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In modern industries, early fault detection is crucial for maintaining process safety 
and product quality. Process data contains information on the entire plant acting as a map 
for visualization of relationships between various plant units, making data-driven process 
monitoring a key technology for efficiency enhancement. This article focuses on review 
of process monitoring techniques reported for metal etching process, which is a batch 
operation carried out in semiconductor manufacturing industry. Various machine learning 
(and deep learning) techniques applied to date for fault detection and diagnosis of metal 
etching process are surveyed. Detailed survey of research work on different techniques 
and the reported results are presented in graphical (pie chart and bar chart) and tabular 
format. The review article further presents the pros and cons, gaps and future directions 
in the techniques applied in metal etching process.
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Introduction

In recent years, process safety and product 
quality are the major concerns of modern industries. 
Any abnormal behavior or fault occuring during 
plant operation, may lead to low process efficiency, 
unsafe conditions or process shutdown. In order to 
avoid such undesirable incidents, early detection of 
these faults become essential in ensuring process 
safety and downtime minimization. Therefore, auto-
matic process monitoring techniques are imple-
mented in industries for ensuring process safety and 
quality enhancement. Various process monitoring 
methods can be categorized as model-based, knowl-
edge-based and data-based methods1. Model-based 
methods (i.e., process models developed from first 
principles) are based on the understanding of the re-
lationships between different variables, giving very 
accurate results. However, as the process becomes 
complex, it becomes difficult to build such models 
and is expensive. The knowledge-based methods 
are entirely based on the prior knowledge of pro-
cess behaviors and experiences of plant operators 
available. This whole process of creating the foun-
dation of process knowledge is cumbersome and 
time consuming, and the results obtained are mostly 
intuitive. Compared to the two aforementioned 

methods, data-based methods require no prior pro-
cess knowledge. They only require the data which 
is recorded and collected, and which is further used 
for modelling, monitoring, and control. Data-based 
methods have become hugely popular in the last de-
cade. Recorded data contain the majority of process 
information, and therefore, stored process data can 
be effectively utilized for developing efficient da-
ta-based process monitoring models. An overview 
of a typical data-based process monitoring method-
ology is presented in Fig. 1.

Process monitoring, which is also known as 
fault detection and diagnosis, can further be catego-
rized into a four-stage activity, namely, i) Fault de-
tection (detecting any abnormal behavior), ii) Fault 
diagnosis (identifying variables related to the fault), 
iii) fault source identification (Root cause analysis), 
and iv) Process recovery (rectifying the fault and 
returning normal operating regime of process). All 
the aforementioned factors play a key role in en-
hancing the quality of production in process indus-
tries. Presently, various machine learning techniques 
are widely applied for fault detection and diagnosis. 
Machine learning techniques can be grouped into 
four different classes: unsupervised learning, super-
vised learning, semi-supervised learning, and rein-
forcement learning1,2. Out of these, supervised and 
unsupervised learning are widely adopted machine 
learning techniques and contribute to 80–90 percent *Corresponding author: E-mail: akpani@pilani.bits-pilani.ac.in
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of all industrial applications2. When data has no la-
bels, and the main goal is to explore the data and to 
extract hidden structures within them, then the 
method used against this data are known as unsu-
pervised learning methods. They are most common-
ly used for dimensionality reduction, information 
extraction, outlier detection, density estimation, 
process monitoring, etc. In process monitoring liter-
ature, principal component analysis (PCA), inde-
pendent component analysis (ICA), support vector 
data description (SVDD), Gaussian mixture models 
(GMM), k-means clustering, kernel density estima-
tion are some of the notable unsupervised learning 
methods. In contrast, the supervised learning meth-
ods deal with labeled data samples, which are either 
discrete or continuous. They add meaningful labels 
to the data so that when models are applied to these 
labeled data, they can classify or predict a likely la-
bel when new unlabeled data are encountered. 
When the label is of discrete value, supervised 
learning can be applied as classification techniques 
for fault detection. If the label value is continuous, 
then regression models can be constructed for pre-
diction and estimation. Supervised learning meth-
ods find their application most commonly in fault 
classification and identification, soft sensor model-
ing, quality prediction and online estimation, pro-
cess monitoring, key performance index prediction 
and diagnosis, etc. Most frequently used supervised 
methods include2: multivariate linear regression, ar-
tificial neural network (ANN), principal component 
regression (PCR), partial least square (PLS) regres-
sion, and support vector regression (SVR).

Any industrial process can be classified as a 
batch, semi-batch or continuous process. A continu-
ous process is operated continuously as a single 
work unit at a time with no breaks in sequence, time 
or material flow, providing output at a constant rate, 
for example, distillation process, fertilizer industry, 
metal smelting process, etc. On the other hand, a 
batch process consists of steps that are performed in 
a defined order for a finite duration, with produc-
tion following strictly the process specifications. 
Here, various grades of product can be produced as 
there is a scope of altering the operating conditions 
in a single batch process, for example, food pro-
cessing, soap manufacturing, electrical machines, 
injection molding machine in plastic engineering, 
etc. The process of focus in this article is the semi-
conductor manufacturing industry, which is a batch 
process manufacturing sector. An important aspect 
of monitoring batch processes is to overcome the 
disadvantages of batch processing in terms of their 
operating and processing conditions that need to be 
controlled. Digital transformation is gradually tak-
ing over the operations in process industries, and 
there are continuous efforts being made in achiev-
ing smart factories in order to achieve the goal of a 
fourth industrial revolution (Industry 4.0). Intelli-
gent manufacturing involves data mapping across 
end-to-end product life cycle, and helps manufac-
turers with current challenges in becoming more 
flexible and reacting to market changes with utmost 
ease. Sensors are made available in almost all pro-
cesses for fault detection and diagnosis, because 
any human intervention during a crisis is not effi-
cient and is time consuming. Efficient quality mon-
itoring, process monitoring and process control re-
duces production cost, process downtime, improved 
product quality and effluent quality. Process data 
collected from the industry can be used to identify 
sensitive variations in the process and provide sta-
ble information over an extended time. It is not al-
ways necessary that all the sensors are sensitive to 
every process variable, and are stable enough to 
provide information for a long time. Thus, it is es-
sential to choose appropriate sensors for efficient 
process utilization, and to apply various methods 
carefully to treat process data.

The fabrication of semiconductor devices 
through metal etching process removes selected 
layers of wafer for the purpose of pattern transfer, 
wafer planarization, isolation, and cleaning. Etching 
removes material only from the pattern traces after 
the circuit pattern is exposed by coating the wafer 
with a photoresist. This metal etching process is not 
a smooth process, and over time may face certain 
challenges like over-etching, process drifts, and 
shifts, etc. In order to rectify these problems in metal 
etching, fault detection and diagnosis becomes very 

F i g .  1  – Data-based process monitoring methodology
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important. Probably the first article reporting fault 
detection in metal etching was that of Wise et al., who 
investigated the performances of multiway PCA, par-
allel factor analysis (PARAFAC), and trilinear de-
composition for fault detection in an Aluminum 
(Al) stack etching process3. Their experimental 
dataset is since then publicly available and has been 
used by various researchers. The present work pro-
vides a thorough review of various data-based 
methods applied and analyzed on the semiconduc-
tor metal etching process data over the past 20 years 
and beyond. It has been observed that, among all 
the methods applied to the metal etching process, 
PCA-based techniques have been profoundly studied 
over the last two decades. The main reason for this 
could be their prevailing dimensionality reduction 
characteristics, which to a large extent, reduce the 
load on computation and storage. There are modified 
methods of GMM, k-nearest neighborhood (kNN), 
SVDD, Infinite GMM, Diffusion maps-based kNN 
(DM-kNN), Weighted Distance-based kNN (FD-
wkNN), Sequential SVDD, Bagging SVDD (BagS-
VDD) that have also been applied in this field to 
focus more on the nonlinearity, multimodality, and 
non-Gaussian nature of the process data. Other than 
these commonly known machine learning methods, 
there are some infrequently used techniques like Pa-
rallel Factor Analysis 2 (PARAFAC2), Modified In-
dependent Component Analysis (ICA), One-class 
Support Vector Machines (SVM), Random Forest 
Similarity Distance, Local Neighbor Normalized Ma-
trix (LNNM), which have also been studied in order 
to explore different horizons and improve the scope 
of fault detection and its accuracy as time progresses. 

As we move to an era demanding a higher lev-
el of data processing, deep learning finds its place 
of existence in this world. Deep learning techniques 
benefit complex systems with multiple variables. 
They can tackle a large number of highly correlated 
variables for diagnosis and abnormal operating situ-
ations through various composition of nonlineari-
ties. Over the past few years, deep learning tech-
niques, namely, Stacked Sparse Auto-Encoder 
(SSAE) and Denoised Auto-Encoder (DAE) have 
also been explored for this particular process. All 
these techniques, along with their variations and 
how they have benefited in detecting the faults de-
veloped in the metal etching process, as well as 
their shortcomings, if any, are also elaborated fur-
ther herein in chronological order for each section.

There are review or survey works reported on 
fault detection and diagnosis methods for different 
industries. This article is probably the first ever at-
tempt to review various fault detection methods 
worked upon in the metal etching process for semi-
conductor manufacturing industry. The present work 
aims to serve as a ready reference for researchers 
working in the field of fault detection in etching 

process, and guide them in the right direction for 
different scopes of novelty that they can possibly 
explore. It also encourages researchers to try to 
overcome the drawbacks of certain techniques that 
have already been investigated in this process.

The article is organized as follows: A detailed 
description of the metal etching process carried for 
semiconductor manufacturing is presented in the 
next section describing the metal etching process 
and scope of the present work. In this section, along 
with process description, different types of associat-
ed problems, the relevant variables, and the differ-
ent possible faults are also mentioned. The section 
following process description, is the most important 
part of this article. In this section, we present a re-
view of all the process monitoring techniques re-
ported so far for the semiconductor industry metal 
etching process. The section is categorized into dif-
ferent subsections based on the type of machine 
learning techniques applied. Following the detailed 
review, an analysis of the survey work is presented 
along with future perspectives and areas of research 
are presented followed by concluding remarks.

Description of the metal etching process 
and scope of the present work

Etching is a process of material removal from a 
wafer surface. This helps to create patterns on the 
wafer permanently. Etching removes material only 
from the pattern traces after the circuit pattern is ex-
posed by coating the wafer with a photoresist. Etch-
ing chemicals (etchants) are used to remove the ma-
terial of interest. The main purpose of the etching 
process in this article is the fabrication of semicon-
ductor devices. The goal of this process is to etch a 
certain metal wafer or the metal oxide used as a 
mask of a wafer surface exposing only the portion 
of metal required. This is achieved mostly through 
dry etching or more specifically through plasma 
etching. Plasma etching is one of the most com-
monly used techniques in the semiconductor pro-
cessing industry to develop micro- and nano-scale 
patterns on a silicon wafer. Fig. 2 presents a typical 
plasma etching flow diagram4. In plasma etching, 
the etchant is introduced in a gas phase. Radio fre-
quency (RF) electrodes are used to produce plasma, 
which in turn ionizes the gas. The oxide layer un-
dergoes a reaction with the ionized gas and the ma-
terial is removed. Since the etching process is selec-
tive to the material to be removed, the material 
under the resist or oxide layer or the resist itself is 
protected.

When it comes to large-scale production, there 
are many challenges being faced in this process, 
namely, incomplete etching, overetching, and un-
dercutting, process drift and shift. It becomes diffi-
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cult to monitor such faults in a large industry 
through human intervention. Instead, process sen-
sors are used to monitor the difficulties, and which 
in turn help to identify the origin of the fault. They 
play a primary role in fault detection. For the pro-
cess studied in this work, three sensor systems are 
most commonly used3. Firstly, the Machine State 
Sensors (MSS) are built into the processing tool 
collecting machine data during wafer processing, 
like gas flow rate, chamber pressure. Radio Fre-
quency Monitors (RFMs) are used to measure volt-
age and current, and phase relationships at frequen-
cy 13–56 MHz in the RF control system. Optical 
Emission Spectroscopy (OES) is used to monitor 
plasma in the range of 245–800 nm at three loca-
tions above the wafer using fiber optics.

The major problems, and the reasons for their 
occurrence, that are often faced during metal etch-
ing a semiconductor are as follows:

Issues faced during the process

– Overetching and undercutting.
– Over time the process could undergo process drift 

and shifts, as the process is non-stationary, i.e., 
varying mean and covariance over time.

Reasons for problem occurrence

– Aging of etcher over clean cycle-residue accumu-
lation inside the chamber.

– Fluctuations in the incoming materials because of 
variations in upstream processes, causing a lag.

– Drift in the sensors used for process monitoring.
This article is a review of different fault detec-

tion techniques applied on an Al stack etching pro-
cess performed on the commercially available 

Lam9600 plasma metal etching tool3. In this pro-
cess, the TiN/Al-0.5%Cu/TiN/oxide stack is etched 
with inductively coupled BCl3/Cl2 plasma. The dif-
ferent machine state variables presented in Table 1 
are taken into account for monitoring. This is a pub-
lic dataset available in the Eigenvector Research 
Data Archive (http://www.eigenvector.com/data/
Etch/index.html). The dataset consists of values for 
129 wafers, among which 108 normal wafers were 
taken during three experiments (experiments 29, 31 
and 33), and 21 wafers (seven in each of the 3 ex-
periments) were intentionally induced with faults 
by altering the transformer-coupled plasma (TCP) 
power, RF power, pressure, BCl3 and Cl2 flow rate, 
and He chuck pressure, which is presented in Table 
2. Forty-three wafers were processed in each exper-
iment, and they were conducted several weeks 
apart.

A number of fault detection and process moni-
toring methods are reported in the literature which 
are able to identify maximum number of faults in 
this system. In this review work, different machine 
learning based fault detection techniques (linear and 
non-linear) that have been applied to this process so 
far have been compiled and studied.

Review of process monitoring techniques 
applied in metal etching industry

This section reviews all the process monitoring 
techniques applied in the last two decades to the 
aforementioned metal etching process. The review 
is presented in different categories. Each category 
presents a review of all the works concerning a par-
ticular technique.

F i g .  2  – Flow diagram of a plasma etching process
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Principal Component Analysis (PCA) based 
techniques

Among all the fault detection techniques, mul-
tivariate statistical fault detection methods, like the 
principal component analysis (PCA) and its modi-
fied versions have drawn maximum interest in ap-
plication to the metal etching process of semicon-
ductor manufacturing5. Wise et al. were among the 
first authors to have implemented PCA in the field 
of semiconductor metal-etching industry3. They 
conducted a comparative research on PCA and mul-
tiway PCA (organizing of data into time-ordered 

blocks of the original data) along with other tech-
niques for the metal etching process. PCA can iden-
tify a combination of variables that depict a major 
trend in a dataset, while the multiway PCA consid-
ers that data are collected in a sequential manner, 
providing identical results even after reordering of 
samples. This technique was termed multi-way be-
cause it handles time-series data ordered into differ-
ent blocks according to time where each block may 
represent a process run or a single sample. They are 
of particular importance for the analysis of batch 
process data. Analysis shows PCA worked better on 
raw data than multiway PCA, multiway PCA did 
not perform better than PCA of the raw data, but 
with different arrangements of data, MPCA showed 
better results on the machine state data and OES, 
but not the RFM. Faults that change the shape of 
the process trajectory (stretching or shortening of 
the etching process) without altering the overall 
mean and covariance are detected by multiway 
PCA, but not PCA. Even though multiway PCA 
performed better than PCA, PCA is preferred due to 
its simple model nature. It was observed that none 
of the methods applied could account for process 
drifts.

A typical process dataset usually contains val-
ues of variables that are highly correlated. This in-
formation is hidden in the form of combinations of 
variables: the latent structure. Hence, it is better to 
model the non-correlated groups of variables sepa-
rately using a non-linear model or local linear mod-
els. Camacho and Picó, came up with a new ap-
proach of PCA called multiphase PCA (MPPCA) to 
deal with the non-linear nature of semiconductor 
manufacturing batch process, which the traditional 
linear models like PCA/PLS fail to consider6. Here, 
multistage models are constructed by designing dif-
ferent models for different stages. The stage depicts 
the time segment corresponding to one unit opera-
tion. The models are generated independently and 
they are local to the stage. MPPCA model is applied 
for the detection of phases (the segments of the 
batch that are well approximated by a linear model) 
in a batch process. The results obtained after com-
parative studies show that MPPCA gives the highest 

Ta b l e  1  – Machine state variables for process monitoring3

1 BCl3 flow 8 RF tuner 15 TCP impedance

2 Cl2 flow 9 RF load 16 TCP top power

3 RF bottom power 10 Phase error 17 TCP reflectance

4 RFB reflected power 11 RF power 18 TCP load

5 Endpoint A detector 12 RF impedance 19 Vat valve

6 Helium pressure 13 TCP tuner

7 Chamber pressure 14 TCP phase error

Ta b l e  2  – Fault types detected in the metal etching process3

Fault No. Fault description

1 TCP+50

2 RF-12

3 RF+10

4 Pr+3

5 TCP+10

6 BCl3+ 5

7 Pr-2

8 Cl2-5

9 He Chuck

10 TCP+30

11 Cl2+5

12 RF+8

13 BCl3- 5

14 Pr+2

15 TCP-20

16 TCP-15

17 Cl2-10

18 RF-12

19 BCl3+10

20 Pr+1

21 TCP+20
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prediction power by adjusting the model to the na-
ture of the process. This model does not require 
post processing, unless one wants to reduce the 
number of submodels. This way, the computational 
load and application of a non-linear model to the 
entire process are avoided. No prior knowledge of 
the process is required, as the parameters are intui-
tive and defined to be independent of the specific 
process. This article opens a new scope in the re-
search of various design of other algorithms within 
the MPPCA framework, and uses fuzzy transitions 
between phases or Gaussian mixture models to im-
prove the non-linear dynamic modelling.

Since multiway PCA appeared to show satis-
factory results, Han et al. applied this technique for 
end point detection (end point is the instance where 
plasma etching is stopped in order to prevent over-
etching) in plasma etching using multiple wafers for 
real-time prediction of EPD (end point detection) 
with normal wafer data, and used the entire optical 
emission spectra for EPD7. Two models are includ-
ed in this algorithm, namely, single wafer model, 
and multiple wafer model. The former model uses 
the PCA loading vector of the first wafer as a pre-
dictor for the EPD time of the second wafer, and the 
latter uses the multiway PCA loading vector of pre-
vious wafers for the EPD time of the target wafer. 
When this method was applied in the metal etching 
process, multiway PCA was more robust and reli-
able than PCA for EPD, as PCA with the single 
wavelength signal could not overcome the noise is-
sues or include the drift of the process.

As the process becomes complex, the number 
of variables increases, and with faster sampling 
rates, the storage grows drastically. In order to break 
down the size of the existing PCA model, Good et 
al. came up with a unified PCA (UPCA) model, 
where the problem was broken down into smaller 
units, and PCA model was applied to those units8. 
This way, the computational time for model genera-
tion and adaptation was reduced dramatically and 
could automatically group variables. This model 
does not take into account the correlations that 
practically exist among variables; thus, UPCA is 
only an approximation of the PCA model. It has 
been applied on a wafer electrical test (WET) data, 
where 484 variables were grouped into 15 blocks 
with little or no interactions between blocks. Re-
sults demonstrated that, when no interblock correla-
tions were considered, PCA and UPCA were identi-
cal, but the model size had reduced by 89.4 % with 
UPCA. The model has the ability to create and 
modify models in situ, and to use the process 
knowledge to disallow insignificant correlation be-
tween unrelated variables. The drawback of this 
model was that it caused additional false alarms and 
missing data than that with PCA modelling. Hence, 

this model would be appropriate and efficient to 
group variables automatically.

Most of the monitoring methods assume that 
the collected batch dataset has a three-way array, 
implying that all the batches should have the same 
batch length and each variable an identical sam-
pling rate. In reality, most of the batch processes do 
not comply with these assumptions because as the 
chemical composition of the raw material and envi-
ronmental conditions vary, batch lengths become 
unequal. Hence, Wang and Yao9 proposed a new 
model called multivariate functional kernel princi-
pal component analysis (MFKPCA), where the 
variable trajectories are not considered as just vec-
tors, but as smooth functions because they often 
show functional behaviors. This characteristic of 
the variables makes it easier to transform the col-
lected three-way data into a two-way function ma-
trix. This proposed model combines the functional 
data analysis (FDA) and nonlinear PCA. The FDA 
handles the subtle differences between the variable 
trajectories of normal and faulty samples, as well as 
the unequal length of batch by eliminating random 
noises. To the developed multivariate functional 
data, the kernel trick is applied to handle the nonlin-
ear relationships among variables and sampling 
times. In addition to SPE and T2 statistics for fault 
detection, mean squared error (MSE) statistics is 
also utilized in MFKPCA to take into account the 
fitting errors that leave behind variation information 
about variable trajectories between normal batches 
and faulty ones. Results from the metal etching pro-
cess showed that the average testing accuracy of 
MFKPCA was higher than other methods, and 
showed similar missing alarm rates as that of multi-
way PCA and multiway KPCA, but lower false 
alarm rate. Guo et al. came up with a modified ap-
proach of PCA known as weighted difference prin-
cipal component analysis (WDPCA) to deal with 
nonlinearity and multimodal characteristics of com-
plex industrial processes10. This approach in the 
preprocessing stage uses weighted difference meth-
od on the original data to get rid of the multimodal 
and nonlinear characteristics. To this preprocessed 
data, PCA model is applied effectively, since the 
data approximately follows Gaussian distribution. 
The authors applied WDPCA along with 5 other 
models (PCA, KPCA, ICA, kNN, LOF) on a semi-
conductor manufacturing industry and compared 
their results. The analysis showed that WDPCA was 
able to detect all 20 faults with SPE index and al-
most all with the T2 index, whereas the SPE index 
of PCA could detect only 17 faults. The perfor-
mance of KPCA, ICA, kNN, and LOF were poor in 
detecting all the faults. Compared with the other 5 
methods, there were no false alarm rates of the T2 
index and missing alarm rates of the SPE index of 
the WDPCA model.
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In real scenarios, the faulty samples are usually 
in an extreme imbalance ratio in comparison with 
the normal samples. This creates the issue of class 
imbalance during fault detection. Wang et al. 
worked on a feature extraction method based on 
kernel principal component analysis (KPCA), a 
self-supervised learning method to achieve rapid 
detection of faults or abnormal samples11. This is a 
data-driven method of fault detection, which only 
uses normal data samples for training, where princi-
pal components are extracted using KPCA from the 
raw data, and based on how high the reconstruction 
error of the testing sample is than the training sam-
ple in the feature space, the fault is identified. The 
reconstruction error of the sample is compared with 
the threshold, which is the maximum reconstruction 
error of the training normal samples. During testing, 
all the samples, including normal and faulty ones, 
are projected on the eigenvector. Since eigenvector 
are the principal components of the samples, faulty 
samples are thereby detected as those with high re-
construction error. Results showed that this ap-
proach of self-learning was able to detect all the 21 
faults in the metal etching process.

It is known to us that the wafer processing in-
dustry deals with three-dimensional array and non-
linear data characteristics, and for this process a 
simple multiway PCA may not serve the purpose. 
Hence, Zhang et al. proposed a novel technique 
called multiway principal polynomials (MPPA)12. 
This nonlinear modelling technique captures the 
nonlinear nature of the data by replacing the straight 
PCs in PCA with curved principal polynomials. 
This method learns a low-dimensional representa-
tion from a process data on the basis of sequential 
principal polynomials. When tested on the wafer 
processing data, SPE of MPPA performed better 
than MPCA, FD-kNN and PC-kNN in effectively 
capturing the nonlinear nature of process data.

Hybrid PCA techniques

In this section, combination of two or more 
fault detection techniques keeping PCA as a base 
technique are reviewed.

To eliminate the drawbacks of certain multivar-
iate statistical fault detection methods, namely, non-
linearity and multimode handling, He and Wang 
proposed a modified fast pattern recognition-based 
method that combines the benefits of both PCA and 
k nearest neighbors (FD-kNN), principal compo-
nent-based kNN (PC-kNN)13. Even though FD-kNN 
alone can overcome the mentioned characteristics 
of a semiconductor batch process, it becomes  highly  
complex in computation and needs intensive sto-
rage/ memory requirement. The new approach,  
PC-kNN, is able to sort this issue. Two major steps 

are involved in this method; firstly, PCA is applied 
to the original process data for dimensionality re-
duction and extracting the key process features. 
Secondly, fault detection is done by applying FD-
kNN on the obtained principal subspace by PCA. 
The conducted experiments suggested that PC-kNN 
was capable of detecting abnormalities based on lo-
cal neighborhoods, and handled nonlinearity and 
multimodal distributions naturally. PC-kNN tended 
to out-perform both PCA T2 and FD-kNN. The 
faults detected by PC-kNN and SPE were combined 
to obtain a full coverage of fault detection since PC-
kNN does not take into account the residual sub-
space. As a future aspect, one can try to figure out 
how a single PC-kNN model can be used for the 
entire process plant, as they can handle multimodal 
data, rather than using hundreds of context-specific 
PCA models.

Ge and Song proposed an adaptive method that 
can overcome the difficulties seen in multiway PCA 
method called the substatistical PCA method14. 
Hence, a substatistical PCA method is introduced 
that avoids future value estimation, and can be used 
for non- Gaussian process data by employing sup-
port vector data description (SVDD). Using the ker-
nel learning technology, SVDD is able to deal with 
small data samples and form a flexible boundary 
around the process monitoring while adapting to the 
shape of the samples. This method is also able to 
obtain cross-information between data blocks with 
lower time complexities. Even though most of the 
conventional issues of multivariate statistical pro-
cess control (MSPC) are resolved by this method, it 
is still not able to handle nonlinearity, and is appli-
cable for stationary cases only.

Yu came up with a new model that eliminates 
the major drawback of PCA model, i.e., the assump-
tion that the data are Gaussian distributed, and the 
confidence bounds are set based on this assumption, 
which is not the case in reality15. This approach 
combines the benefits of PCA, i.e., dimensionality 
reduction and the Gaussian mixture model (GMM), 
i.e., handling nonlinearity and multimodal batch tra-
jectories, along with two process state quantifying 
indexes, negative log likelihood probability (NLLP), 
and Mahalanobis distance (MD) with failure proba-
bility (BIP) being proposed to assess the process 
states for fault detection. In order to avoid inputs 
with high dimensionality and sparsity, PCs generat-
ed by the PCA model are fed as inputs to the GMM 
model. Hence, the model takes the name Principal 
Component Gaussian Mixture Model (PCGMM). 
When this model was applied on a semiconductor 
dataset, results showed that the charts of PCGMM 
for both NLLP and MD indices detected all 20 
faults and their failure probabilities (BIP) were all 
100 %. In conclusion, PCGMM-NLLP and PCG-
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MM-ND outperformed PCA-T2 and PCA-SPE con-
trol charts in detecting various faults for multimodal 
data characteristics.

Even though KPCA manages to work brilliant-
ly on nonlinear data, it fails to consider the multi-
modal nature of the data, which happens to be the 
case for semiconductor manufacturing process. 
Thereby, Zhang et al. proposed a model that com-
bined NND rule with KPCA to reduce the impact of 
multimodality, known as NND based KPCA16. Mul-
timodal trajectories are eliminated by this technique 
by applying the NND rule on the raw dataset first, 
guaranteeing approximately Gaussian distribution, 
thereby making the application of kernel PCA on 
the data in the NND subspace effective, and which 
just handles nonlinear nature of the data. In compar-
ison to FD-kNN, KPCA and other multivariate sta-
tistical process monitoring (MSPM) methods, 
NND-KPCA demonstrated 100 % fault detection 
rate, and had a lower false alarm rate than KPCA.

Gaussian Mixture Model (GMM) based 
techniques

A novel model, Infinite Gaussian Mixture 
Model (GMM) was proposed by Chen et al.17, to 
provide confidence bounds to detect any process 
deviation from normal operation without the as-
sumption of Gaussian data. This model is a special 
case of Dirichlet process mixture, and is a limit of 
the finite GMM. It provides a more accurate calcu-
lation of confidence bounds as it uses a Bayesian 
approach to estimate the probability density func-
tion (PDF) of the process data. Chen and Zhang 
proposed a model that deals with online monitoring 
for batch processes that are not Gaussian-distribut-
ed using the Gaussian Mixture Model method 
(GMM)18. The historical set of data collected based 
on normal operating conditions, is used to set confi-
dence bounds for monitoring statistics without the 
assumption of Gaussian data, to detect deviation of 
the process. Here the entire data of old batch is 
needed, and only up to the current time as that of 
the new batch for monitoring statistics. Firstly, 
MPCA is applied on the batch data to extract and 
obtain low-dimensional representation of the pro-
cess. Next, GMM is applied to obtain the joint PDF 
(Probability Density Function) of the predicted 
monitoring statistics from MPCA at each time step. 
The diagnosis of the fault detected is done by con-
tribution analysis method in which the variable that 
defies the confidence bounds is identified. From the 
case study of semiconductor manufacturing indus-
try, it is clear that the GMM is a promising method 
in terms of lower false alarm, and is accurate at cal-
culating the confidence bounds in the online moni-
toring of batch processes.

Yu combined the benefits of the local and non-
local preserving projection (LNPP) and GMM, and 
came up with a new model called GMM with Local 
and Nonlocal preserving projection19. This model 
aims at extracting local and nonlocal information 
from the process data to improve the performance 
of GMM with dimensionality reduction. LNPP has 
the ability to distinguish directions keeping the lo-
cal and nonlocal structural information intact for 
given data. Unlike the PCA, LNPP is able to identi-
fy low-dimensional information hidden within 
high-dimensional observations. Based on the ex-
tracted information from LNPP, GMM is applied 
for the estimation of PDF of semiconductor manu-
facturing process data. GMM, along with a quanti-
fication index, Mahalanobis distance, was proposed 
to detect the process states with faults. Bayesian 
inference-based method was proposed to provide 
the process failure probability. The proposed model 
outperformed PCA-based monitoring models.

k-Nearest Neighbor Rule (kNN) based 
techniques

He and Wang developed the fault detection 
method using the k-nearest neighbor rule (FD-kNN) 
to handle characteristics like nonlinearity, multi-
modal batch trajectory due to product mix, and vari-
able durations during process steps in a semicon-
ductor process industry, that are difficult to identify 
with multivariate statistical fault detection methods 
such as principal component analysis (PCA)20. The 
kNN rule classifies unlabeled samples based on 
their similarities with samples in the training set, 
making it suitable for application in pattern classifi-
cation. The normal operation data are the only data 
available as a training set. This barrier is overcome 
by adapting the traditional kNN rule and making 
use of only normal operation data. The FD-kNN 
method reported in the article is built on the idea 
that the trajectories of the incoming normal sample 
and that of the training samples (i.e., of normal op-
eration data only) are similar, whereas the trajectory 
of an incoming faulty sample shows deviation from 
that of the normal training samples. The FD-kNN 
method handles nonlinearity and multimodal trajec-
tories naturally, as the method makes no assumption 
of linearity and detects faults based on local neigh-
borhoods. This method takes a crucial place in on-
line process monitoring, as the preprocessing is 
done automatically. In addition, in industries with 
limited preprocessing data, FD-kNN method seems 
to outperform the PCA method. This does not nec-
essarily imply that FD-kNN outperforms PCA in all 
cases. Li et al. proposed a new scheme, Just-in-time 
(JIT) and kNN-based integrated model. JIT detec-
tion method can store the current measured data in 
the database, enabling it to be flexible and adaptive 
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inherently21. It can also detect where the query is 
not normal through online and adaptive approach. 
Based on the Mahalanobis distance between the 
normal samples, the raw data sets are simplified and 
updated. The time-varying control limit (CL) of the 
updated database is regulated through kNN rule 
combined with SPC method. This is done every 
time a fault detection has to be conducted. From the 
case study of semiconductor process industry, it is 
very clear that the proposed model is well suited for 
nonlinear, dynamic, and multimodal processes. A 
novel method for fault detection, called Diffusion 
maps-based kNN (DM-kNN), has been presented 
by Li and Zhan22. This model reduces training sam-
ple storage and deals with nonlinear dataset. Diffu-
sion maps is defined on a graph of data points by 
constructing a Markov chain. It is a robust nonlin-
ear manifold dimensionality reduction technique 
while preserving the intrinsic geometrical structure 
of the dataset. High-dimensional data is transformed 
to low-dimensional featured space with intrinsic di-
mensionality. To this low-dimensional dataset, kNN 
rule is applied to detect potential faults. When this 
method was applied on a metal etching process, the 
results demonstrated that the model detected all the 
20 faults, and developed method demonstrated ef-
fective monitoring with superior fault detection per-
formance in comparison with other techniques like 
MPCA, FD-kNN, and PC-kNN.

Zhou et al. introduced a new fault detection 
method, which merges the benefits of random pro-
jection and kNN (RPkNN)23. Random projection 
not only reduces the computational complexity and 
storage space, but also preserves the distance of 
pairwise samples in the random subspace, which is 
not possible in the case of PC-kNN. This reduces 
the false alarm rate and the missing detection. This 
is further combined with the kNN rule to deal with 
multimodal nature of batch and nonlinearity. On 
analysis of a semiconductor process data, results 
showed that the fault detection capability of RP-
kNN was identical to that of FD-kNN, but resulted 
in dramatic reduction in computational complexity 
and storage space. When the distance distortion of 
RP is compared with that of PCA, it is observed 
that RP causes very limited changes and most of the 
information is retained, which makes dimensionali-
ty reduction much more effective than PCA.

When the dispersion degree of different modes 
are similar, the detection performance of kNN is ac-
ceptable. However, when the dispersion degrees of 
different modes are not similar, minor faults go un-
detected. Guo et al. proposed a kNN-based proba-
bility density (PD-kNN) model that ignores the dif-
ferent degrees of dispersion between modes, and 
classifies the modes based on probability density24. 
The proposed model overcomes the shortcoming of 

kNN by applying PD to determine the mode of the 
new test data. The test data is detected by the exist-
ing kNN model using the training data of its respec-
tive mode. Hence, PD-kNN model detects weak 
faults having a lower dispersion degree that are sub-
merged by the normal data in the mode with higher 
dispersion degree in a multimodal data. Zhang et al. 
came up with an alternative model to the PD-kNN 
called Weighted Distance-based kNN (FD-wkNN) 
to deal with the same issue of detecting weak 
faults25. To overcome this problem, adjustments of 
the squared distance of a sample to k-nearest neigh-
bors (D2) of different modes are done to the same 
scale through weighted parameters.

Support Vector Data Description (SVDD)  
based techniques

A process monitoring task requires to distin-
guish normal samples from the faulty samples, 
grouping the normal data as one class. Hence, this 
monitoring can be considered as a one-class classi-
fication problem. One-class SVDD was applied for 
the first time for batch process monitoring by Ge et 
al.26 The goal of this approach is to group all the 
normal process data samples into one class, so as to 
differentiate from the faulty samples with no Gauss-
ian limitation, and make it efficient for nonlinear 
cases. A sub-SVDD model has also been developed 
for multiphase batch processes. This method proves 
to be computationally efficient, as the model only 
incorporates a quadratic optimization step. Khediri 
et al. presented a procedure called Kernel k-means 
(KK-means) clustering-based local SVDD to moni-
tor processes with multimodal and nonlinear char-
acteristics27. This model is based on separate mod-
els for different process modes. Using the clustering 
method, specifically Kernel k-means, if the separa-
tion boundaries between clusters are non-linear, the 
process modes are separated based on the similari-
ties using sum-of-square criterion. Different SVDD 
models are used for each cluster. This way, not only 
the faults are identified, but also the process modes 
in which they occur. For accurate fault detection 
based on a spatiotemporal pattern classification ap-
proach, Chang et al. developed a new classifier 
known as Sequential SVDD. The proposed tech-
nique models the characteristic areas of flow and 
sequential flow of process data28. SVDD handles 
the non-Gaussian and nonlinear data characteristics, 
whereas the sequential modelling handles the se-
quential characteristics. As soon as a process abnor-
mality occurs, the fault can be detected quickly by 
checking the start and end-points of the process us-
ing the ordered SVDDs. This information is used 
for the diagnosis of fault sources. In this model, 
PCA is first applied on the original dataset to reduce 
the dimensionality and for feature extraction. From 
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these featured areas, critical ones that are abnormal 
are selected. A sequential classifier describing the 
selected data areas are configured with SVDD and 
their sequential relationships with a Gaussian distri-
bution. To improve the functioning and performance 
of SVDD model, Ge and Song developed an ensem-
ble form of the same: Bagging SVDD (BagS-
VDD)29. Instead of using a single SVDD model, an 
ensemble model technique (bagging) is used to de-
velop multiple models based on various SVDD 
techniques using subdatasets. Monitoring perfor-
mances of different sub-SVDD models are com-
bined using voting-based (uses cut off value) meth-
od and Bayesian-based (uses probability) method to 
form a final monitoring result.

Based on functional data description of the 
batch dataset, Yao et al. extended the conventional 
SVDD to the functional aspect, called functional 
SVDD30. In this approach, a three-way array is 
transformed into a two-way array by considering 
each variable’s time-varying trajectory as sampled 
functional data. It is very well known to us that the 
SVDD method of monitoring captures the spherical 
boundary around the normal data and sets off con-
trol limits based on support vectors (SVs). When 
applied for a complex batch process, the accuracy 
of monitoring decreases with this set control limit. 
Hence, Wang et al. proposed a Dynamic hyper-
sphere-based SVDD (DH-SVDD) model for batch 
process monitoring. DH-SVDD improves the moni-
toring accuracy of the existing SVDD models31. 
Here, a static hypersphere is built on the historical 
training data first, and then combining a test sample 
and the training data, a dynamic hypersphere is 
built. If the current sample is faulty, then a signifi-
cant change between the static and dynamic hyper-
spheres will be detected. To validate this, the model 
was tested on the semiconductor etching process, 
and based on the results, the accuracy of fault detec-
tion was the best among the eight tested methods.

Deep learning techniques

When it comes to studying and analyzing com-
plex process data, there is a large number of highly 
correlated variables, which can be easily tackled 
these days with the help of deep learning tools. Tra-
ditional machine-learning techniques require pre-
processing of raw data based on user’s prior knowl-
edge and expertise before application of techniques 
on the data. On the other hand, deep-learning tech-
niques possess multiple processing layers, which 
carry out feature extraction as well as modeling. In 
the context of industrial applications, they are capa-
ble of diagnosing faulty process conditions by com-
posing a number of nonlinear approximations. Lv et 
al. used a stacked sparse auto-encoder (SSAE) net-
work, which identified minute details and changes 

in a fault signal32. By increasing the number of layer 
to be stacked, more nonlinearities can be character-
ized through higher order correlations. The detec-
tion performance when illustrated on metal etching 
process data showed superiority over many other 
process monitoring methods, and highlighted that 
the performance can be further improved by in-
creasing the number of normal samples in the train-
ing phase.

While using standard classification algorithms, 
there is a high chance that information is lost from 
the trace data (sequences of sensor readings) while 
extracting statistical features and therefore, there is 
a possibility of failure to consider class imbalance 
situations. Since most of the data used for fault de-
tection and classification (FDC) are class-imbal-
anced, many times faulty wafers are also classified 
as normal wafers, and the sensor noise and wa-
fer-to-wafer (W2W) variations are not considered in 
usually implemented techniques, one-class classifi-
ers are implemented. In order to incorporate W2W 
variations and sensor noises, Jang et al. developed a 
one-class FDC model based on Denoised auto-en-
coder (DAE) and analyzed the residual trace33. DAE 
is a feed-forward neural network with only one hid-
den layer. It can decompose trace data into ideal 
trace, sensor noise, W2W variations and abnormal 
patterns, and provide an ideal trace as an output. So 
if the wafer is faulty, the abnormal patterns and sen-
sor noises will be available in the difference be-
tween the input and output traces (residual trace). 
To segregate the noises from the abnormal patterns, 
any residuals in the denoised residual trace (DRT) 
below the threshold will be considered as sensor 
noises and be removed, and the remaining residuals 
will be carriers of information regarding abnormal 
patterns. Etch results showed that a limited number 
of normal samples were sufficient to train the mod-
el, remove W2W variations and sensor noises, as 
well as detect abnormal patterns. In addition, using 
the DRT information, the proposed method could 
identify the process parameters responsible for the 
wafer faults, and help in shaping and give time de-
tails of abnormal pattern occurrence.

Miscellaneous techniques

As discussed earlier in this article, Wise et al. 
were among the first researchers to study the mod-
els developed from the obtained data of the three 
sensor systems of a metal etching process, namely, 
principal component analysis (PCA), multiway PCA, 
trilinear decomposition (TLD), and parallel factor 
analysis (PARAFAC)3. TLD and PARAFAC are 
multiway methods. However, unlike MPCA (which 
depends on PCA and rearrangement of the original 
data), TLD and PARAFAC handle and interpret the 
convolute time and variable information better. Af-
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ter analysis and comparison of the models, it was 
observed that PARAFAC performed marginally bet-
ter than TLD. This could be due to the imaginary 
solutions obtained in TLD, which tend to be a prob-
lem. It was also observed that even though the over-
all performance of the sensors was similar, OES 
sensor appeared to degrade the most as models 
changed from local to global. This is due to the 
large amount of drift in the OES signals due to res-
idue build-up. Whereas, there were minimal varia-
tions in the sensitivity of RFM models (local or 
global), hence suggesting that RFM sensors are the 
most stable and/or least sensitive to many changes 
that do not affect processing. In summary, PARA-
FAC worked the best, closely followed by PCA on 
the means and TLD. However, due to the simplicity 
of PCA algorithm, it is preferred for practice.

It is not always the case that a batch process 
takes the same amount of time in every run. Even if 
so, they will not necessarily follow exactly the same 
time trajectory. They may take longer time in some 
processing steps and less time in others. Hence, the 
data obtained for each batch may be of different 
length. Focusing on this very aspect, Wise et al. de-
veloped and worked on stretching of time axis, us-
ing the PARAFAC2 model34. Unlike PCA, TLD, 
and PARAFAC techniques, this approach does not 
approximate the range of process trajectories as the 
sum over fixed time profiles. A major advantage of 
PARAFAC2 model is that the original data of un-
equal batch lengths can be used directly without go-
ing through preprocessing methods. From the re-
sults obtained after fault detection, one can infer 
that the sensitivity of PARAFAC2 model was some-
what higher in comparison with the MPCA, but not 
significantly more sensitive than PARAFAC. Be-
sides, if fitted time profiles were not considered, 
PARAFAC2 model would rearrange the data re-
cords without stipulating a fault, making it a major 
disadvantageous factor of the model. The main ben-
efit of the PARAFAC2 model is that the data records 
of varying length do not require preprocessing.

Lee et al. introduced a novel MSPM method 
which is a modified version of the existing indepen-
dent component analysis (ICA)35. ICA is itself an 
improved method of the principal component anal-
ysis (PCA) overcoming the shortcomings of PCA, 
like its inability to provide lower-order representa-
tion for non-Gaussian data. ICA extracts the import-
ant components that influence the process, and the 
ICs extracted are monitored rather than the original 
data. Nonetheless, it is nearly impossible to know 
how many ICs need to be extracted to obtain a sta-
ble ICA model, which is why it increases the com-
putational load. The order of the ICs cannot be de-
termined in ICA unlike PCA (where PCs are 
arranged in descending order). All these disadvan-

tages are overcome in the modified ICA. This mod-
el uses PCA to estimate the initial ICs, and the dom-
inant ICs are calculated using the conventional ICA 
without changing the variance. When this novel 
method was applied on the semiconductor etching 
process for fault detection and diagnosis, it gave 
more satisfactory results than the PCA. Pattern 
changes were reflected better by the extracted dom-
inant ICs. It also revealed the group of process vari-
ables responsible for the out-of-control action of the 
processes from the contribution plots. This analysis 
shows that the proposed method is promising for 
process monitoring.

The focus of Yu and Wang was on Neural Net-
works (NNs) as a technique of multivariate statisti-
cal process control (MSPC)36. The reason being ex-
ceptional noise tolerance in real time, which requires 
no hypothesis on statistical distribution of moni-
tored measurements. Most of the NNs are based on 
supervised learning, which means that the abnor-
malities of the process needs to be known before 
hand as a feed to the training dataset. This is very 
difficult to acquire in real industries, but the normal 
operating datasets are much easier to extract. Hence, 
a new approach of NNs was introduced, where only 
the normal operating datasets are required for the 
neural system. This approach is based on the 
Self-organizing Map (SOM) in which the training is 
adaptive to the data that has been input with no hu-
man intervention during learning. Using the Mini-
mum Quantization Error (MQE) calculation, this 
approach is able to provide a much more accessible 
and quantitative estimate for the current process 
state. Based on these estimated MQE values, a 
MQE chart is prepared to study the process behav-
ior. After conducting experimental studies on a bi-
variate process and the semiconductor batch pro-
cess, it was concluded that the MQE chart was 
much more effective and robust than other MSPC 
tools in detecting minute process shifts.

Mahadevan and Shah proposed a supervised 
model one-class SVM, which is a variant of the tra-
ditional SVM algorithm37. This model is trained 
only from normal data, unlike the traditional SVM, 
which is developed from both normal and faulty 
data. The objective of this technique is to detect any 
outliers (faulty samples). This approach handles 
nonlinearity with the help of kernel functions. Just 
like the PCA and DPCA uses T2 and SPE statistics 
as distance metrics and threshold for fault detection, 
this model is based on a single nonlinear distance 
metric measure. Due to its ability in handling multi-
modality, the one-class SVM model had better re-
sults than PCA technique in detecting faulty wafers 
in the semiconductor etching process.

Yu constructed Hidden Markov Model (HMM) 
combining local and global information of Gaussian 
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component hidden in the HMM to identify process 
faults for nonlinear and multimodal process38. For 
this purpose, two novel quantification statistical 
models are introduced, namely, MDNLLP (Mahala-
nobis distance combined with negative log likeli-
hood probability), and BIP (Bayesian infer-
ence-based probability). Based on the information 
obtained by these quantification models, process 
faults are detected around nonlinear and multimodal 
operating areas. The implementation of this model 
of HMM-based MDNLLP and BIP on the semicon-
ductor batch process proved to be effective in fault 
detection with very few false alarm.

Puggini et al. applied an unsupervised method 
called Random Forest Similarity Distance, which 
uses random forests and decision trees to identify 
the faulty wafers merely by observing the chemical 
signatures during plasma etching39. Random forest 
is an ensemble learning method where a single de-
cision is obtained based on multiple outputs. To de-
tect the anomaly, the distance of the new wafer 
from normally behaving data is measured so the 
dissimilarity in the distance can be compared with 
the previously observed normal behaving data. Re-
sults show that the method can capture the effects 
of process drifts, along with identifying faulty wa-
fers effectively. A major drawback of this method is 
that, when the training dataset varies with time, it is 
not possible to compare their distance measure-
ments, because the similarity distance evaluated is a 
relative measurement of proximity.

A data-mining based algorithm, incremental 
clu  stering-based fault detection, proposed by Kwak 
et al. detects faulty wafers even in the case of se-
verely imbalanced class distribution and with pro-
cess drifts40. Here, the normal data is clustered as 
one, and once a new wafer is added, its class label 
is calculated using Mahalanobis distance. The sta-
tistical summary (prototype) of the closest cluster is 
updated to the new wafer, and if it happens to be a 
faulty one, then a new single-member cluster is cre-
ated, and merging operation is initiated for cluster 
overlaps ahead.

An unsupervised technique, Nonlocal structure 
constrained neighborhood preserving embedding 
(NSC-NPE) was proposed by Miao et al. for dimen-
sionality reduction41. NSC-NPE is an algorithm 
based on global information. Both local and nonlo-
cal information are considered at the same time 
with metric preserving properties. The local scatter 
is minimized and nonlocal scatter is maximized for 
the best possible mapping of data structure. A de-
tailed data structure can be mapped out from this 
information either hidden in the neighborhoods or 
of distinguished remote data points belonging to 
different neighborhoods.

To deal with multimodality and unequal length 
of data, Guo et al. developed a method called Local 

neighbor normalized matrix (LNNM)42. Nonlinear 
relations are identified between modes and within 
modes. Initially, local weighted algorithm (LWA) is 
used for preprocessing of the unequal length of 
batch data, and thereafter LNNM is constructed for 
the equal length of data generated. Using the 
K-means algorithm mode, clustering is done, and in 
each mode, LOF method is used for determining the 
first control limits to remove outliers. MPCA is ap-
plied to each mode to determine control limits of 
multiple modes. Based on the results, the approach 
of LNNM was more effective in fault detection than 
most of the common techniques like MPCA, KNN, 
and MKPCA, with a fault detection rate of 100 % 
and false alarm rate of 9.1 %.

Locality preserving projections (LPP), a MSPM 
method like the PCA when combined with a new 
difference preprocessing data algorithm for nonlin-
ear and multimodal data gives a new model, Differ-
ence locality preserving projections (DIF-LPP) de-
veloped by Guo et al.43 This method requires no 
prior knowledge of the process, and processes the 
data into a Gaussian fit and a single mode before 
applying LPP to the dataset. DIF can also be com-
bined with other MSPM techniques to improve fault 
detection.

The survey work aforepresented is summarized 
in chronological order in Table 3. It may be noted 
that all the works reported in Table 3 are based on 
the public dataset available at http://www.eigenvec-
tor.com/data/Etch/index.html. All works focus on 
detecting all or some of the 21 artificially intro-
duced faults, which are described in Table 2, by uti-
lizing the same input variables presented in Table 1.

Critical analysis of the review

Fig. 3 presents a pie chart explaining the per-
centage of techniques that have been applied to this 
process.

It can be noticed in Fig. 3 that PCA-based tech-
niques (traditional/modified PCA or PCA in combi-
nation with some other techniques) still account for 
almost fifty percent of all techniques. Among ma-
chine learning techniques, in the last decade, inde-
pendent component analysis (ICA) has become an 
attractive alternative to PCA for non-Gaussian data. 
However, there are only a few investigations of 
ICA-based techniques applied to the metal etching 
process. Furthermore, there is also scope for further 
exploration of various deep learning techniques for 
fault detection and diagnosis in this process.

It is known that there are 21 faults present in 
the metal etching process public dataset, and many 
articles have reported their fault detection rates 
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Ta b l e  3  – Summary of literature review on fault detection in metal etching process

Researchers Year Techniques applied

Wise et al.3 1999

PCA-based

Multiway PCA (MPCA)

Camacho and Picó6 2006 Multiphase PCA (MPPCA)

Han et al.7 2008 Multiway PCA for EPD

Good et al.8 2010 Unified PCA (UPCA)

Wang and Yao9 2015 Multivariate functional kernel PCA (MFKPCA)

Guo et al.10 2017 Weighted Difference PCA (WDPCA)

Wang et al.11 2018 Kernel PCA (KPCA)

Zhang et al.12 2018 Multiway Principal Polynomials Analysis (MPPA)

He and Wang13 2010

Hybrid PCA-based

Principal Component-based kNN (PC-kNN)

Ge and Song14 2010 Substatistical PCA (SVDD combined with PCA)

Yu15 2011 Principal Component Gaussian Mixture Model (PCGMM)

Zhang et al.16 2017 Nearest neighbor difference rule–based KPCA (NND-KPCA)

Chen et al.17 2006

GMM-based

Infinite GMM

Chen and Zhang18 2012 MPCA and GMM

Yu19 2012 Local and nonlocal preserving projection (LNPP) and GMM

He and Wang20 2007

kNN-based 

Fault detection method using the k-nearest neighbor rule (FD-kNN)

Li et al.21 2012 Just-in-time (JIT) and kNN-based integrated model

Li and Zhang22 2014 Diffusion maps-based kNN (DM-kNN)

Zhou et al.23 2015 Random Projection and kNN (RPkNN)

Guo et al.24 2018 kNN-based probability density (PD-kNN)

Zhang et al.25 2019 Weighted Distance-based kNN (FD-wkNN)

Ge et al.26 2011

SVDD-based

One-class SVDD

Khediri et al.27 2012 Kernel k-means (KK-means) clustering-based local SVDD

Chang et al.28 2012 Sequential SVDD

Ge and Song29 2013 Bagging SVDD (BagSVDD)

Yao et al.30 2014 Functional SVDD (FSVDD)

Wang et al.31 2018 Dynamic hypersphere-based SVDD (DH-SVDD)

Lv et al.32 2018
Deep learning-based

Stacked sparse auto-encoder (SSAE)

Jang et al.33 2019 Denoised auto-encoder (DAE)

Wise et al.3 1999

Miscellaneous

Trilinear decomposition (TLD) and parallel factor analysis 
(PARAFAC)

Wise et al.34 2001 Parallel factor analysis 2 (PARAFAC2)

Lee et al.35 2006 Modified Independent Component Analysis (ICA)

Yu and Wang36 2009 Self-organizing Map (SOM)

Mahadevan and Shah37 2009 One-class Support Vector Machines (SVM)

Yu38 2010 Hidden Markov Model (HMM)

Puggini et al.39 2015 Random Forest Similarity Distance

Kwak et al.40 2015 Incremental Clustering-based Fault Detection

Miao et al.41 2015 Nonlocal structure constrained neighborhood preserving embedding 
(NSC-NPE)

Guo et al.42 2016 Local neighbor normalized matrix (LNNM)

Guo et al.43 2018 Difference locality preserving projections (DIF-LPP)
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(FDR) with certain accuracy. The FDR results re-
ported in each research work are compiled for all 
the 21 faults and presented as a bar chart in Fig. 4 
for readers’ quick insight.

Fig. 4 represents the percentage of articles that 
have detected the faults, categorized based on their 
reported ranges of detection rate. In Fig. 4, low de-
picts the FDR range of a particular fault falling be-
tween 0–20 %. Similarly, medium depicts the FDR 
range of 20–70 %, and high depicts the FDR range 
of 70–100 %. There are 16 articles that have report-

ed the FDR of each fault. From the graph, it is clear 
that fault numbers 1, 4, 7, 10, 13, 14, 16, 17, 18, 19, 
and 20 have been reported with high FDR, out of 
which fault numbers 4, 7, 14, and 19 have a very 
high FDR comparatively. Most of the articles have 
studied only 20 faults, excluding fault number 12, 
thus, not much information can be gathered for this 
fault regarding its FDR. Other faults have not been 
reported with satisfactory FDRs, and a lot of work 
and analysis needs to be done to improve their 
FDRs.

F i g .  3  – Percentage distribution of techniques analyzed

F i g .  4  – Graph of FDR reported for all 21 faults
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Figs. 3 and 4 are expected to serve as ready 
references for researchers working in this area. 
These two figures in combination indicate the gaps 
in existing research in fault detection of metal etch-
ing process. They present the techniques frequently 
applied as well as the fault(s) that pose a challenge 
in successful detection.

Conclusion and future directions

The different problems associated with the 
metal etching process can be minimized by devel-
opment of an efficient process monitoring system. 
Effective monitoring in semiconductor manufactur-
ing will lead to reduced usage of test wafers as well 
as reduced scrap. Traditional monitoring techniques 
include univariate statistical process control charts, 
such as Shewhart, CUSUM or EWMA charts. How-
ever, multivariate nature of the metal etching pro-
cess renders univariate techniques less effective. 
Batch processing, multimodal batch trajectory, and 
highly nonlinear characteristics associated with the 
metal etching process makes it more difficult and 
challenging for design of efficient monitoring sys-
tem. This article presents a review of the different 
techniques reported so far for fault detection in the 
metal etching process. From this review, it is very 
clear that many researchers have explored this field 
of fault detection techniques in metal etching pro-
cess over the past two decades. Even though numer-
ous machine learning techniques have been applied 
and analyzed, deep learning techniques have found 
very limited application in this process. In the com-
ing years, more research based on deep learning can 
be applied to this field. Furthermore, independent 
component analysis (ICA) and its variants, which is 
an improved version of PCA handling non-Gauss-
ian data, is yet to be explored thoroughly for the 
metal etching process. More modified versions of 
ICA, either existing or newly developed methods, 
can broaden the scope of fault detection in semicon-
ductor industry. In addition, not many researchers 
have included in their research the fault number 12, 
making it difficult to gather data for improving its 
FDR. Thus, more focus needs to be put on detecting 
the less investigated faults as well as faults that 
have low reported FDRs so far.
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