) and oxida-
tion reactions leading to increased availability of 
lignin functional groups and increased dispersibili-
ty. Lignosulfonate lignin is used as an additive in 
animal feed production, where it can have a binding 

F i g .  5  – Most common processes of lignin fragmentation and potential bio-based products
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F i g .  6  – Some valuable products obtained from lignin isolated from agro-food waste
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function, e.g., in the production of animal feed pel-
lets, or it can be used as an encapsulating agent for 
fat-soluble vitamins, carotenoids, etc.122–124

Organosolv and soda lignin, due to the absence 
of sulfur, have properties more similar to natural 
lignin than Kraft and lignosulfonate lignin, and 
have potential in the development of high-value 
products according to the environmentally friendly 
concept. Organosolv lignin is used as an additive 
for paints, coatings, and as a filler in the formula-
tion of printing inks, while improving the viscosity 
properties of the products.125 Although it can be 
used in the manufacture of most products like Kraft 
lignin, it is not suitable for binders and adhesives 
due to its low molecular weight.97 Soda lignin is 
used in the production of phenolic resins, animal 
feed, dispersants, and polymer synthesis.126

Phenolic resin, used as a wood adhesive, is 
commercially prepared on the basis of phenol-form-
aldehyde. Because of the carcinogenicity of formal-
dehyde, alternative compounds are being investigat-
ed for its replacement, such as aldehyde glyoxal, 
which is nontoxic and readily biodegradable. Since 
the structure of lignin is similar to that of phe-
nol-formaldehyde, lignin can partially replace the 
phenolic part of the resin structure. Comparison of 
soda lignin and Kraft lignin in the preparation of 
lignin-phenol-glyoxal resin showed that the use of 
soda lignin results in a resin that has similar proper-
ties to a commercial phenol-formaldehyde resin  
compared to the resin where Kraft lignin was used. 
This is due to the better cross-linking of soda lignin 
with glyoxal due to the higher number of phenolic 
– OH groups and higher molecular weight com-
pared to Kraft lignin, resulting in higher resin 
strength and viscosity.127,128 Sameni et al.129 demon-
strated that the addition of soda lignin to high-den-
sity polyethylene, used in the packaging and auto-
motive industries, significantly increases the tensile 
and flexural strength of the polymer due to the low 
molecular weight, low hydroxyl content, low polar 
component, and low sulfur content of the soda lignin.

Many compounds from lignin isolated from 
agro-food waste can be produced, as presented in 
Fig. 6. However, phenolic compounds are among 
the most important.134 They can be used for the pro-
duction of bioplastics, epoxy- and polyurethane res-
ins, aromatic compound vanillin133,139,140,142 and its 
precursor guaiacol.144 Phenolic acids can be used as 
food additives to improve the nutritional, organo-
leptic, and biological properties of food products, as 
well as in the pharmaceutical sector. Carbon fi-
bers135 from lignin have great industrial potential 
(they have yet to be commercially applicable) due 
to their strength and wide applicability (e.g., in the 
automotive industry).80 Activated charcoal131,136 has 
good properties as an adsorbent and finds applica-

tion in deodorization and purification of process 
streams.80 Lignin-based biocomposites show good 
properties in heavy metal adsorption.130

Distribution of the bio-based  
industry in EU

There is an extensive database of EU facilities 
at pilot and industrial scale, or laboratory level that 
produce different categories of bio-based products, 
available on Data portal of agro-economics Model-
ling – DataM: DataBio-based industry and biorefin-
eries.145 Bio-based products are categorized as 
chemicals, liquid biofuels, composites, and fibers, 
biomethane, pulp and paper, sugar, starch, and tim-
ber. Fig. 7 presents bio-based products from ligno-
cellulosic biomass produced at industrial, pilot-scale 
and laboratory level in European Union. It is clearly 
visible that most of the feedstocks used for the com-
mercial production of bio-based products originates 
from the forestry with pulp and paper, and timber as 
main products. It is interesting to observe that only 
one industrial scale facility uses forestry feedstock 
for biomethane production. The majority of com-
mercial liquid biofuels and bio-based chemicals 
originates from the agricultural feedstock. Ninety- 
six pilot-scale facilities operate in the field of liquid 
fuels production using forestry or grasses and short 
rotation feedstocks.

Conclusion and future prospective

Lignocellulosic waste biomass is a valuable, 
renewable feedstock that can be used in lignocellu-
losic biorefineries for the production of bio-based 
products to reach sustainable development goals 
following the principles of circular bioeconomy. The 
production of multiple products from lignocellulos-
ic biomass requires integration of various processes.

Considering the heterogeneous chemical com-
position of lignocellulose, the industry faces many 
challenges, such as the availability of a single type 
of biomass throughout the year. High processing 
cost, huge capital investment including transporta-
tion and storage cost for lignocellulosic biomass, 
efficient and sustainable lignocellulosic pretreat-
ment and fractionation techniques focusing on lig-
nin isolation, fractionation and modification are 
some of the main barriers for profitable biorefiner-
ies based on lignocellulosic waste as feedstock.
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